CAN WE INTEGRATE x 2 e x2 /2? 1. THE PROBLEM. xe x2 /2 dx

Size: px
Start display at page:

Download "CAN WE INTEGRATE x 2 e x2 /2? 1. THE PROBLEM. xe x2 /2 dx"

Transcription

1 CAN WE INTEGRATE x 2 e x2 /2? MICHAEL ANSHELEVICH ABSTRACT. Not every nice function has an integral given by a formula. The standard example is e x 2 /2 dx which is not an elementary function. On the other hand, xe x2 /2 dx = e x2 /2. What about x 2 e x2 /2 dx? Is this a calculus integral? What about x 3 e x2 /2 dx? In this talk, I will give a complete answer to this question. The answer involves Hermite polynomials. The arguments do not use anything beyond calculus, but connect to a number of more advanced topics.. THE PROBLEM Every calculus textbook (for example Stewart, page 493) points out that not every integral can be done, that is, can be expressed in terms of the usual ( elementary ) functions. A standard example is e x2 /2 dx, which cannot be computed by calculus methods, no matter how clever you are, despite its importance in probability and statistics (this is the famous Bell Curve). On the other hand, the integral xe x2 /2 dx is easy: substitution shows that it equals What about u = x 2 /2, du = x dx e u du = e u + C = e x2 /2 + C. x 2 e x2 /2 dx? I claim that it is not elementary. But note that d ( ) xe x2 /2 = (x 2 )e x2 /2, dx so (x 2 )e x2 /2 dx = xe x2 /2 + C. Also x 3 e x2 /2 dx = (x 2 + 2)e x2 /2 + C. Date: March 5, 200.

2 2 How did I guess that? 2. THE SOLUTION USING HERMITE POLYNOMIALS Definition. For each n, define the Hermite polynomial H n (x) by Example. For example, so so so etc. d n dx n e x2 /2 = ( ) n H n (x)e x2 /2. H 0 (x) =, d /2 dx e x2 = xe x2 /2 H (x) = x, d 2 dx 2 e x2 /2 = e x2 /2 + x 2 e x2 /2 H 2 (x) = x 2, d 3 /2 dx 3 e x2 = (x + 2x x 3 )e x2 /2 H 3 (x) = x 3 3x Clearly H n (x) is a polynomial of degree n, with the highest term x n. Hermite polynomials appear in many contexts. If you know Linear Algebra: Hermite polynomials are orthogonal polynomials. If we define the inner product between two functions then f, g = H n, H k = f(x)g(x) e x2 /2 dx, H n (x)h k (x) e x2 /2 dx = 0 for n k, so that H n and H k are orthogonal to each other. In quantum mechanics, Hermite polynomials are closely connected to the eigenfunctions for the harmonic oscillator. How do they help us? Let us compute the derivative of a Hermite polynomial times the exponential function. d ( ) H n (x) e x2 /2 = d ) (( ) n dn /2 = ( ) n dn+ /2 = H dx dx dx n e x2 dx n+ e x2 n+ (x) e x2 /2! In other words, we proved

3 3 Lemma. H n+ (x) e x2 /2 dx = H n (x) e x2 /2 + C. Example 2. For example, etc. xe x2 /2 dx = e x2 /2 + C, (x 2 )e x2 /2 dx = xe x2 /2 + C, (x 3 3x)e x2 /2 dx = (x 2 )e x2 /2 + C, Exercise. What about the derivative of H n itself? One can check that in fact, d dx H n(x) = nh n (x) Note that this is the same rule as d dx xn = nx n! Are there any other polynomials with this property? What about our original question, for x n e x2 /2 dx? Well, e x2 /2 dx cannot be done (so says Stewart, so it must be true). We know how to do xe x2 /2 dx. Also, by our calculation x 2 e x2 /2 dx = e x2 /2 dx xe x2 /2 + C. Since the right-hand-side cannot be done, neither can the left-hand-side. For general n? We can write = = H 0 (x), x = x = H (x), x 2 = (x 2 ) + = H 2 (x) + H 0 (x), x 3 = (x 3 3x) + 3x = H 3 (x) + 3H (x),

4 4 and in general x n = H n (x) + a n H n (x) + a n 2 H n 2 (x) + + a H (x) + a 0 H 0 (x). And we know H k (x) e x2 /2 dx = H k (x)e x2 /2 + C. Not quite: only for k. So: can integrate x n e x2 /2 if and only if x n contains no H 0, that is, if a 0 = 0. How to find a 0? In Linear Algebra: {H 0, H, H 2, H 3, } form an orthogonal basis. It is not orthonormal: So H 0, H 0 = a 0 = xn, H 0 H 0, H 0 = 2π e x2 /2 dx = 2π. x n e x2 /2 dx. Note this is a number, not a function. We do not know this number. But: If n is odd, x n e x2 /2 is an odd function, so that so can integrate. a 0 = 2π If n is even, x n e x2 /2 > 0 is a positive function, so that and we cannot integrate. a 0 = 2π x n e x2 /2 dx = 0 x n e x2 /2 dx > 0 Theorem 2. We can integrate x n e x2 /2 if n is odd, and cannot integrate it if n is even. More generally, we can integrate P (x)e x2 /2 if and only if P n (x) is a linear combination of {H, H 2, } (excluding H 0 ). We also discussed that the moments of the Gaussian distribution are zero for odd n and REFERENCE: 2π x 2n e x2 dx = (2n )!! = (2n ) (2n 3) 5 3. Persi Diaconis and Sandy Zabell, CLOSED FORM SUMMATION FOR CLASSICAL DISTRIBUTIONS: VARIATIONS ON A THEME OF DE MOIVRE, Statistical Science 6 n. 3 (Aug. 99)

5 5 3. MORE ON HERMITE POLYNOMIALS 3.. Solution of Exercise. For the first part: look at the generating function F (x, z) = n! H n(x)z n. Using Taylor series f (n) (a)b n = f(a + b), n! F (x, z) = n! H n(x)z n = We showed = e x2 /2 Lemma 3 (Generating function). d n /2 n! dx n e x2 ( z) n = e x2 /2 e (x z)2 /2 = e xz z2 /2. F (x, z) = n! ( )n e x2 /2 dn dx n e x2 /2 z n n! H n(x)z n = e xz z2 /2. Differentiating with respect to x, we get Thus x exz z2 /2 = ze xz z2 /2. n! H n(x)z n = F (x, z) = zf (x, z) x = n! H n(x)z n+ = (n )! H n (x)z n = Comparing coefficients of z n, we get Lemma 4 (Differential recursion). n= H n(x) = nh n (x). n= n n! H n (x)z n. Exercise 2. Use the lemma just above to show that the Hermite polynomials are orthogonal. In fact, use induction to compute H n, H k = H n (x)h k (x) e x2 /2 dx.

6 6 For the second part of Exercise (other polynomials with P n(x) = np n (x), look up terms such as Bernoulli polynomials, Euler polynomials, and Appell polynomials. Try to write out polynomials {P n (x)} such that n! P n(x)z n = e xz e f(z) for some simple functions f. Dave asked: what about polynomials with some other relation P n(x) = b n P n (x), for example P n = n 2 P n? Note that the Hermite polynomials are monic, that is, their leading coefficient is. For monic polynomials, we can only hope to have P n = np n (why?) But there is a class of polynomials satisfying a similar more general property, called the Boas-Buck polynomials (Boas is Ralph Boas, father of our Harold Boas). This is class is far from completely understood, and in fact I am interested in it for my research Discrete Math. How to compute H n quickly? Recursively! Differentiating F (x, z) with respect to z, we get Thus or So z exz z2 /2 = xe xz z2 /2 ze xz z2 /2. n! (xh n(x))z n = Lemma 5 (Three-term recursion). Exercise 3 (Discrete math). Show that xf (x, z) = F (x, z) + zf (x, z), z = n! nh n(x)z n + n! H n+(x)z n + xh n (x) = H n+ (x) + nh n (x). n! H n(x)z n+ n n! H n (x)z n. H n (x) = c n,n x n c n,n 2 x n 2 + c n,n 4 x n 4 c n,n 6 x n 6 +, where c n,k is the total number of partitions of n elements into pairs and singletons, with k singletons. In fact, show that n! c n,n 2k = (n 2k)!2 k k!.

7 Differential Equations. We compute H n xh n = n(n )H n 2 nxh n = n[(n )H n 2 xh n ] = nh n. So Lemma 6 (Differential equation). H n is a solution of the second-order linear differential equation H n xh n + nh n = 0, or: H n is an eigenfunction of the differential operator y xy with eigenvalue n Linear Algebra. Look at the matrix M n = n n

8 8 What are the eigenvalues of M n? Expand with respect to the last row:. λ λ det(m n+ λi) = 0 λ n λ n λ. λ 0 0 λ λ = λ 0 λ. λ λ n λ n. λ λ λ = λ 0 λ. λ n 0 λ.... n.. n λ λ Recall So So Lemma 7. Exercise 4. The Hermite polynomials = λ det(m n λi) n det(m n λi). H n+ (x) = xh n (x) nh n (x). det(m n λi) = H n ( x). eigenvalues of M n = ( ) zeros of H n. {H 0 (x), H (x), H 2 (x), } form a basis for the vector space of polynomials P. In this basis, the matrix M is a matrix of some linear operator. What is that operator on P? Lemma 8. Each H n has n real, simple zeroes. Moreover, these zeros are interlacing: if H n has zeros x < x 2 < < x n and H n has zeroes y < y 2 < < y n,

9 9 then x < y < x 2 < y 2 < < x n < y n < x n. Proof. We can factor H n (x) = (x a ) k (x a 2 ) k 2 (x a m ) km Q(x) where a i are real roots, and Q does not have any real roots. Say the product is written in such an order that k, k 2,, k j are odd and k j+,, k m are even. Denote P (x) = (x a )(x a 2 ) (x a j ). Then the polynomial P (x)h n (x) never changes sign (since all its real roots have even multiplicity), so it either always positive or always negative. So in particular, P (x)h n (x)e x2 /2 dx 0. But since the Hermite polynomials are orthogonal, such a product is zero for any polynomial of degree less than n. So deg P = n, which means that all the roots of P are real and different. Why interlacing: H n(x) = nh n (x). So roots of H n are maxima and minima of H n. Zero of the Hermite polynomials also appear in numerical integration in Numerical Analysis (the term is Gaussian quadrature). For other orthogonal polynomials: 4. GENERAL ORTHOGONAL POLYNOMIALS {P 0 (x), P (x), P 2 (x), }, P n (x) = x n +, Orthogonal with respect to w(x), meaning that if n k. P n, P k = P n (x)p k (x)w(x) dx = 0 Examples: w(x) = e x on [0, ), w(x) = on [, ]. There are also discrete weights, such as the Poisson distribution. Which of the properties of Hermite polynomials hold for more general orthogonal polynomials? Recursion: always xp n (x) = P n+ (x) + β n P n (x) + γ n P n (x), for some β i and some non-negative γ i. Derivative P n = np n : only Hermite. Second-order differential equation: Hermite, Laguerre, Jacobi. The eigenvalue problem is (p(x)y (x)) + q(x)y (x) = λy(x). The operator on the left-hand-side is called a Sturm-Liouville operator; such operators are studied in many differential equations books.

10 0 Exercise 5. Check that for this differential operator to have polynomial eigenfunctions, we for sure need that p is a polynomial of degree 2, q is a polynomial of degree. One can show that if the polynomial eigenfunctions are orthogonal, then w w = q(x) p(x) (One checks that this is the condition for the operator to be symmetric with respect to the inner product given by w(x).) Use partial fractions to find w(x) for different types of q(x) and p(x). Characteristic polynomial of a matrix: always true, use β i, γ i as above. Zeros: always true, even though cannot use the derivative.

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

Zeros of a Polynomial Function

Zeros of a Polynomial Function Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i. Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8 Spaces and bases Week 3: Wednesday, Feb 8 I have two favorite vector spaces 1 : R n and the space P d of polynomials of degree at most d. For R n, we have a canonical basis: R n = span{e 1, e 2,..., e

More information

The Quantum Harmonic Oscillator Stephen Webb

The Quantum Harmonic Oscillator Stephen Webb The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems

More information

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

More information

A Brief Review of Elementary Ordinary Differential Equations

A Brief Review of Elementary Ordinary Differential Equations 1 A Brief Review of Elementary Ordinary Differential Equations At various points in the material we will be covering, we will need to recall and use material normally covered in an elementary course on

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Real Roots of Univariate Polynomials with Real Coefficients

Real Roots of Univariate Polynomials with Real Coefficients Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials

More information

Chebyshev Expansions

Chebyshev Expansions Chapter 3 Chebyshev Expansions The best is the cheapest. Benjamin Franklin 3.1 Introduction In Chapter, approximations were considered consisting of expansions around a specific value of the variable (finite

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

The Division Algorithm for Polynomials Handout Monday March 5, 2012

The Division Algorithm for Polynomials Handout Monday March 5, 2012 The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,

More information

Differentiation and Integration

Differentiation and Integration This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have

More information

15. Symmetric polynomials

15. Symmetric polynomials 15. Symmetric polynomials 15.1 The theorem 15.2 First examples 15.3 A variant: discriminants 1. The theorem Let S n be the group of permutations of {1,, n}, also called the symmetric group on n things.

More information

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

Mean value theorem, Taylors Theorem, Maxima and Minima.

Mean value theorem, Taylors Theorem, Maxima and Minima. MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.

More information

[1] Diagonal factorization

[1] Diagonal factorization 8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

More information

WHEN DOES A CROSS PRODUCT ON R n EXIST?

WHEN DOES A CROSS PRODUCT ON R n EXIST? WHEN DOES A CROSS PRODUCT ON R n EXIST? PETER F. MCLOUGHLIN It is probably safe to say that just about everyone reading this article is familiar with the cross product and the dot product. However, what

More information

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS A second-order linear differential equation has the form 1 Px d y dx dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. Equations of this type arise

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

arxiv:math/0601660v3 [math.nt] 25 Feb 2006

arxiv:math/0601660v3 [math.nt] 25 Feb 2006 NOTES Edited by William Adkins arxiv:math/666v3 [math.nt] 25 Feb 26 A Short Proof of the Simple Continued Fraction Expansion of e Henry Cohn. INTRODUCTION. In [3], Euler analyzed the Riccati equation to

More information

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013 Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

More information

Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

More information

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish

More information

A characterization of trace zero symmetric nonnegative 5x5 matrices

A characterization of trace zero symmetric nonnegative 5x5 matrices A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the

More information

Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)

Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes) NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

SECTION 10-2 Mathematical Induction

SECTION 10-2 Mathematical Induction 73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

CHAPTER 2. Eigenvalue Problems (EVP s) for ODE s

CHAPTER 2. Eigenvalue Problems (EVP s) for ODE s A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL EQUATIONS

More information

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all. 1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.

More information

MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!

MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing! MATH BOOK OF PROBLEMS SERIES New from Pearson Custom Publishing! The Math Book of Problems Series is a database of math problems for the following courses: Pre-algebra Algebra Pre-calculus Calculus Statistics

More information

A note on companion matrices

A note on companion matrices Linear Algebra and its Applications 372 (2003) 325 33 www.elsevier.com/locate/laa A note on companion matrices Miroslav Fiedler Academy of Sciences of the Czech Republic Institute of Computer Science Pod

More information

Introduction. Appendix D Mathematical Induction D1

Introduction. Appendix D Mathematical Induction D1 Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to

More information

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the

More information

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4) ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

More information

Introduction to Partial Differential Equations. John Douglas Moore

Introduction to Partial Differential Equations. John Douglas Moore Introduction to Partial Differential Equations John Douglas Moore May 2, 2003 Preface Partial differential equations are often used to construct models of the most basic theories underlying physics and

More information

Factorization Theorems

Factorization Theorems Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

More information

Representation of functions as power series

Representation of functions as power series Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

General Framework for an Iterative Solution of Ax b. Jacobi s Method

General Framework for an Iterative Solution of Ax b. Jacobi s Method 2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

More information

Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

More information

Die ganzen zahlen hat Gott gemacht

Die ganzen zahlen hat Gott gemacht Die ganzen zahlen hat Gott gemacht Polynomials with integer values B.Sury A quote attributed to the famous mathematician L.Kronecker is Die Ganzen Zahlen hat Gott gemacht, alles andere ist Menschenwerk.

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)

More information

More than you wanted to know about quadratic forms

More than you wanted to know about quadratic forms CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences More than you wanted to know about quadratic forms KC Border Contents 1 Quadratic forms 1 1.1 Quadratic forms on the unit

More information

1 Inner Products and Norms on Real Vector Spaces

1 Inner Products and Norms on Real Vector Spaces Math 373: Principles Techniques of Applied Mathematics Spring 29 The 2 Inner Product 1 Inner Products Norms on Real Vector Spaces Recall that an inner product on a real vector space V is a function from

More information

Multi-variable Calculus and Optimization

Multi-variable Calculus and Optimization Multi-variable Calculus and Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 1 / 51 EC2040 Topic 3 - Multi-variable Calculus

More information

College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran

College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran College Algebra - MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or x-intercept) of a polynomial is identical to the process of factoring a polynomial.

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

MATH PROBLEMS, WITH SOLUTIONS

MATH PROBLEMS, WITH SOLUTIONS MATH PROBLEMS, WITH SOLUTIONS OVIDIU MUNTEANU These are free online notes that I wrote to assist students that wish to test their math skills with some problems that go beyond the usual curriculum. These

More information

To give it a definition, an implicit function of x and y is simply any relationship that takes the form:

To give it a definition, an implicit function of x and y is simply any relationship that takes the form: 2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to

More information

Row Echelon Form and Reduced Row Echelon Form

Row Echelon Form and Reduced Row Echelon Form These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

MATH 289 PROBLEM SET 4: NUMBER THEORY

MATH 289 PROBLEM SET 4: NUMBER THEORY MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides

More information

5 Numerical Differentiation

5 Numerical Differentiation D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

RESULTANT AND DISCRIMINANT OF POLYNOMIALS

RESULTANT AND DISCRIMINANT OF POLYNOMIALS RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results

More information

Polynomial Invariants

Polynomial Invariants Polynomial Invariants Dylan Wilson October 9, 2014 (1) Today we will be interested in the following Question 1.1. What are all the possible polynomials in two variables f(x, y) such that f(x, y) = f(y,

More information

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

More information

DRAFT. Further mathematics. GCE AS and A level subject content

DRAFT. Further mathematics. GCE AS and A level subject content Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed

More information

2.4 Real Zeros of Polynomial Functions

2.4 Real Zeros of Polynomial Functions SECTION 2.4 Real Zeros of Polynomial Functions 197 What you ll learn about Long Division and the Division Algorithm Remainder and Factor Theorems Synthetic Division Rational Zeros Theorem Upper and Lower

More information

Chapter 20. Vector Spaces and Bases

Chapter 20. Vector Spaces and Bases Chapter 20. Vector Spaces and Bases In this course, we have proceeded step-by-step through low-dimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Integrals of Rational Functions

Integrals of Rational Functions Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

More information

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of. Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:

More information

1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition

1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 11: Laplacian Eigenvalue Problems for General Domains III. Completeness of a Set of Eigenfunctions and the Justification

More information

The Determinant: a Means to Calculate Volume

The Determinant: a Means to Calculate Volume The Determinant: a Means to Calculate Volume Bo Peng August 20, 2007 Abstract This paper gives a definition of the determinant and lists many of its well-known properties Volumes of parallelepipeds are

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

LEVERRIER-FADEEV ALGORITHM AND CLASSICAL ORTHOGONAL POLYNOMIALS

LEVERRIER-FADEEV ALGORITHM AND CLASSICAL ORTHOGONAL POLYNOMIALS This is a reprint from Revista de la Academia Colombiana de Ciencias Vol 8 (106 (004, 39-47 LEVERRIER-FADEEV ALGORITHM AND CLASSICAL ORTHOGONAL POLYNOMIALS by J Hernández, F Marcellán & C Rodríguez LEVERRIER-FADEEV

More information

0.8 Rational Expressions and Equations

0.8 Rational Expressions and Equations 96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

More information

Linearly Independent Sets and Linearly Dependent Sets

Linearly Independent Sets and Linearly Dependent Sets These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation

More information

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents DIFFERENTIABILITY OF COMPLEX FUNCTIONS Contents 1. Limit definition of a derivative 1 2. Holomorphic functions, the Cauchy-Riemann equations 3 3. Differentiability of real functions 5 4. A sufficient condition

More information

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I. Ronald van Luijk, 2012 Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

More information

Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

More information

Reducibility of Second Order Differential Operators with Rational Coefficients

Reducibility of Second Order Differential Operators with Rational Coefficients Reducibility of Second Order Differential Operators with Rational Coefficients Joseph Geisbauer University of Arkansas-Fort Smith Advisor: Dr. Jill Guerra May 10, 2007 1. INTRODUCTION In this paper we

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

More information

Limits and Continuity

Limits and Continuity Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

More information