SCHOOL OF ENGINEERING SCIENCE SIMON FRASER UNIVERSITY

Size: px
Start display at page:

Download "SCHOOL OF ENGINEERING SCIENCE SIMON FRASER UNIVERSITY"

Transcription

1 SCHOOL OF NGINRING SCINC SIMON FRASR UNIVRSITY NSC 37 Communiation Systems Lab # Amplitude Modulation Report Due Date: Wed., Ot 19, 011, 4:00pm Please submit to the drop box outside the NSC Offie 1. OBJCTIVS To study the modulation and demodulation of AM. To measure modulation fator in time domain and frequeny domain. To understand the funtions of various omponents in the superheterodyne reeiver.. LIST OF QUIPMNT LabVolt Power Suppoly and Dual Audio Amplifier Model 9401 LabVolt Dual Funtion Generator Model 940 LabVolt Frequeny Counter Model 9403 LabVolt AM/DSB/SSB Generator Model 94 LabVolt AM/DSM Reeiver Model 9411 Osillosope Spetrum Analyzer User manuals are available in the ourse website. 3. TH THORY Amplitude modulation results when a DC bias is added to the message signal m(t) prior to the modulation proess. The transmitted signal an be written as [ 1+ k m( t) ] os(πf ) = a. s( t) A t For a baseband signal of the form m(t) = Am os(πfmt), we have [ 1+ µ os(πf t) ] os(πf ), s( t) = A t m where µ = k A a is alled the modulation fator or modulation index. m DSB-SC signal an be obtained if there is no DC bias in the AM formula. 1

2 The modulation fator an be measure from the observed waveform on the sope when the modulating signal is a pure sine or osine wave, as shown in Fig. 1. Fig. 1. Sope output for AM modulation. In this ase, the max amplitude max = (1+µ) A, and the min amplitude min = (1- µ) A. Therefore max min 1+ µ = 1 µ, -min µ = -max max max + In pratial measurement, we an use the marker funtion of the sope to measure the differene between max and max, as well as the differene between min and min. In this way there is no need to enter the waveform around a referene line, and the auray of the measurement an be improved. The spetrum analyzer an also be used to measure the modulation fator in the frequeny domain. min min P1 P Fig.. Spetrum analyzer output for AM modulation. Fig. shows an output of the spetrum analyzer. The three peaks orrespond to the arrier and the two sidebands for a single tone input. When the modulating signal is a normalized sine or osine wave, the reading of the spetrum analyzer (in log sale) is in dbm sale: log 1 x mw. Therefore from the readings P1 and P in Fig, we have

3 P P 1 = log A / 1mW. log µ A /8 = log 1mW 4 µ The value of µ is thus given by µ = P1 P 0 For further details please refer to the following links Agilent Test & Measurement Appliation Note 150-1: Spetrum Analysis for AM & FM Anritsu s Guide to Spetrum Analyzer 4. AM MODULATION WITH LAB-VOLT 4. 1 Proedure: 1. Make sure all gain and level ontrols of different LabVolt modules are turned to the MIN position before ranking up the power.. On the AM/DSB/SSB generator, push in the arrier level knob to enable linear amplifiation and linear overmodulation. Turn up the arrier-level and RF gain ontrols to the MAX position. Adjust the RF tuning knob so that the arrier frequeny (measured by the frequeny ounter or sope) oming out of the RF output port (#6) is 10 khz. 3. Set up the funtion generator to produe a 0.5V peak peak khz sine wave (whih will be used as the message signal). 4. Use a T-onnetor (an be found in the file abinet near the door of the lab) to onnet the output of the funtion generator to the input of the AM/DSB/SSB generator as well as Channel of the sope. Connet the AM/DSB output to Channel 1 of the sope. Set up the sope so that it is triggered by Channel (the message signal). Compute and reord the modulation fator. 5. Repeat steps 3 4 for a square-wave message signal. 6. Again keep the arrier-level at the MAX position. Using a khz sine wave as the message signal. By varying the message level, generate AM 3

4 waveforms with five different perentage modulations between 0 0% and ompare their spetra. Use the Spetrum Analyzer to reord the power level of the arrier and eah of the two sidebands. Compute the modulation fator using the frequeny domain formula. Compute the effiieny using the power measure. For a sinusoidal message signal with modulation fator µ = 1, verify the effiieny is 33%. 7. Vary the frequeny of a sinusoidal message signal and observe how the signal spetrum hanges. 4. Analysis: 1. Sketh the envelope of the modulated signal for eah of the modulation fators tested in part 6.. xplain the hanges in the spetrum observed when the modulation fator is varied as in part 6 of the experiment. 3. Plot the power of the sideband signal as a funtion of the modulation fator as measured in part 6 and show that the result agrees with theory. What does this say about the effiieny of the modulation? 4. How does the modulation fator vary with the frequeny of the message signal? 5. AM DMODULATION WITH LAB-VOLT The Lab-Volt AM / DSB Reeiver, Model 9411, is a superheterodyne reeiver using three different detetion iruits. In this part of the lab, we will look at the envelope detetor for the demodulation of standard AM signals. The blok diagram of the reeiver is shown in the figure below. 4

5 The reeption of an AM signal using a superheterodyne reeiver is initiated by tuning the RF filter so that it passes the desired modulated message signal but eliminates the image signal. The frequeny of the loal osillator (LO) is adjusted at the same time so that the desired message signal is frequeny shifted from its position around the RF arrier to the enter of the intermediate frequeny (IF) band (455 khz in AM). The system uses high-side tuning, i.e., the loal frequeny is given by flo = f + fif, where f is the arrier frequeny, and fif is 455 khz. The highly seletive IF filter then removes unwanted frequenies and passes the signal on to an amplifier and a demodulator designed to operate at IF. The passband of the IF filter is khz (the bandwidth of eah station) in AM radio, and the passband of the RF filter is wider than the IF filter, sine the image signal is quite far from the desired signal. In the ase of standard AM with µ 1, an envelope detetor an be used as the demodulator (an output filter is also used to smooth unwanted high frequeny ripple). Automati Gain Control (AGC) AM is a linear modulation, so the sound volume is proportional to the radio signal strength. However, the strength of the reeived signal usually varies widely, depending on the power and distane of the transmitter, and signal path attenuation. Another fator that affets the quality of the demodulated signal is the linearity of the amplifier in the reeiver. The amplifier only has linear operating urve in a ertain range. The output will be distorted by the iruit if the signal strength is not in the desired range. The automati gain ontrol (AGC) iruit in AM reeiver alleviates the two problems by deteting the overall strength of the signal and automatially adjusting the gain of the reeiver to maintain an approximately onstant average output level in a larger range, i.e., it will raise a signal if it is too weak and redues it if it is too strong. Further information an be found at Proedure: 1 Inlude the AM/DSB reeiver Model 9411 in your system onfiguration if it is not there already. Use the frequeny ounter, the sope, or the spetrum analyzer to set the LO frequeny at point 4 of the reeiver to MHz, so the desired input is around 1 MHz. Adjust the spetrum analyzer so that it has a entre frequeny of 1 MHz and a span of 50 khz/div. 5

6 3 Measure the frequeny response of the RF filter: Disonnet the message signal and onnet a BNC able from the AM/DSB/SSB generator output to the input of the reeiver, Turn off the AGC by pulling out the pushbutton at Point 9. Set the generator arrier level to MAX (linear modulation mode) and adjust the RF gain (amplifier A) ontrol to approx. 11 o lok. 4 Connet the RF output signal (point 3) of the reeiver to the sope and observe the display as you slowly vary the arrier frequeny of the AM generator from 950 khz to 50 khz. Next, onnet the RF output at point 3 to the spetrum analyzer, observe the signal on the spetrum analyzer, and reord the frequeny at whih the peak signal is obtained. Also, in order to find out the bandwidth of the RF filter, reord the frequenies at whih the signal is 3 db below the peak. 5 Study of the IF output: Next, onnet the output of the AM generator to the input of the AM reeiver. Turn on the AGC and onnet the LabVolt frequeny ounter (Model 9403) to the IF output (Point 7) of the reeiver. Adjust the RF tuning knob for an IF output frequeny of exatly 455 khz. Apply a 0 mvp-p,.5 khz sinusoid to the input of AM generator (You may need to hange the amplitude and the frequeny of the message signal for a better view. You an observe the generator output on the sope, and use a modulation fator lose to 0% to have a better view of the AM signal. You may need to redue the input amplitude if the signal is overmodulated). Set the analyzer to have a entre frequeny of 455 khz and a span of khz/div. Reord the signal at IF output (point 7) in both the time and frequeny domains, be areful to trigger the sope as well as possible. 6 Demodulated signal: Connet the sope to the detetor output (point 8) of the reeiver and selet envelope detetor method in Point 11. Use a T- onnetor from the funtion generator to trigger the sope via hannel #. Keep the input message amplitude, fix the modulation fator to be around 50%, vary the input frequeny from 1 khz in khz steps, and reord the output waveforms and maximum levels in eah ase. 7 Set the message signal frequeny to.5 khz at about 0% modulation and adjust the RF gain ontrol of the AM generator from MIN to MAX, observe the hange of the amplitude and distortion of the demodulated output waveform. Reord the results at 1/4, 1/, 3/4 and max RF gains. 8 Turn off the AGC and repeat the last step. 5. Analysis: xplain the effets observed in Step 4 to Step 8. 6

Communication Systems

Communication Systems AM/FM Receiver Communication Systems We have studied the basic blocks o any communication system Modulator Demodulator Modulation Schemes: Linear Modulation (DSB, AM, SSB, VSB) Angle Modulation (FM, PM)

More information

The Phase Modulator In NBFM Voice Communication Systems

The Phase Modulator In NBFM Voice Communication Systems The Phase Modulator In NBFM Voice Communication Systems Virgil Leenerts 8 March 5 The phase modulator has been a point of discussion as to why it is used and not a frequency modulator in what are called

More information

AM Receiver. Prelab. baseband

AM Receiver. Prelab. baseband AM Receiver Prelab In this experiment you will use what you learned in your previous lab sessions to make an AM receiver circuit. You will construct an envelope detector AM receiver. P1) Introduction One

More information

Wireless Transmission Systems. Instructor

Wireless Transmission Systems. Instructor Teleommuniation Engineering Tehnology, Texas A&M University Wireless Transmission Systems Leture Notes - Copyright Jeff M. MDougall 2 Wireless Transmission Systems Teleommuniation Engineering Tehnology,

More information

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal. Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally

More information

Introduction to Receivers

Introduction to Receivers Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range

More information

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Agenda Overview: Spectrum analysis and its measurements Theory of Operation: Spectrum analyzer hardware Frequency Specifications

More information

AM TRANSMITTERS & RECEIVERS

AM TRANSMITTERS & RECEIVERS Reading 30 Ron Bertrand VK2DQ http://www.radioelectronicschool.com AM TRANSMITTERS & RECEIVERS Revision: our definition of amplitude modulation. Amplitude modulation is when the modulating audio is combined

More information

LM1596 LM1496 Balanced Modulator-Demodulator

LM1596 LM1496 Balanced Modulator-Demodulator LM1596 LM1496 Balanced Modulator-Demodulator General Description The LM1596 LM1496 are doubled balanced modulator-demodulators which produce an output voltage proportional to the product of an input (signal)

More information

Experiment # (4) AM Demodulator

Experiment # (4) AM Demodulator Islamic University of Gaza Faculty of Engineering Electrical Department Experiment # (4) AM Demodulator Communications Engineering I (Lab.) Prepared by: Eng. Omar A. Qarmout Eng. Mohammed K. Abu Foul Experiment

More information

ICL8038. Features. Precision Waveform Generator/Voltage Controlled Oscillator. Ordering Information. Pinout. Functional Diagram

ICL8038. Features. Precision Waveform Generator/Voltage Controlled Oscillator. Ordering Information. Pinout. Functional Diagram Semiconductor IL0 September 99 File Number 4. Precision Waveform Generator/Voltage ontrolled Oscillator The IL0 waveform generator is a monolithic integrated circuit capable of producing high accuracy

More information

Modification Details.

Modification Details. Front end receiver modification for DRM: AKD Target Communications receiver. Model HF3. Summary. The receiver was modified and capable of receiving DRM, but performance was limited by the phase noise from

More information

Experiment 3: Double Sideband Modulation (DSB)

Experiment 3: Double Sideband Modulation (DSB) Experiment 3: Double Sideband Modulation (DSB) This experiment examines the characteristics of the double-sideband (DSB) linear modulation process. The demodulation is performed coherently and its strict

More information

Laboratory Manual and Supplementary Notes. CoE 494: Communication Laboratory. Version 1.2

Laboratory Manual and Supplementary Notes. CoE 494: Communication Laboratory. Version 1.2 Laboratory Manual and Supplementary Notes CoE 494: Communication Laboratory Version 1.2 Dr. Joseph Frank Dr. Sol Rosenstark Department of Electrical and Computer Engineering New Jersey Institute of Technology

More information

SR2000 FREQUENCY MONITOR

SR2000 FREQUENCY MONITOR SR2000 FREQUENCY MONITOR THE FFT SEARCH FUNCTION IN DETAILS FFT Search is a signal search using FFT (Fast Fourier Transform) technology. The FFT search function first appeared with the SR2000 Frequency

More information

Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy

Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative

More information

Intuitive Guide to Principles of Communications By Charan Langton www.complextoreal.com

Intuitive Guide to Principles of Communications By Charan Langton www.complextoreal.com Intuitive Guide to Priniples of Communiations By Charan Langton www.omplextoreal.om Understanding Frequeny Modulation (FM), Frequeny Shift Keying (FSK), Sunde s FSK and MSK and some more The proess of

More information

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

More information

How To Use A Sound Card With A Subsonic Sound Card

How To Use A Sound Card With A Subsonic Sound Card !"## $#!%!"# &"#' ( "#' )*! #+ #,# "##!$ -+./0 1" 1! 2"# # -&1!"#" (2345-&1 #$6.7 -&89$## ' 6! #* #!"#" +" 1##6$ "#+# #-& :1# # $ #$#;1)+#1#+

More information

DSP-I DSP-I DSP-I DSP-I

DSP-I DSP-I DSP-I DSP-I DSP-I DSP-I DSP-I DSP-I Digital Signal Proessing I (8-79) Fall Semester, 005 IIR FILER DESIG EXAMPLE hese notes summarize the design proedure for IIR filters as disussed in lass on ovember. Introdution:

More information

RECOMMENDATION ITU-R SM.1792. Measuring sideband emissions of T-DAB and DVB-T transmitters for monitoring purposes

RECOMMENDATION ITU-R SM.1792. Measuring sideband emissions of T-DAB and DVB-T transmitters for monitoring purposes Rec. ITU-R SM.1792 1 RECOMMENDATION ITU-R SM.1792 Measuring sideband emissions of T-DAB and DVB-T transmitters for monitoring purposes (2007) Scope This Recommendation provides guidance to measurement

More information

RF Communication System. EE 172 Systems Group Presentation

RF Communication System. EE 172 Systems Group Presentation RF Communication System EE 172 Systems Group Presentation RF System Outline Transmitter Components Receiver Components Noise Figure Link Budget Test Equipment System Success Design Remedy Transmitter Components

More information

MAINTENANCE & ADJUSTMENT

MAINTENANCE & ADJUSTMENT MAINTENANCE & ADJUSTMENT Circuit Theory The concept of PLL system frequency synthesization is not of recent development, however, it has not been a long age since the digital theory has been couplet with

More information

Understanding the Effect of Uncorrelated Phase Noise on Multi-channel RF Vector Signal Generators and Analysers

Understanding the Effect of Uncorrelated Phase Noise on Multi-channel RF Vector Signal Generators and Analysers Understanding the Effect of Uncorrelated Phase Noise on Multi-channel RF Vector Signal Generators and Analysers David A. Hall, Product Marketing Manager Andy Hinde, RF Systems Engineer Introduction With

More information

Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems

Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Introduction to Electro-magnetic Interference Design engineers seek to minimize harmful interference between components,

More information

Module 7: AM, FM, and the spectrum analyzer.

Module 7: AM, FM, and the spectrum analyzer. Module 7: AM, FM, and the spetru analyzer. 7.0 Introdution Eletroagneti signals ay be used to transit inforation very quikly, over great distanes. Two oon ethods by whih inforation is enoded on radio signals,

More information

Keysight Technologies 8 Hints for Better Spectrum Analysis. Application Note

Keysight Technologies 8 Hints for Better Spectrum Analysis. Application Note Keysight Technologies 8 Hints for Better Spectrum Analysis Application Note The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope

More information

MATRIX TECHNICAL NOTES

MATRIX TECHNICAL NOTES 200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 469-9510 FAX (732) 469-0418 MATRIX TECHNICAL NOTES MTN-107 TEST SETUP FOR THE MEASUREMENT OF X-MOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR

More information

GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy

GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy Introduction A key transmitter measurement for GSM and EDGE is the Output RF Spectrum, or ORFS. The basis of this measurement

More information

Course 8-9 DSL type digital access techniques (Digital Subscriber Line)

Course 8-9 DSL type digital access techniques (Digital Subscriber Line) Course 8-9 DSL type digital aess tehniques (Digital Subsriber Line) o The term refers to the tehnologies and equipments used in a telephone network to ensure the aess to a high speed digital network on

More information

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,

More information

EE 186 LAB 2 FALL 2004. Network Analyzer Fundamentals and Two Tone Linearity

EE 186 LAB 2 FALL 2004. Network Analyzer Fundamentals and Two Tone Linearity Network Analyzer Fundamentals and Two Tone Linearity Name: Name: Name: Objective: To become familiar with the basic operation of a network analyzer To use the network analyzer to characterize the in-band

More information

Amplitude Modulation Fundamentals

Amplitude Modulation Fundamentals 3 chapter Amplitude Modulation Fundamentals In the modulation process, the baseband voice, video, or digital signal modifies another, higher-frequency signal called the carrier, which is usually a sine

More information

RFSPACE CLOUD-IQ #CONNECTED SOFTWARE DEFINED RADIO

RFSPACE CLOUD-IQ #CONNECTED SOFTWARE DEFINED RADIO CLOUD-IQ #CONNECTED SOFTWARE DEFINED RADIO 1 - SPECIFICATIONS Cloud-IQ INTRODUCTION The Cloud-IQ is a high performance, direct sampling software radio with an ethernet interface. It offers outstanding

More information

RF Network Analyzer Basics

RF Network Analyzer Basics RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),

More information

PIEZO FILTERS INTRODUCTION

PIEZO FILTERS INTRODUCTION For more than two decades, ceramic filter technology has been instrumental in the proliferation of solid state electronics. A view of the future reveals that even greater expectations will be placed on

More information

HD Radio FM Transmission System Specifications Rev. F August 24, 2011

HD Radio FM Transmission System Specifications Rev. F August 24, 2011 HD Radio FM Transmission System Specifications Rev. F August 24, 2011 SY_SSS_1026s TRADEMARKS HD Radio and the HD, HD Radio, and Arc logos are proprietary trademarks of ibiquity Digital Corporation. ibiquity,

More information

OUTPUT FREQUENCY CONTENTS

OUTPUT FREQUENCY CONTENTS SEMIONDUTOR TEHNIAL DATA Order this document by M4 2/D MOS The devices described in this document are typically used as low power, phase locked loop frequency synthesizers. When combined with an external

More information

Audio processing and ALC in the FT-897D

Audio processing and ALC in the FT-897D Audio processing and ALC in the FT-897D I recently bought an FT-897D, and after a period of operation noticed problems with what I perceived to be a low average level of output power and reports of muffled

More information

Tx/Rx A high-performance FM receiver for audio and digital applicatons

Tx/Rx A high-performance FM receiver for audio and digital applicatons Tx/Rx A high-performance FM receiver for audio and digital applicatons This receiver design offers high sensitivity and low distortion for today s demanding high-signal environments. By Wayne C. Ryder

More information

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

More information

Method for characterizing single photon detectors in saturation regime by cw laser

Method for characterizing single photon detectors in saturation regime by cw laser Method for haraterizing single oton detetors in saturation regime by w laser Jungmi Oh, Cristian Antonelli, 2 Moshe Tur, 3 and Misha Brodsky,* AT&T Labs, 2 S. Laurel Ave., Middletown, New Jersey 7748,

More information

A Guide to Calibrating Your Spectrum Analyzer

A Guide to Calibrating Your Spectrum Analyzer A Guide to Calibrating Your Application Note Introduction As a technician or engineer who works with electronics, you rely on your spectrum analyzer to verify that the devices you design, manufacture,

More information

Lab 1: The Digital Oscilloscope

Lab 1: The Digital Oscilloscope PHYSICS 220 Physical Electronics Lab 1: The Digital Oscilloscope Object: To become familiar with the oscilloscope, a ubiquitous instrument for observing and measuring electronic signals. Apparatus: Tektronix

More information

Remarkable achievements

Remarkable achievements Remarkable achievements 149.2 km link over water providing 8E1 throughput with 99,99% annual availability Radio link transmitting data from 25km height in Stratosphere to 149km ground station Largest MW

More information

DT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch

DT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch DT3: RF On/Off Remote Control Technology Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch Agenda Radio Frequency Overview Frequency Selection Signals Methods Modulation Methods

More information

SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION

SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION 1 SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION By Lannes S. Purnell FLUKE CORPORATION 2 This paper shows how standard signal generators can be used as leveled sine wave sources for calibrating oscilloscopes.

More information

Modulation and Demodulation

Modulation and Demodulation 16 Modulation and Demodulation 16.1 Radio Broadcasting, Transmission and Reception 16. Modulation 16.3 Types of Modulation 16.4 Amplitude Modulation 16.5 Modulation Factor 16.6 Analysis of Amplitude Modulated

More information

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue

More information

Impedance 50 (75 connectors via adapters)

Impedance 50 (75 connectors via adapters) VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:

More information

Introduction to FM-Stereo-RDS Modulation

Introduction to FM-Stereo-RDS Modulation Introduction to FM-Stereo-RDS Modulation Ge, Liang Tan, EK Kelly, Joe Verigy, China Verigy, Singapore Verigy US 1. Introduction Frequency modulation (FM) has a long history of its application and is widely

More information

Technical Datasheet Scalar Network Analyzer Model 8003-10 MHz to 40 GHz

Technical Datasheet Scalar Network Analyzer Model 8003-10 MHz to 40 GHz Technical Datasheet Scalar Network Analyzer Model 8003-10 MHz to 40 GHz The Giga-tronics Model 8003 Precision Scalar Network Analyzer combines a 90 db wide dynamic range with the accuracy and linearity

More information

RF Measurements Using a Modular Digitizer

RF Measurements Using a Modular Digitizer RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.

More information

Agilent Spectrum Analysis Basics. Application Note 150

Agilent Spectrum Analysis Basics. Application Note 150 Agilent Spectrum Analysis Basics Application Note 150 Table of Contents Chapter 1 Introduction.......................................................4 Frequency domain versus time domain.......................................4

More information

Features. Applications. Transmitter. Receiver. General Description MINIATURE MODULE. QM MODULATION OPTIMAL RANGE 1000m

Features. Applications. Transmitter. Receiver. General Description MINIATURE MODULE. QM MODULATION OPTIMAL RANGE 1000m Features MINIATURE MODULE QM MODULATION OPTIMAL RANGE 1000m 433.05 434.79 ISM BAND 34 CHANNELS AVAILABLE SINGLE SUPPLY VOLTAGE Applications IN VEHICLE TELEMETRY SYSTEMS WIRELESS NETWORKING DOMESTIC AND

More information

Dispersion in Optical Fibres

Dispersion in Optical Fibres Introdution Optial Communiations Systems Dispersion in Optial Fibre (I) Dispersion limits available bandwidth As bit rates are inreasing, dispersion is beoming a ritial aspet of most systems Dispersion

More information

AM/FM/ϕM Measurement Demodulator FS-K7

AM/FM/ϕM Measurement Demodulator FS-K7 Data sheet Version 02.00 AM/FM/ϕM Measurement Demodulator FS-K7 July 2005 for the Analyzers FSQ/FSU/FSP and the Test Receivers ESCI/ESPI AM/FM/ϕM demodulator for measuring analog modulation parameters

More information

Lock - in Amplifier and Applications

Lock - in Amplifier and Applications Lock - in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lock-in amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o

More information

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics

Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Learning Objectives Name the major measurement strengths of a swept-tuned spectrum analyzer Explain the importance of frequency

More information

Projects. Objective To gain hands-on design and measurement experience with real-world applications. Contents

Projects. Objective To gain hands-on design and measurement experience with real-world applications. Contents Projects Contents 9-1 INTRODUCTION...................... 43 9-2 PROJECTS......................... 43 9-2.1 Alarm Radar Sensor................ 43 9-2.2 Microwave FM Communication Link....... 46 9-2.3 Optical

More information

HF Receiver Testing. Issues & Advances. (also presented at APDXC 2014, Osaka, Japan, November 2014)

HF Receiver Testing. Issues & Advances. (also presented at APDXC 2014, Osaka, Japan, November 2014) HF Receiver Testing: Issues & Advances (also presented at APDXC 2014, Osaka, Japan, November 2014) Adam Farson VA7OJ/AB4OJ Copyright 2014 North Shore Amateur Radio Club 1 HF Receiver Performance Specs

More information

Jitter Transfer Functions in Minutes

Jitter Transfer Functions in Minutes Jitter Transfer Functions in Minutes In this paper, we use the SV1C Personalized SerDes Tester to rapidly develop and execute PLL Jitter transfer function measurements. We leverage the integrated nature

More information

Agilent Spectrum Analysis Basics Application Note 150

Agilent Spectrum Analysis Basics Application Note 150 Agilent Spectrum Analysis Basics Application Note 150 Contents Chapter 1 Introduction...3 What is a spectrum?...3 Why measure spectra?...4 Chapter 2 The superheterodyne spectrum analyzer...6 Tuning equation...8

More information

Application Note Receiving HF Signals with a USRP Device Ettus Research

Application Note Receiving HF Signals with a USRP Device Ettus Research Application Note Receiving HF Signals with a USRP Device Ettus Research Introduction The electromagnetic (EM) spectrum between 3 and 30 MHz is commonly referred to as the HF band. Due to the propagation

More information

2398 9 khz to 2.7 GHz Spectrum Analyzer

2398 9 khz to 2.7 GHz Spectrum Analyzer Spectrum Analyzers 2398 9 khz to 2.7 GHz Spectrum Analyzer A breakthrough in high performance spectrum analysis, combining cost effectiveness and portability in a new lightweight instrument 9 khz to 2.7

More information

AFG-100/200 series USB Modular Arbitrary Function Generator. Date: Oct, 2014

AFG-100/200 series USB Modular Arbitrary Function Generator. Date: Oct, 2014 AFG-100/200 series USB Modular Arbitrary Function Generator Date: Oct, 2014 Outline Product Overview Feature, Advantage and Benefit Comparison Chart Ordering Information 22 Product information AFG-125,

More information

Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer. Product Note

Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer. Product Note Agilent PN 8753-1 RF Component Measurements: Amplifier Measurements Using the Agilent 8753 Network Analyzer Product Note 2 3 4 4 4 4 6 7 8 8 10 10 11 12 12 12 13 15 15 Introduction Table of contents Introduction

More information

PCM Encoding and Decoding:

PCM Encoding and Decoding: PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth

More information

Four Wave Mixing in Closely Spaced DWDM Optical Channels

Four Wave Mixing in Closely Spaced DWDM Optical Channels 544 VOL. 1, NO. 2, AUGUST 2006 Four Wave Mixing in Closely Spaced DWDM Optical Channels Moncef Tayahi *, Sivakumar Lanka, and Banmali Rawat Advanced Photonics Research lab, Department of Electrical Engineering

More information

Spectrum Analysis Basics. Application Note 150

Spectrum Analysis Basics. Application Note 150 Spectrum Analysis Basics Application Note 150 Agilent Technologies dedicates this application note to Blake Peterson. Blake s outstanding service in technical support reached customers in all corners of

More information

Spectrum analyzer with USRP, GNU Radio and MATLAB

Spectrum analyzer with USRP, GNU Radio and MATLAB Spectrum analyzer with USRP, GNU Radio and MATLAB António José Costa, João Lima, Lúcia Antunes, Nuno Borges de Carvalho {antoniocosta, jflima, a30423, nbcarvalho}@ua.pt January 23, 2009 Abstract In this

More information

Implementation of Digital Signal Processing: Some Background on GFSK Modulation

Implementation of Digital Signal Processing: Some Background on GFSK Modulation Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering s.h.gerez@utwente.nl Version 4 (February 7, 2013)

More information

[ ] Amplitude Modulation AM with Envelope Detector. Large S/N limit m. c c c c s c. slowly varying. y, low-pass filtered (envelope)

[ ] Amplitude Modulation AM with Envelope Detector. Large S/N limit m. c c c c s c. slowly varying. y, low-pass filtered (envelope) Amplitude Modulation AM with Envelope Detetor Large S/N limit m < 1 (t) in ω t 1 m [ ] Reeived = y(t) = A 1 + m ( t) o ω t + n ( t)o ω t + n ( t)in ω t { j ω t (t)e } = Re Y lowly varying y, low-pa filtered

More information

Unit 12: Installing, Configuring and Administering Microsoft Server

Unit 12: Installing, Configuring and Administering Microsoft Server Unit 12: Installing, Configuring and Administering Mirosoft Server Learning Outomes A andidate following a programme of learning leading to this unit will be able to: Selet a suitable NOS to install for

More information

'Possibilities and Limitations in Software Defined Radio Design.

'Possibilities and Limitations in Software Defined Radio Design. 'Possibilities and Limitations in Software Defined Radio Design. or Die Eierlegende Wollmilchsau Peter E. Chadwick Chairman, ETSI ERM_TG30, co-ordinated by ETSI ERM_RM Software Defined Radio or the answer

More information

APPLICATION NOTE. RF System Architecture Considerations ATAN0014. Description

APPLICATION NOTE. RF System Architecture Considerations ATAN0014. Description APPLICATION NOTE RF System Architecture Considerations ATAN0014 Description Highly integrated and advanced radio designs available today, such as the Atmel ATA5830 transceiver and Atmel ATA5780 receiver,

More information

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2

More information

luxcontrol DALI manual

luxcontrol DALI manual luxcontrol DALI manual . Tridoni GmbH & Co KG Färbergasse 15 6851 Dornbirn Austria Version 3.0 www.tridoni.om Subjet to hange without prior notie. All information is subjet to hange 2 / 93 Table of ontents

More information

Laboratory #5: RF Filter Design

Laboratory #5: RF Filter Design EEE 194 RF Laboratory Exercise 5 1 Laboratory #5: RF Filter Design I. OBJECTIVES A. Design a third order low-pass Chebyshev filter with a cutoff frequency of 330 MHz and 3 db ripple with equal terminations

More information

Modeling and analyzing interference signal in a complex electromagnetic environment

Modeling and analyzing interference signal in a complex electromagnetic environment Liu et al. EURASIP Journal on Wireless Communiations and Networking (016) 016:1 DOI 10.1186/s13638-015-0498-8 RESEARCH Modeling and analyzing interferene signal in a omplex eletromagneti environment Chun-tong

More information

Frequency Response of Filters

Frequency Response of Filters School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

More information

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin (Updated 7/19/08 to delete sine wave output) I constructed the 1 MHz square wave generator shown in the Appendix. This

More information

LAP NODO ÓPTICO 2/4 SALIDAS WT-8604JL

LAP NODO ÓPTICO 2/4 SALIDAS WT-8604JL 2/4 SALIDAS WT-8604JL Latin American Power. CABA, Argentina. www.latinamericanpower.com 1 WT-8604JL OPTICAL RECEIVER 1 - DESCRIPTION WT-8604JL is our new high-class 4-way output CATV optical receiver.

More information

Ultrasound Distance Measurement

Ultrasound Distance Measurement Final Project Report E3390 Electronic Circuits Design Lab Ultrasound Distance Measurement Yiting Feng Izel Niyage Asif Quyyum Submitted in partial fulfillment of the requirements for the Bachelor of Science

More information

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV

0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV 0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV The treatment given here is introductory, and will assist the reader who wishes to consult the standard texts

More information

The W5JCK Guide to the Mathematic Equations Required for the Amateur Extra Class Exam

The W5JCK Guide to the Mathematic Equations Required for the Amateur Extra Class Exam The W5JCK Guide to the Mathematic Equations Required for the Amateur Extra Class Exam This document contains every question from the Extra Class (Element 4) Question Pool* that requires one or more mathematical

More information

Implementing Digital Wireless Systems. And an FCC update

Implementing Digital Wireless Systems. And an FCC update Implementing Digital Wireless Systems And an FCC update Spectrum Repacking Here We Go Again: The FCC is reallocating 600 MHz Frequencies for Wireless Mics 30-45 MHz (8-m HF) 174-250 MHz (VHF) 450-960 MHz

More information

HF communications. Chapter 5. 5.1 HF range and propagation

HF communications. Chapter 5. 5.1 HF range and propagation Chapter 5 HF communications High frequency (HF) radio provides aircraft with an effective means of communication over long distance oceanic and trans-polar routes. In addition, global data communication

More information

Computer Networks Framing

Computer Networks Framing Computer Networks Framing Saad Mneimneh Computer Siene Hunter College of CUNY New York Introdution Who framed Roger rabbit? A detetive, a woman, and a rabbit in a network of trouble We will skip the physial

More information

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1 WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's

More information

Superheterodyne Radio Receivers

Superheterodyne Radio Receivers EE354 Superheterodyne Handout 1 Superheterodyne Radio Receivers Thus ar in the course, we have investigated two types o receivers or AM signals (shown below): coherent and incoherent. Because broadcast

More information

INTEGRATED CIRCUITS DATA SHEET. TDA7000 FM radio circuit. Product specification File under Integrated Circuits, IC01

INTEGRATED CIRCUITS DATA SHEET. TDA7000 FM radio circuit. Product specification File under Integrated Circuits, IC01 INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC01 May 1992 GENERAL DESCRIPTION The is a monolithic integrated circuit for mono FM portable radios, where a minimum on peripheral components

More information

Tektronix RSA306 USB Spectrum Analyzer

Tektronix RSA306 USB Spectrum Analyzer Tektronix RSA306 USB Spectrum Analyzer Simple Demos The Demo of the RSA306 is easy. Even you do not have signal generators, devices under test, or demo boards, using the whip antenna provided in box, you

More information

Voltage. Oscillator. Voltage. Oscillator

Voltage. Oscillator. Voltage. Oscillator fpa 147 Week 6 Synthesis Basics In the early 1960s, inventors & entrepreneurs (Robert Moog, Don Buchla, Harold Bode, etc.) began assembling various modules into a single chassis, coupled with a user interface

More information

Germanium Diode AM Radio

Germanium Diode AM Radio Germanium Diode AM Radio LAB 3 3.1 Introduction In this laboratory exercise you will build a germanium diode based AM (Medium Wave) radio. Earliest radios used simple diode detector circuits. The diodes

More information

COMPATIBILITY AND SHARING ANALYSIS BETWEEN DVB T AND RADIO MICROPHONES IN BANDS IV AND V

COMPATIBILITY AND SHARING ANALYSIS BETWEEN DVB T AND RADIO MICROPHONES IN BANDS IV AND V European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) COMPATIBILITY AND SHARING ANALYSIS BETWEEN DVB T AND RADIO MICROPHONES

More information

Network Analyzer Operation

Network Analyzer Operation Network Analyzer Operation 2004 ITTC Summer Lecture Series John Paden Purposes of a Network Analyzer Network analyzers are not about computer networks! Purposes of a Network Analyzer Measures S-parameters

More information

PSM 900 and PSM 1000 Personal Monitor Systems TWO SYSTEMS. INFINITE POSSIBILITIES.

PSM 900 and PSM 1000 Personal Monitor Systems TWO SYSTEMS. INFINITE POSSIBILITIES. PSM 900 and PSM 1000 Personal Monitor Systems TWO SYSTEMS. INFINITE POSSIBILITIES. PSM 900 AND PSM 1000 PERSONAL MONITOR SYSTEMS. ONLY FROM SHURE. PSM 900 PSM 1000 PSM 900 and PSM 1000 Personal Monitor

More information

Conquering Noise for Accurate RF and Microwave Signal Measurements. Presented by: Ernie Jackson

Conquering Noise for Accurate RF and Microwave Signal Measurements. Presented by: Ernie Jackson Conquering Noise for Accurate RF and Microwave Signal Measurements Presented by: Ernie Jackson The Noise Presentation Review of Basics, Some Advanced & Newer Approaches Noise in Signal Measurements-Summary

More information