Lecture 09 Dislocations & Strengthening Mechanisms

Size: px
Start display at page:

Download "Lecture 09 Dislocations & Strengthening Mechanisms"

Transcription

1 Lecture 09 Dislocations & Strengthening Mechanisms Chapter 7-1

2 Dislocations & Strengthening Mechanisms ISSUES TO ADDRESS... Why are dislocations observed primarily in metals and alloys? How are strength and dislocation motion related? How do we increase strength? How can heating change strength and other properties? Chapter 7-2

3 Mechanical Behavior & Structure Controlled by Chemical bond Chemistry Controlled by Processing via defects, crystal structure and microstricture Chapter 7-3

4 Dislocations & Materials Classes Metals: Disl. motion easier non-directional bonding -close-packed directions for slip. electron cloud ion cores Covalent Ceramics (Si, diamond): Motion hard. -directional (angular) bonding Ionic Ceramics (NaCl): Motion hard. -need to avoid ++ and - - neighbors Chapter 7-4

5 Dislocation Motion Dislocations & plastic deformation Cubic & hexagonal metals - plastic deformation by plastic shear or slip where one plane of atoms slides over adjacent plane by defect motion (dislocations). If dislocations don't move, deformation doesn't occur! Chapter 7-5

6 Dislocation Motion (Cont d) Caterpillar b Chapter 7-6

7 Dislocation Motion Dislocation moves along slip plane in slip direction perpendicular p to dislocation line Slip direction same direction as Burgers vector Edge dislocation Screw dislocation Chapter 7-7

8 Comparison of Dislocation Motion Edge vs Screw Dislocations Chapter 7-8

9 Slip System Deformation Mechanisms Slip plane - plane allowing easiest slippage Wide interplanar spacings - highest planar densities Slip direction - direction of movement - Highest linear densities FCC Slip occurs on {111} planes (close-packed) in <110> directions (close-packed) => total of 12 slip systems in FCC in BCC & HCP other slip systems occur Chapter 7-9

10 Deformation Mechanisms Common Slip Systems Chapter 7-10

11 Slip Systems in Common Metals After Dieter, Mechanical Metallurgy (1990) Chapter 7-11

12 Stress and Dislocation Motion Crystals slip due to a resolved shear stress, t R. Applied tension can produce such a stress. Applied tensile stress: = s F/A F A F Resolved shear stress: t R =Fs /As slip plane normal, n s t R F S t R A S Relation between s and t R t R =F S /A S Fcos l F l F S n S A/cos f f A S A S Schmid s Law R cos cos Chapter 7-12

13 Critical Resolved Shear Stress Condition for dislocation motion: Crystal orientation can make it easy or hard to move dislocation cos cos R CRSS R s s s typically 10-4 GPa to 10-2 GPa t R = 0 l =90 l =45 f =45 t R = s /2 t R = 0 f =90 maximum at = = 45º Chapter 7-13

14 Single Crystal Slip Single crystal wire Chapter 7-14

15 =60 Ex: Deformation of single crystal =35 a) Will the single crystal yield? b) If not, what stress is needed? crss = 3000 psi cos cos 6500 psi (6500 psi) (cos35 )(cos60 ) (6500 psi) (0.41) 2662 psi crss 3000 psi = 6500 psi So the applied stress of 6500 psi will not cause the crystal to yield. Chapter 7-15

16 Ex 1: Deformation of single crystal What stress is necessary (i.e., what is the yield stress, y )? crss 3000 psi y cos cos y (0.41) 3000 psi crss y cos cos psi So for deformation to occur the applied stress must be greater than or equal to the yield stress y 7325 psi Chapter 7-16

17 Ex 2: Deformation of Single crystal After Dieter, Mechanical Metallurgy (1990) Chapter 7-17

18 Slip Motion in Polycrystals Stronger - grain boundaries pin deformations Slip planes & directions change from one crystal tlto another. R will vary from one crystal to another. The crystal with the largest R yields first. Other (less favorably oriented) crystals yield later. 300 mm Chapter 7-18

19 Anisotropy in y Can be induced by rolling a polycrystalline metal - before rolling - after rolling 235 mm rolling direction - isotropic - anisotropic since grains are approx. spherical & randomly oriented. since rolling affects grain orientation and shape. Chapter 7-19

20 Anisotropy in Deformation 1. Cylinder of Tantalum machined from a rolled plate: 2. Fire cylinder at a target. 3. Deformed cylinder side view direction rolling d The noncircular end view shows anisotropic deformation of rolled material. end view plate thickness direction Chapter 7-20

21 Deformation by Mech l Twinning Twins also re-orient slip planes and contribute to dislocation slip indirectly Twinning is an alternate (plastic) deformation mechanism observed when the strain rate is very high or at low T (dislocation slip is suppressed) It is a strain-relief mechanism. Very common in BCC and HCP metals when slip is restricted! Chapter 7 -

22 Mech l Twinning vs. Dislocation Slip Homogeneous (Twin Band) After Dieter. Mech l Metallurgy Chapter 7 -

23 Strategies for Strengthening: 1. Rd Reduce Grain Size Grain boundaries are barriers to slip. Barrier "strength" increases with increasing angle of misorientation. Smaller grain size (d): more barriers to slip. Hall-Petch Equation: yield o k y d 1/ 2 Chapter 7 -

24 Strategies for Strengthening: 1. Reduce Grain Size (Cont d) Very difficult to synthesize polycrystalline materials with d<100 nm yield o k y d 1/ 2 Chapter 7 -

25 Strategies for Strengthening: 1. Reduce Grain Size (Cont d) Primary mechanism for strengthening by grain boundaries Chapter 7-25

26 Strategies for Strengthening: 2. Solid Solutions Impurity atoms distort the lattice & generate stress. Stress can produce a barrier to dislocation motion. Smaller substitutional impurity Larger substitutional impurity A C B D Impurity generates local stress at A and B that opposes dislocation motion to the right. Impurity generates local stress at C and D that opposes dislocation motion to the right. Chapter 7-26

27 Stress Concentration at Dislocations What makes a dislocation move & interact? The stress field Around the dislocation interacts with the applied stress (via R ) and the Strain field of structural imperfections such as grain boundaries and solute atoms Chapter 7 -

28 Strengthening by Alloying Small impurities tend to concentrate at dislocations Reduce mobility of dislocation; increase strength Chapter 7-28

29 Strengthening by alloying (Cont d) Large impurities concentrate at dislocations on low density side Chapter 7 -

30 Ex: Solid Solution Strengthening in Copper Tensile strength & yield strength increase with wt% Ni. 180 Pa) Tensile st trength (M wt.% Ni, (Concentration C) wt.%ni, (Concentration C) ength (MP Pa) Yield str Empirical relation: y ~ C 1/ 2 Alloying increases s y and TS. Chapter 7 -

31 Dislocation Sources: Frank-Read Sources Chapter 7-31

32 Strategies for Strengthening: 3P 3. Precipitation iitti Strengthening th Hard precipitates are difficult to shear. Ex: Ceramics in metals (SiC in Iron or Aluminum). Side View precipitate Large shear stress needed to move dislocation toward precipitate it t and shear it. Top View Unslipped part of slip plane S Slipped part of slip plane Dislocation advances but precipitates act as pinning sites with spacing S. Result: y~ y 1 S The smaller the S, the larger the dislocation line needs to bow out, the more surface energy needs to be spend! Chapter 7 -

33 Application: Precipitation Strengthening Internal wing structure on Boeing 767 Aluminum is strengthened with precipitates formed by alloying. Black spots are the ppts. 1.5mm Chapter 7-33

34 Strategies for Strengthening: 4CldW 4. Cold Work k(%cw CW) Room temperature deformation. Common forming operations change the cross sectional area: -Forging force -Rolling Ao die blank -Drawing Ao die die force Ad Ad tensile force % CW A A o A d A o force Ao Ao -Extrusion ram x 100 container billet container roll roll Ad die holder extrusion die Chapter 7 - Ad

35 Dislocations During Cold Work Ti alloy after cold working: Dislocations entangle with one another during cold work. Dislocation motion becomes more difficult mm Strain hardening due to dislocation-dislocation interactions cutting through a forest of dislocations i Chapter 7 -

36 Dislocations During Cold Work Edge and screw dislocation interaction leads to strain hardening After Dieter. Mech l Metallurgy Chapter 7-36

37 Dislocation density = Result of Cold Work total dislocation length unit volume Carefully grown single crystal ca mm -2 Deforming sample increases density mm -2 Heat treatment reduces density mm -2 Yield stress increases as r d increases: y1 y0 large hardening small hardening Chapter 7 -

38 Effects of Stress at Dislocations Chapter 7 -

39 Impact of Cold Work As cold work is increased: Yield strength ( y ) increases. Tensile strength (TS) increases. Ductility (%EL or %AR) decreases. Chapter 7 -

40 What is the tensile strength & ductility after cold working? 2 2 r o r CW d x ro % Cold Work Analysis 35.6% Do =15.2mm Copper Cold Work Dd =12.2mm 700 yield strength (MPa) 800 tensile strength (MPa) 60 ductility (%EL) MPa Cu MPa Cu Cu 100 7% % Cold Work % Cold Work % Cold Work y = 300MPa TS = 340MPa %EL= 7% Chapter 7 -

41 - Behavior vs. Temperature Results for polycrystalline iron: Stress (M MPa) C -100C 25C Strain y and TS decrease with increasing test temperature. %EL increases with increasing test temperature. Why? Vacancies help dislocations 2. vacancies move past obstacles. replace atoms on the disl. half plane 1. disl. trapped 3. disl. glides past obstacle by obstacle obstacle Chapter 7 -

42 Effect of Heating After %CW 1 hour treatment at T anneal decreases TS & increases %EL. Effects of cold work are reversed! tens sile streng gth (MPa) Annealing temperature (ºC) tensile strength ductility ductility (%EL) 3 Annealing stages to discuss... Chapter 7 -

43 Recovery Annihilation reduces dislocation density. Scenario 1 Results from diffusion Scenario 2 extra half-plane of atoms atoms diffuse to regions of tension extra half-plane of atoms Dislocations annihilate and form a perfect atomic plane. 3. Climbed disl. can now move on new slip plane 2. grey atoms leave by 4. opposite dislocations vacancy diffusion meet and annihilate allowing disl. to climb 1. dislocation blocked; Obstacle dislocation can t move to the right t R Chapter 7 -

44 Recrystallization New grains are formed that: - Have a small dislocation density - Are small - Consume cold-worked grains. 06mm mm % cold New crystals worked nucleate after brass 3 sec. at 580C. Chapter 7 -

45 Further Recrystallization All cold-worked grains are consumed. 0.6 mm 0.6 mm After 4 seconds After 8 seconds Chapter 7 -

46 Grain Growth At longer times, larger grains consume smaller ones. Why? Grain boundary area (and therefore energy) is reduced. 0.6 mm 0.6 mm After 8 s, 580ºC After 15 min, 580ºC Empirical Relation: Eexponent typ. ~ 2 Grain diam. at time t. d n d n o Kt Coefficient dependent on material and T. Elapsed time Ostwald Ripening Chapter 7 -

47 Grain Growth º T R = Recrystallization temperature T R Cold work state, is A metastable state. The energy stored Due to cold work is the driving for Recrystallization. Recrystallized grain are strain free. º Chapter 7 -

48 Recrystallization Temperature, T R T R = recrystallization temperature = point of highest rate of property change 1. T m => T R 0306T m (K) 2. Due to diffusion annealing time T R = f(t) shorter annealing time => higher T R 3. Higher %CW => lower T R strain hardening 4. Pure metals lower T R due to dislocation movements Easier to move in pure metals => lower T R Chapter 7 -

49 Recrystallization Temperature, T R Chapter 7-49

50 Stages of Recrystallization 33% CW Brass 3 s 580 o C Initial Recryst. Chapter 7 -

51 Stages of Recrystallization 4 s 580 o C Recryst. Cont d 8 s 580 o C Recryst. Complete Chapter 7-51

52 Stages of Recrystallization 15 min 580 o C Grain Growth 10 min 700 o C Grain Growth Chapter 7-52

53 Cold Work Calculations A cylindrical rod of brass originally 0.40 in (10.2 mm) in diameter is to be cold worked by drawing. The circular cross section will be maintained during deformation. A cold-worked tensile strength in excess of 55,000 psi (380 MPa) and a ductility of at least 15 %EL are desired. Further more, the final diameter must be 0.30 in (7.6 mm). Explain how this maybe accomplished. Chapter 7 -

54 Cold Work Calculations Solution If we directly draw to the final diameter what happens? Brass Cold Work Do = 0.40 in Df = 0.30 in Ao A A f f % CW x x A o A o D 2 f 2 D o x x % Chapter 7 -

55 Coldwork Calc Solution: Cont For %CW = 43.8% y = 420 MPa TS = 540 MPa > 380 MPa %EL =6 <15 This doesn t satisfy criteria what can we do? Chapter 7 -

56 Coldwork Calc Solution: Cont For TS > 380 MPa >12%CW For %EL < 15 < 27 %CW Our working range is limited to %CW = Chapter 7-56

57 Coldwork Calc Soln: Recrystallization Cold draw-anneal-cold draw again For objective we need a cold work of %CW We ll use %CW = 20 Diameter after first cold draw (before 2 nd cold draw)? must tbe calculated l as follows: 2 2 D 2 D 2 % CW % CW f 1 f x D D % CW D 1 f 2 D Df 2 D Intermediate t diameter = 1 % CW D 1 D f m 100 Chapter 7-57

58 Cold Work Calculations: Solution Summary: 1. Cold work D 01 = 0.40 in D f1 = m %CW x Anneal above D 02 = D f1 3. Cold work D 02 = in D f2 =0.30 m %. CW x Therefore, meets all requirements y TS % EL 340 MPa 400 MPa 24 Chapter 7 -

59 Rate of Recrystallization E logr logt logr 0 start 50% kt B logt C 1 T finish T R note : R 1/ t Hot work above T R log t Cold work below T R Smaller grains stronger at low temperature weaker at high temperature Chapter 7-59

60 Summary Dislocations are observed primarily in metals and alloys. Strength is increased by making dislocation motion difficult. Particular ways to increase strength are to: --decrease grain size --solid solution strengthening --precipitate strengthening --cold work Heating (annealing) can reduce dislocation density and increase grain size. This decreases the strength. Chapter 7-60

61 Homework Problems: 7.9, 7.12, 7.13, 7.15, 7.17, , 7.29, 7.31, 7.32, 7.36, 7.41, 7.D3, 7.D4. Due date:. Chapter 7-61

62 Advanced Topics in Dislocation Phenomena Chapter 7-62

63 Slip in a Perfect Lattice First hint as to why there should be crystalline defects involved!!! Chapter 7-63

64 Slip in a Perfect Lattice Chapter 7-64

65 Slip in a Perfect Lattice Chapter 7-65

66 Atomic movements near dislocation in slip (plastic deformation) Chapter 7-66

67 Why ceramics do not exhibit plastic deformation at ambient Temperatures? Chapter 7-67

68 Why ceramics do not exhibit plastic deformation at ambient Temperatures? Chapter 7-68

69 Why ceramics do not exhibit plastic deformation at ambient Temperatures? Chapter 7-69

70 Stages of Dislocation slip in FCC Metals Chapter 7-70

71 Stages of Dislocation slip in FCC Metals Chapter 7-71

72 Stages of Dislocation slip in FCC Metals Chapter 7-72

73 Stresses around an Edge Dislocation Dislocation line passes through O and extends out of the plane of the slide Chapter 7-73

74 Stresses around an Edge Dislocation Chapter 7-74

75 Forces on Dislocations Chapter 7-75

76 Forces on Dislocations Chapter 7-76

77 Dislocation Sources Chapter 7-77

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS 7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length

More information

Material Deformations. Academic Resource Center

Material Deformations. Academic Resource Center Material Deformations Academic Resource Center Agenda Origin of deformations Deformations & dislocations Dislocation motion Slip systems Stresses involved with deformation Deformation by twinning Origin

More information

Strengthening. Mechanisms of strengthening in single-phase metals: grain-size reduction solid-solution alloying strain hardening

Strengthening. Mechanisms of strengthening in single-phase metals: grain-size reduction solid-solution alloying strain hardening Strengthening The ability of a metal to deform depends on the ability of dislocations to move Restricting dislocation motion makes the material stronger Mechanisms of strengthening in single-phase metals:

More information

Concepts of Stress and Strain

Concepts of Stress and Strain CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original

More information

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

More information

ME 612 Metal Forming and Theory of Plasticity. 1. Introduction

ME 612 Metal Forming and Theory of Plasticity. 1. Introduction Metal Forming and Theory of Plasticity Yrd.Doç. e mail: azsenalp@gyte.edu.tr Makine Mühendisliği Bölümü Gebze Yüksek Teknoloji Enstitüsü In general, it is possible to evaluate metal forming operations

More information

LECTURE SUMMARY September 30th 2009

LECTURE SUMMARY September 30th 2009 LECTURE SUMMARY September 30 th 2009 Key Lecture Topics Crystal Structures in Relation to Slip Systems Resolved Shear Stress Using a Stereographic Projection to Determine the Active Slip System Slip Planes

More information

Module #17. Work/Strain Hardening. READING LIST DIETER: Ch. 4, pp. 138-143; Ch. 6 in Dieter

Module #17. Work/Strain Hardening. READING LIST DIETER: Ch. 4, pp. 138-143; Ch. 6 in Dieter Module #17 Work/Strain Hardening READING LIST DIETER: Ch. 4, pp. 138-143; Ch. 6 in Dieter D. Kuhlmann-Wilsdorf, Trans. AIME, v. 224 (1962) pp. 1047-1061 Work Hardening RECALL: During plastic deformation,

More information

Lösungen Übung Verformung

Lösungen Übung Verformung Lösungen Übung Verformung 1. (a) What is the meaning of T G? (b) To which materials does it apply? (c) What effect does it have on the toughness and on the stress- strain diagram? 2. Name the four main

More information

x100 A o Percent cold work = %CW = A o A d Yield Stress Work Hardening Why? Cell Structures Pattern Formation

x100 A o Percent cold work = %CW = A o A d Yield Stress Work Hardening Why? Cell Structures Pattern Formation Work Hardening Dislocations interact with each other and assume configurations that restrict the movement of other dislocations. As the dislocation density increases there is an increase in the flow stress

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

Lecture 18 Strain Hardening And Recrystallization

Lecture 18 Strain Hardening And Recrystallization -138- Lecture 18 Strain Hardening And Recrystallization Strain Hardening We have previously seen that the flow stress (the stress necessary to produce a certain plastic strain rate) increases with increasing

More information

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads? Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

More information

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

Materials Issues in Fatigue and Fracture

Materials Issues in Fatigue and Fracture Materials Issues in Fatigue and Fracture 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Finite Life 5.4 Summary FCP 1 5.1 Fundamental Concepts Structural metals Process of fatigue A simple view

More information

Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline. Diffusion - how do atoms move through solids? Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

More information

Dislocation Plasticity: Overview

Dislocation Plasticity: Overview Dislocation Plasticity: Overview 1. DISLOCATIONS AND PLASTIC DEFORMATION An arbitrary deformation of a material can always be described as the sum of a change in volume and a change in shape at constant

More information

Crystal Defects p. 2. Point Defects: Vacancies. Department of Materials Science and Engineering University of Virginia. Lecturer: Leonid V.

Crystal Defects p. 2. Point Defects: Vacancies. Department of Materials Science and Engineering University of Virginia. Lecturer: Leonid V. Crystal Defects p. 1 A two-dimensional representation of a perfect single crystal with regular arrangement of atoms. But nothing is perfect, and structures of real materials can be better represented by

More information

Experiment: Crystal Structure Analysis in Engineering Materials

Experiment: Crystal Structure Analysis in Engineering Materials Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of X-ray diffraction techniques for investigating various types

More information

14:635:407:02 Homework III Solutions

14:635:407:02 Homework III Solutions 14:635:407:0 Homework III Solutions 4.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 37 C (600 K). Assume an energy for vacancy formation of 0.55 ev/atom.

More information

Dislocation theory. Subjects of interest

Dislocation theory. Subjects of interest Chapter 5 Dislocation theory Subjects of interest Introduction/Objectives Observation of dislocation Burgers vector and the dislocation loop Dislocation in the FCC, HCP and BCC lattice Stress fields and

More information

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R 3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated

More information

Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline. How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Simple cubic Face-centered cubic Body-centered cubic Hexagonal close-packed

More information

ORIENTATION CHARACTERISTICS OF THE MICROSTRUCTURE OF MATERIALS

ORIENTATION CHARACTERISTICS OF THE MICROSTRUCTURE OF MATERIALS ORIENTATION CHARACTERISTICS OF THE MICROSTRUCTURE OF MATERIALS K. Sztwiertnia Polish Academy of Sciences, Institute of Metallurgy and Materials Science, 25 Reymonta St., 30-059 Krakow, Poland MMN 2009

More information

Lecture 14. Chapter 8-1

Lecture 14. Chapter 8-1 Lecture 14 Fatigue & Creep in Engineering Materials (Chapter 8) Chapter 8-1 Fatigue Fatigue = failure under applied cyclic stress. specimen compression on top bearing bearing motor counter flex coupling

More information

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4 Wafer Manufacturing Reading Assignments: Plummer, Chap 3.1~3.4 1 Periodic Table Roman letters give valence of the Elements 2 Why Silicon? First transistor, Shockley, Bardeen, Brattain1947 Made by Germanium

More information

Relevant Reading for this Lecture... Pages 83-87.

Relevant Reading for this Lecture... Pages 83-87. LECTURE #06 Chapter 3: X-ray Diffraction and Crystal Structure Determination Learning Objectives To describe crystals in terms of the stacking of planes. How to use a dot product to solve for the angles

More information

Stress Strain Relationships

Stress Strain Relationships Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

More information

Size effects. Lecture 6 OUTLINE

Size effects. Lecture 6 OUTLINE Size effects 1 MTX9100 Nanomaterials Lecture 6 OUTLINE -Why does size influence the material s properties? -How does size influence the material s performance? -Why are properties of nanoscale objects

More information

Fundamentals of grain boundaries and grain boundary migration

Fundamentals of grain boundaries and grain boundary migration 1. Fundamentals of grain boundaries and grain boundary migration 1.1. Introduction The properties of crystalline metallic materials are determined by their deviation from a perfect crystal lattice, which

More information

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

Chapter 5: Diffusion. 5.1 Steady-State Diffusion : Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

More information

MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY

MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY Objective To study the time and temperature variations in the hardness and electrical conductivity of Al-Zn-Mg-Cu high strength alloy on isothermal

More information

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue

More information

Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth

Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth Bulk deformation forming (rolling) Rolling is the process of reducing

More information

Torsion Tests. Subjects of interest

Torsion Tests. Subjects of interest Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test

More information

FATIGUE CONSIDERATION IN DESIGN

FATIGUE CONSIDERATION IN DESIGN FATIGUE CONSIDERATION IN DESIGN OBJECTIVES AND SCOPE In this module we will be discussing on design aspects related to fatigue failure, an important mode of failure in engineering components. Fatigue failure

More information

Copper Alloys for Injection, Thermoform and Blow Molds

Copper Alloys for Injection, Thermoform and Blow Molds Copper Alloys for Injection, Thermoform and Blow Molds by Robert Kusner Manager of Technical Services June 2015 Today s Agenda History of copper mold alloys Why use copper? Which copper alloy should I

More information

Chapter Outline: Phase Transformations in Metals

Chapter Outline: Phase Transformations in Metals Chapter Outline: Phase Transformations in Metals Heat Treatment (time and temperature) Microstructure Mechanical Properties Kinetics of phase transformations Multiphase Transformations Phase transformations

More information

Martensite in Steels

Martensite in Steels Materials Science & Metallurgy http://www.msm.cam.ac.uk/phase-trans/2002/martensite.html H. K. D. H. Bhadeshia Martensite in Steels The name martensite is after the German scientist Martens. It was used

More information

Pore pressure. Ordinary space

Pore pressure. Ordinary space Fault Mechanics Laboratory Pore pressure scale Lowers normal stress, moves stress circle to left Doesn Doesn t change shear Deviatoric stress not affected This example: failure will be by tensile cracks

More information

Met-2023: Concepts of Materials Science I Sample Questions & Answers,(2009) ( Met, PR, FC, MP, CNC, McE )

Met-2023: Concepts of Materials Science I Sample Questions & Answers,(2009) ( Met, PR, FC, MP, CNC, McE ) 1 Met-223: Concepts of Materials Science I Sample Questions & Answers,(29) ( Met, PR, FC, MP, CNC, McE ) Q-1.Define the following. (i) Point Defects (ii) Burgers Vector (iii) Slip and Slip system (iv)

More information

Uniaxial Tension and Compression Testing of Materials. Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng

Uniaxial Tension and Compression Testing of Materials. Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng Uniaxial Tension and Compression Testing of Materials Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng 3.032 Lab Report September 25, 2013 I. Introduction Understanding material mechanics

More information

AUSTENITIC STAINLESS DAMASCENE STEEL

AUSTENITIC STAINLESS DAMASCENE STEEL AUSTENITIC STAINLESS DAMASCENE STEEL Damasteel s austenitic stainless Damascene Steel is a mix between types 304L and 316L stainless steels which are variations of the 18 percent chromium 8 percent nickel

More information

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.

More information

Tensile Testing of Steel

Tensile Testing of Steel C 265 Lab No. 2: Tensile Testing of Steel See web for typical report format including: TITL PAG, ABSTRACT, TABL OF CONTNTS, LIST OF TABL, LIST OF FIGURS 1.0 - INTRODUCTION See General Lab Report Format

More information

CONSOLIDATION AND HIGH STRAIN RATE MECHANICAL BEHAVIOR OF NANOCRYSTALLINE TANTALUM POWDER

CONSOLIDATION AND HIGH STRAIN RATE MECHANICAL BEHAVIOR OF NANOCRYSTALLINE TANTALUM POWDER CONSOLIDATION AND HIGH STRAIN RATE MECHANICAL BEHAVIOR OF NANOCRYSTALLINE TANTALUM POWDER Sang H. Yoo, T.S. Sudarshan, Krupa Sethuram Materials Modification Inc, 2929-P1 Eskridge Rd, Fairfax, VA, 22031

More information

Microscopy and Nanoindentation. Combining Orientation Imaging. to investigate localized. deformation behaviour. Felix Reinauer

Microscopy and Nanoindentation. Combining Orientation Imaging. to investigate localized. deformation behaviour. Felix Reinauer Combining Orientation Imaging Microscopy and Nanoindentation to investigate localized deformation behaviour Felix Reinauer René de Kloe Matt Nowell Introduction Anisotropy in crystalline materials Presentation

More information

Formation of solids from solutions and melts

Formation of solids from solutions and melts Formation of solids from solutions and melts Solids from a liquid phase. 1. The liquid has the same composition as the solid. Formed from the melt without any chemical transformation. Crystallization and

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

Introduction. ε 1 θ=55 ε 2. Localized necking Because ν=0.5 in plasticity, ε 1 =-2ε 2 =-2ε 3. ε 3,ε 2

Introduction. ε 1 θ=55 ε 2. Localized necking Because ν=0.5 in plasticity, ε 1 =-2ε 2 =-2ε 3. ε 3,ε 2 SHEET METALWORKING 1. Cutting Operation 2. Bending Operation 3. Drawing 4. Other Sheet-metal Forming 5. Dies and Presses 6. Sheet-metal Operation 7. Bending of Tube Stock 1 Introduction Cutting and forming

More information

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5 Diffusion MSE 21 Callister Chapter 5 1 Goals: Diffusion - how do atoms move through solids? Fundamental concepts and language Diffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities Diffusion

More information

Iron-Carbon Phase Diagram (a review) see Callister Chapter 9

Iron-Carbon Phase Diagram (a review) see Callister Chapter 9 Iron-Carbon Phase Diagram (a review) see Callister Chapter 9 University of Tennessee, Dept. of Materials Science and Engineering 1 The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram In their simplest form,

More information

Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded.

Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded. 1 Unit 6: EXTRUSION Introduction: Extrusion is a metal working process in which cross section of metal is reduced by forcing the metal through a die orifice under high pressure. It is used to produce cylindrical

More information

WJM Technologies excellence in material joining

WJM Technologies excellence in material joining Girish P. Kelkar, Ph.D. (562) 743-7576 girish@welding-consultant.com www.welding-consultant.com Weld Cracks An Engineer s Worst Nightmare There are a variety of physical defects such as undercut, insufficient

More information

Each grain is a single crystal with a specific orientation. Imperfections

Each grain is a single crystal with a specific orientation. Imperfections Crystal Structure / Imperfections Almost all materials crystallize when they solidify; i.e., the atoms are arranged in an ordered, repeating, 3-dimensional pattern. These structures are called crystals

More information

Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels.

Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels. IMPACT TESTING Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels. Equipment Coolants Standard Charpy V-Notched Test specimens Impact tester

More information

Heat Treatment of Aluminum Foundry Alloys. Fred Major Rio Tinto Alcan

Heat Treatment of Aluminum Foundry Alloys. Fred Major Rio Tinto Alcan Heat Treatment of Aluminum Foundry Alloys Fred Major Rio Tinto Alcan OUTLINE Basics of Heat Treatment (What is happening to the metal at each step). Atomic Structure of Aluminum Deformation Mechanisms

More information

The mechanical properties of metal affected by heat treatment are:

The mechanical properties of metal affected by heat treatment are: Training Objective After watching this video and reviewing the printed material, the student/trainee will learn the basic concepts of the heat treating processes as they pertain to carbon and alloy steels.

More information

σ y ( ε f, σ f ) ( ε f

σ y ( ε f, σ f ) ( ε f Typical stress-strain curves for mild steel and aluminum alloy from tensile tests L L( 1 + ε) A = --- A u u 0 1 E l mild steel fracture u ( ε f, f ) ( ε f, f ) ε 0 ε 0.2 = 0.002 aluminum alloy fracture

More information

M n = (DP)m = (25,000)(104.14 g/mol) = 2.60! 10 6 g/mol

M n = (DP)m = (25,000)(104.14 g/mol) = 2.60! 10 6 g/mol 14.4 (a) Compute the repeat unit molecular weight of polystyrene. (b) Compute the number-average molecular weight for a polystyrene for which the degree of polymerization is 25,000. (a) The repeat unit

More information

THE IMPACT OF YIELD STRENGTH OF THE INTERCONNECTOR ON THE INTERNAL STRESS OF THE SOLAR CELL WITHIN A MODULE

THE IMPACT OF YIELD STRENGTH OF THE INTERCONNECTOR ON THE INTERNAL STRESS OF THE SOLAR CELL WITHIN A MODULE 5th World Conference on Photovoltaic Energy Conversion, 6-1 September 21, Valencia, Spain THE IMPACT OF YIELD STRENGTH OF THE INTERCONNECTOR ON THE INTERNAL STRESS OF THE SOLAR CELL WITHIN A MODULE Y.

More information

Chapter 3: Structure of Metals and Ceramics. Chapter 3: Structure of Metals and Ceramics. Learning Objective

Chapter 3: Structure of Metals and Ceramics. Chapter 3: Structure of Metals and Ceramics. Learning Objective Chapter 3: Structure of Metals and Ceramics Chapter 3: Structure of Metals and Ceramics Goals Define basic terms and give examples of each: Lattice Basis Atoms (Decorations or Motifs) Crystal Structure

More information

AISI CHEMICAL COMPOSITION LIMITS: Nonresulphurized Carbon Steels

AISI CHEMICAL COMPOSITION LIMITS: Nonresulphurized Carbon Steels AISI CHEMICAL COMPOSITION LIMITS: Nonresulphurized Carbon Steels AISI No. 1008 1010 1012 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 10 1026 1027 1029 10 1035 1036 1037 1038 1039 10 1041 1042 1043

More information

Chem 106 Thursday Feb. 3, 2011

Chem 106 Thursday Feb. 3, 2011 Chem 106 Thursday Feb. 3, 2011 Chapter 13: -The Chemistry of Solids -Phase Diagrams - (no Born-Haber cycle) 2/3/2011 1 Approx surface area (Å 2 ) 253 258 Which C 5 H 12 alkane do you think has the highest

More information

The stored energy of cold work: Predictions from discrete dislocation plasticity

The stored energy of cold work: Predictions from discrete dislocation plasticity Acta Materialia 53 (2005) 4765 4779 www.actamat-journals.com The stored energy of cold work: Predictions from discrete dislocation plasticity A.A. Benzerga a, *, Y. Bréchet b, A. Needleman c, E. Van der

More information

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds? CHAPTER 1 2 Ionic Bonds SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is ionic bonding? What happens to atoms that gain or lose

More information

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING Met E 206 MATERIALS LABORATORY EXPERIMENT 1 Prof. Dr. Rıza GÜRBÜZ Res. Assist. Gül ÇEVİK (Room: B-306) INTRODUCTION TENSION TEST Mechanical testing

More information

A Study of the Properties of a High Temperature Binary Nitinol Alloy Above and Below its Martensite to Austenite Transformation Temperature

A Study of the Properties of a High Temperature Binary Nitinol Alloy Above and Below its Martensite to Austenite Transformation Temperature A Study of the Properties of a High Temperature Binary Nitinol Alloy Above and Below its Martensite to Austenite Transformation Temperature Dennis W. Norwich, P.E. SAES Memry Corporation, Bethel, CT Abstract

More information

Homework solutions for test 2

Homework solutions for test 2 Homework solutions for test 2 HW for Lecture 7 22.2 What is meant by the term faying surface? Answer. The faying surfaces are the contacting surfaces in a welded joint. 22.3 Define the term fusion weld.

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,

More information

Mechanical Properties - Stresses & Strains

Mechanical Properties - Stresses & Strains Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =

More information

LABORATORY EXPERIMENTS TESTING OF MATERIALS

LABORATORY EXPERIMENTS TESTING OF MATERIALS LABORATORY EXPERIMENTS TESTING OF MATERIALS 1. TENSION TEST: INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective

More information

Fundamentals of Extrusion

Fundamentals of Extrusion CHAPTER1 Fundamentals of Extrusion The first chapter of this book discusses the fundamentals of extrusion technology, including extrusion principles, processes, mechanics, and variables and their effects

More information

PROPERTIES OF MATERIALS

PROPERTIES OF MATERIALS 1 PROPERTIES OF MATERIALS 1.1 PROPERTIES OF MATERIALS Different materials possess different properties in varying degree and therefore behave in different ways under given conditions. These properties

More information

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus,

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus, 5.3 (a) Compare interstitial and vacancy atomic mechanisms for diffusion. (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. Solution (a) With vacancy diffusion,

More information

NetShape - MIM. Metal Injection Molding Design Guide. NetShape Technologies - MIM Phone: 440-248-5456 31005 Solon Road FAX: 440-248-5807

NetShape - MIM. Metal Injection Molding Design Guide. NetShape Technologies - MIM Phone: 440-248-5456 31005 Solon Road FAX: 440-248-5807 Metal Injection Molding Design Guide NetShape Technologies - MIM Phone: 440-248-5456 31005 Solon Road FAX: 440-248-5807 Solon, OH 44139 solutions@netshapetech.com 1 Frequently Asked Questions Page What

More information

Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics. Stress. What you ll learn: Motivation Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

More information

Chapter 3. 1. 3 types of materials- amorphous, crystalline, and polycrystalline. 5. Same as #3 for the ceramic and diamond crystal structures.

Chapter 3. 1. 3 types of materials- amorphous, crystalline, and polycrystalline. 5. Same as #3 for the ceramic and diamond crystal structures. Chapter Highlights: Notes: 1. types of materials- amorphous, crystalline, and polycrystalline.. Understand the meaning of crystallinity, which refers to a regular lattice based on a repeating unit cell..

More information

Chapter 12 - Liquids and Solids

Chapter 12 - Liquids and Solids Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

More information

Chapter 13 - LIQUIDS AND SOLIDS

Chapter 13 - LIQUIDS AND SOLIDS Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,

More information

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired

More information

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).

More information

CERAMICS: Properties 2

CERAMICS: Properties 2 CERAMICS: Properties 2 (Brittle Fracture Analysis) S.C. BAYNE, 1 J.Y. Thompson 2 1 University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078 sbayne@umich.edu 2 Nova Southeastern College of Dental

More information

Tensile Testing Laboratory

Tensile Testing Laboratory Tensile Testing Laboratory By Stephan Favilla 0723668 ME 354 AC Date of Lab Report Submission: February 11 th 2010 Date of Lab Exercise: January 28 th 2010 1 Executive Summary Tensile tests are fundamental

More information

Sheet metal operations - Bending and related processes

Sheet metal operations - Bending and related processes Sheet metal operations - Bending and related processes R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Table of Contents 1.Quiz-Key... Error! Bookmark not defined. 1.Bending

More information

Lecture: 33. Solidification of Weld Metal

Lecture: 33. Solidification of Weld Metal Lecture: 33 Solidification of Weld Metal This chapter presents common solidification mechanisms observed in weld metal and different modes of solidification. Influence of welding speed and heat input on

More information

Materials Sciences. Dr.-Ing. Norbert Hort norbert.hort@gkss.de. International Masters Programme in Biomedical Engineering

Materials Sciences. Dr.-Ing. Norbert Hort norbert.hort@gkss.de. International Masters Programme in Biomedical Engineering Materials Sciences International Masters Programme in Biomedical Engineering Magnesium Innovations Center (MagIC) GKSS Forschungszentrum Geesthacht GmbH Dr.-Ing. Norbert Hort norbert.hort@gkss.de Contents

More information

Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

More information

Unit 12 Practice Test

Unit 12 Practice Test Name: Class: Date: ID: A Unit 12 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) A solid has a very high melting point, great hardness, and

More information

Investigation of Experimental and Numerical Analysis on Extrusion Process of Magnesium Alloy Fin Structural Parts

Investigation of Experimental and Numerical Analysis on Extrusion Process of Magnesium Alloy Fin Structural Parts Investigation of Experimental and Numerical Analysis on Extrusion Process of Magnesium Alloy Fin Structural Parts Su-Hai Hsiang, Yi-Wei Lin, and Wen-Hao Chien Department of Mechanical Engineering National

More information

Cutting and Shearing die design Cutting die design

Cutting and Shearing die design Cutting die design Manufacturing Processes 2 Dr. Alaa Hasan Ali Cutting and Shearing die design Cutting die design A stamping die is a special, one-of-a-kind precision tool that cuts and forms sheet metal into a desired

More information

Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular

Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Precipitation Today s topics Understanding of Cellular transformation (or precipitation): when applied to phase transformation

More information

AISI O1 Cold work tool steel

AISI O1 Cold work tool steel T OOL STEEL FACTS AISI O1 Cold work tool steel Great Tooling Starts Here! This information is based on our present state of knowledge and is intended to provide general notes on our products and their

More information

Ionic and Metallic Bonding

Ionic and Metallic Bonding Ionic and Metallic Bonding BNDING AND INTERACTINS 71 Ions For students using the Foundation edition, assign problems 1, 3 5, 7 12, 14, 15, 18 20 Essential Understanding Ions form when atoms gain or lose

More information

ANSWER KEY. Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take!

ANSWER KEY. Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take! ANSWER KEY Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take! From American Chemical Society Middle School Chemistry Unit: Chapter 4 Content Statements: Distinguish the difference

More information

COATED CARBIDE. TiN. Al 2 O 3

COATED CARBIDE. TiN. Al 2 O 3 COATED CARBIDE GENERAL INFORMATION CVD = Chemical Vapour Deposition coated grades GC2015, GC2025, GC2135, GC235, GC3005, GC3015, GC3020, GC3025, GC3115, GC4015, GC4025, GC4035, S05F, and CD1810. PVD =

More information

Standard Specification for Stainless Steel Bars and Shapes 1

Standard Specification for Stainless Steel Bars and Shapes 1 Designation: A 276 06 Standard Specification for Stainless Steel Bars and Shapes 1 This standard is issued under the fixed designation A 276; the number immediately following the designation indicates

More information