A: zero everywhere. B: positive everywhere. C: negative everywhere. D: depends on position.

Size: px
Start display at page:

Download "A: zero everywhere. B: positive everywhere. C: negative everywhere. D: depends on position."

Transcription

1 <ct > A string is clamped at both ends and then plucked so that it vibrates in a standing wave between two extreme positions a and c. (Let upward motion correspond to positive velocities.) When the string is in position b, the instantaneous velocity of points along the string is... <ct > A string is clamped at both ends and then plucked so that it vibrates in a standing wave between two extreme positions a and c. (Let upward motion correspond to positive velocities.) When the string is in position c, the instantaneous velocity of points along the string is A: zero everywhere. B: positive everywhere. C: negative everywhere. D: depends on position. Answer: Even though the string is flat at this point, some parts of the string will be moving up and other spots will be moving down. The velocity of any particular point depends on where it is located. A: zero everywhere B: positive everywhere. C: negative everywhere. D: depends on the position. Answer: Focus your attention on ANY particular spot on the string. That spot goes straight up and down. When it reaches its most extreme point, it is "turning around". At that instant, v=0 (you are "stopped" instantaneously.) This is true everywhere along the string. A is the correct answer here. At the extreme, the string is instantly at rest, every point is turning around <ct > Below is a picture of a standing wave on a 30 meter long string. What is the wavelength of the standing wave? <ct > Below is a picture of a standing wave on a 30 meter long string. What is the wavelength of the standing wave? 30 m A. 30 m B. 60 m C.15 m D. Impossible to tell Answer: The above picture shows ½ of a wavelength that takes up 30 m. Then, one wavelength is: 30m /( ½ ) = 60 m 30 m A. 30 m B) 60 m C) 10 m D) 20 m E) Impossible to tell Answer: The above picture shows 1 and ½ wavelengths that take up 30 m. Then, one wavelength is: 30m /(1 ½ ) = 20 m (There are other ways to think about this. E.g, notice that you can SEE one wavelength in the picture, just go 2/3 of the way across, I.e. 20 meters across ) 1

2 i Ct b ii A. Yes, n = 1 Ct Could you observe standing waves with a wavelength of 3 m on a string of length 2 m? (If so, what mode would it be in? ) B. Yes, n = 1.5 C.Yes, n = 1.33 Which of the two points on the string oscillates with the LARGER (higher) frequency? A) Left point (i) B) Right point (ii) C) They both have the same frequency Answer: When the string is up, both points are up, and when the string is down, both points are down. They are in lock step to one another so they have the same frequency (only their amplitudes are different) D.Yes (some other n.) E. No Answer: Standing waves must fit exactly with nodes at either end (i.e. n must be an integer) If the length of the string is 2m and the wavelength is 3m then: n = 2*Length / Wavelength = 2*2/3 = 1.33 Then, n is not an integer, so a standing wave cannot be formed. Here's another way to think about it: n=1 is a mode with wavelength 2L = 4 m (that's too big, it's not 3 m) n=2 is a mode with wavelength L = 2 m. (too small). Higher n => smaller wavelength. There is NO n with a wavelength of 3 m! A string vibrates with a fundamental frequency of 220 Hz. Besides 220 Hz, which of the following are "resonant frequencies" which you might also have? i) 110 Hz ii) 330 Hz iii) 440 Hz A: i only B: ii only C: iii only D: i and ii E: all three <ct > Answer: A string can have its harmonic and integer multiples of the harmonic, so if the harmonic is f 1 =220 Hz, then 2*f 1 =440Hz is alowed, but the others are not. CT b A string has a fundamental frequency f 1. The second harmonic has frequency f 2 = 2f 1, It s one octave higher! Which harmonic is TWO octaves above f 1? A) f 3 B) f 4 C) f 5 D) f 8 E)?? Answer: 2 octaves above the fundamental is 1 octave above the second harmonic: 2*f 2 = 2*(2*f 1 ) = 4*f 1 = f 4 2

3 How many interior nodes are there in a standing wave with n = 10? A. 9 B. 10 C. 11 <ct > D. I would have to draw it and count Answer: From the pictures we see that the number of node is 1 less then n. n=1 n=2 n=3 CT a A string vibrates in the fundamental, producing an A (440 Hz) sound. Suppose the speed of sound in the air could be suddenly doubled (but the string is left unchanged) What would you HEAR? A) Same pitch (440 Hz) B) Lower pitch C) Higher pitch, but not double D) Double pitch = one octave higher E)?? Answer: The frequency on a string is given by: f = n(v/2l) But v in this formula represents the speed of the wave ON THE STRING. It's independent of the speed of sound in air! (Don't mix them up, think about this!) So changing the v of sound in air has NO EFFECT - the string is STILL wiggling at 440 Hz, and you'll still HEAR 440 Hz! <ct b> v = T mass/length If the tension is increased by a factor of 9 (nine times the Tension force!) what! happens to the speed of waves on a string? A. Goes up by a factor of 3 B. Goes up by a factor of 4.5 C. Goes up by a factor of 9 D. Goes up by a factor of 81 E. None of these / I don t know Answer: The speed depends on the square root of tension, so a factor of 9 in tension corresponds to a factor of 3 in speed. What happens to the frequency of the v fundamental? f n = n " 2L Answer: A factor of 3 change in the speed will cause a factor of 3 change in the frequency.! <ct b> If you want to lower the pitch of a guitar string by two octaves, what must be done to its tension? A. Raise it by a factor of 4 B. Lower it by a factor of 4 C. Lower it by a factor of 2 D. Lower it by a factor of 16 E. None of these / I don t know Answer: The speed and frequency are proportional to the square root of the tension. To lower the frequency by 2 octaves ( 1 / 4 the frequency) the speed must be quartered, so the tension must be decreased by a factor of 4 2 =16. This is not a very realistic way to change the frequency of a guitar, the string would be way too floppy. 3

4 CT a The clothesline is being driven (frequency f ) and is in the 2nd harmonic (one node in the middle) Now I ADD some weights on the end, increasing T a little. What happens? A) Looks same, wiggles faster B) A second node appears C) Goes into the fundamental D) Lose the resonance (just flops a little, not pretty ) E)?? Answer: Increasing the tension will increase the harmonic frequencies. If the change is small, then the string will no longer be being driven at a resonant frequency, so it will just flop around. CT c If you increase Tension by a factor of 4 (so the speed doubles) A) The frequency of the fundamental doubles, all other harmonics stay the same as they were B) The frequency of EVERY harmonic doubles C) None of the frequencies change, the wavelengths double D) f 1 goes up by 2, f 2 by 4, (etc ) E) Something else/??? Answer: Quadrupling the tension will double the speed and therefore double ALL of the harmonics because they are given by: v f n = n " 2L! put your finger down one half of the way along the string, and then pluck, you are mostly likely to hear A: Still 440 Hz B: 220 Hz C: 880 Hz ct a D: Something entirely different Answer: Putting your finger down half way will force a node to be there. This will eliminate all of the odd harmonics of the string. You will hear, primarily, the second harmonic of the string, 880Hz. ct b put your finger down lightly, one third of the way along the string, and then pluck the longer side, you are mostly likely to hear A: 3*440Hz B: (1/3)*440 Hz C: 3/2 * 440 Hz D: 2/3 * 440 Hz E: Something entirely different Answer: Putting your finger down 1 / 3 of the way will force a node to be there. This will eliminate all of the harmonics that do not have this node. You will hear, primarily, the third harmonic of the string, 3*440Hz = 1320Hz. This is different then clamping the string 1 / 3 of the way!! (See lecture notes if you're confused, make sense of this for yourself!) 4

5 ct b2 put your finger down hard (pushing the string to the fret), one third of the way along the string, and then pluck the longer side, you are mostly likely to hear A: 3*440Hz B: (1/3)*440 Hz C: 3/2 * 440 Hz D: 2/3 * 440 Hz E: Something entirely different Answer: Putting your finger down hard 1 / 3 of the way will effectively clamp the string and shorten its length. When you play it now it is essentially 2 / 3 the original length, so you will likely hear 440Hz/( 2 / 3 ) = 3 / 2 *440Hz c Electric guitars can have several pickups to detect string motion. You can flip a switch to activate single pickups or combos. Which pickup would you activate to make your music sound crisper (i.e. pick up more of the higher pitch frequencies?) A. B. C. D. Some combo / no diff Answer: Low frequencies vibrate primarily in the middle of the string (look at the picture of the fundamental, particularly!) whereas high frequencies can vibrate all along the string. The pickups at A are better suited for these high frequencies. 5

Sound and stringed instruments

Sound and stringed instruments Sound and stringed instruments Lecture 14: Sound and strings Reminders/Updates: HW 6 due Monday, 10pm. Exam 2, a week today! 1 Sound so far: Sound is a pressure or density fluctuation carried (usually)

More information

The Physics of Guitar Strings

The Physics of Guitar Strings The Physics of Guitar Strings R. R. McNeil 1. Introduction The guitar makes a wonderful device to demonstrate the physics of waves on a stretched string. This is because almost every student has seen a

More information

The Sonometer The Resonant String and Timbre Change after plucking

The Sonometer The Resonant String and Timbre Change after plucking The Sonometer The Resonant String and Timbre Change after plucking EQUIPMENT Pasco sonometers (pick up 5 from teaching lab) and 5 kits to go with them BK Precision function generators and Tenma oscilloscopes

More information

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude. practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes

More information

Waves and Sound. AP Physics B

Waves and Sound. AP Physics B Waves and Sound AP Physics B What is a wave A WAVE is a vibration or disturbance in space. A MEDIUM is the substance that all SOUND WAVES travel through and need to have in order to move. Two types of

More information

Teaching Fourier Analysis and Wave Physics with the Bass Guitar

Teaching Fourier Analysis and Wave Physics with the Bass Guitar Teaching Fourier Analysis and Wave Physics with the Bass Guitar Michael Courtney Department of Chemistry and Physics, Western Carolina University Norm Althausen Lorain County Community College This article

More information

Review of Chapter 25. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review of Chapter 25. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Review of Chapter 25 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The time needed for a wave to make one complete cycle is its b. velocity.

More information

v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review

v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review L 23 Vibrations and Waves [3] resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar radar guns Review

More information

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity. 1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the

More information

Waves-Wave Characteristics

Waves-Wave Characteristics 1. What is the wavelength of a 256-hertz sound wave in air at STP? 1. 1.17 10 6 m 2. 1.29 m 3. 0.773 m 4. 8.53 10-7 m 2. The graph below represents the relationship between wavelength and frequency of

More information

Chapter 17: Change of Phase

Chapter 17: Change of Phase Chapter 17: Change of Phase Conceptual Physics, 10e (Hewitt) 3) Evaporation is a cooling process and condensation is A) a warming process. B) a cooling process also. C) neither a warming nor cooling process.

More information

Mathematical Harmonies Mark Petersen

Mathematical Harmonies Mark Petersen 1 Mathematical Harmonies Mark Petersen What is music? When you hear a flutist, a signal is sent from her fingers to your ears. As the flute is played, it vibrates. The vibrations travel through the air

More information

16.2 Periodic Waves Example:

16.2 Periodic Waves Example: 16.2 Periodic Waves Example: A wave traveling in the positive x direction has a frequency of 25.0 Hz, as in the figure. Find the (a) amplitude, (b) wavelength, (c) period, and (d) speed of the wave. 1

More information

Standing Waves on a String

Standing Waves on a String 1 of 6 Standing Waves on a String Summer 2004 Standing Waves on a String If a string is tied between two fixed supports, pulled tightly and sharply plucked at one end, a pulse will travel from one end

More information

226 Chapter 15: OSCILLATIONS

226 Chapter 15: OSCILLATIONS Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

More information

18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a

18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a First Major T-042 1 A transverse sinusoidal wave is traveling on a string with a 17 speed of 300 m/s. If the wave has a frequency of 100 Hz, what 9 is the phase difference between two particles on the

More information

GUITAR THEORY REVOLUTION

GUITAR THEORY REVOLUTION GUITAR THEORY REVOLUTION The Major and Minor Pentatonic Scales Copyright Guitar Theory Revolution 2011 1 Contents Introduction 3 What are the Major and Minor Pentatonic Scales 3 Diagrams for all the Pentatonic

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 20. Traveling Waves You may not realize it, but you are surrounded by waves. The waviness of a water wave is readily apparent, from the ripples on a pond to ocean waves large enough to surf. It

More information

Bass Guitar Investigation. Physics 498, Physics of Music Sean G. Ely Randall Fassbinder

Bass Guitar Investigation. Physics 498, Physics of Music Sean G. Ely Randall Fassbinder Bass Guitar Investigation Physics 498, Physics of Music Sean G. Ely Randall Fassbinder May 14, 2009 Table of Contents 1. INTRODUCTION...1 2. EXPERIMENTAL SETUP AND PROCEDURE...1 2.1 PICKUP LOCATION...1

More information

Music Theory: Explanation and Basic Principles

Music Theory: Explanation and Basic Principles Music Theory: Explanation and Basic Principles Musical Scales Musical scales have developed in all cultures throughout the world to provide a basis for music to be played on instruments or sung by the

More information

PHYSICS EXPERIMENTS (SOUND)

PHYSICS EXPERIMENTS (SOUND) PHYSICS EXPERIMENTS (SOUND) In the matter of physics, the first lessons should contain nothing but what is experimental and interesting to see. A pretty experiment is in itself often more valuable than

More information

Acoustics. Lecture 2: EE E6820: Speech & Audio Processing & Recognition. Spherical waves & room acoustics. Oscillations & musical acoustics

Acoustics. Lecture 2: EE E6820: Speech & Audio Processing & Recognition. Spherical waves & room acoustics. Oscillations & musical acoustics EE E6820: Speech & Audio Processing & Recognition Lecture 2: Acoustics 1 The wave equation 2 Acoustic tubes: reflections & resonance 3 Oscillations & musical acoustics 4 Spherical waves & room acoustics

More information

both double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max

both double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object s maximum speed

More information

Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

More information

The Physics of Music: Brass Instruments. James Bernhard

The Physics of Music: Brass Instruments. James Bernhard The Physics of Music: Brass Instruments James Bernhard As a first approximation, brass instruments can be modeled as closed cylindrical pipes, where closed means closed at one end, open at the other Here

More information

A) F = k x B) F = k C) F = x k D) F = x + k E) None of these.

A) F = k x B) F = k C) F = x k D) F = x + k E) None of these. CT16-1 Which of the following is necessary to make an object oscillate? i. a stable equilibrium ii. little or no friction iii. a disturbance A: i only B: ii only C: iii only D: i and iii E: All three Answer:

More information

Solution Derivations for Capa #13

Solution Derivations for Capa #13 Solution Derivations for Capa #13 1 Identify the following waves as T-Transverse, or L-Longitudinal. If the first is T and the rets L, enter TLLL. QUESTION: A The WAVE made by fans at sports events. B

More information

INTERFERENCE OF SOUND WAVES

INTERFERENCE OF SOUND WAVES 1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Musical Analysis and Synthesis in Matlab

Musical Analysis and Synthesis in Matlab 3. James Stewart, Calculus (5th ed.), Brooks/Cole, 2003. 4. TI-83 Graphing Calculator Guidebook, Texas Instruments,1995. Musical Analysis and Synthesis in Matlab Mark R. Petersen (mark.petersen@colorado.edu),

More information

Lecture 2: Acoustics

Lecture 2: Acoustics EE E6820: Speech & Audio Processing & Recognition Lecture 2: Acoustics 1 The wave equation Dan Ellis & Mike Mandel Columbia University Dept. of Electrical Engineering http://www.ee.columbia.edu/ dpwe/e6820

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

Everyone cringes at the words "Music Theory", but this is mainly banjo related and very important to learning how to play.

Everyone cringes at the words Music Theory, but this is mainly banjo related and very important to learning how to play. BLUEGRASS MUSIC THEORY 101 By Sherry Chapman Texasbanjo The Banjo Hangout Introduction Everyone cringes at the words "Music Theory", but this is mainly banjo related and very important to learning how

More information

Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015

Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015 Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) The standard tuning values used in ADVANCED Motion Controls drives are conservative and work well in over 90%

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

Summary The students will learn how to make a basic musical instrument and how to modify it to get different loudness and pitches.

Summary The students will learn how to make a basic musical instrument and how to modify it to get different loudness and pitches. Partnerships Implementing Engineering Education Sound: 4.D.3B Rubber Band Banjo Grade Level 4 Sessions 50 minutes Seasonality N/A Instructional Mode(s) Whole class Team Size 2 WPS Benchmarks 04.SC.PS.01

More information

Guitar Scales. The good news here is: you play the guitar!

Guitar Scales. The good news here is: you play the guitar! Regardless what instrument you play, learning to play scales is a rite of passage. This is the foundation to becoming a learned musician, rather than merely a recreational player. The good news here is:

More information

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

More information

Ch 25 Chapter Review Q & A s

Ch 25 Chapter Review Q & A s Ch 25 Chapter Review Q & A s a. a wiggle in time is called? b. a wiggle in space & time is called? a. vibration b. wave What is the period of a pendulum? The period is the time for 1 cycle (back & forth)

More information

REWARD System For Even Money Bet in Roulette By Izak Matatya

REWARD System For Even Money Bet in Roulette By Izak Matatya REWARD System For Even Money Bet in Roulette By Izak Matatya By even money betting we mean betting on Red or Black, High or Low, Even or Odd, because they pay 1 to 1. With the exception of the green zeros,

More information

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide

More information

Physics 1230: Light and Color

Physics 1230: Light and Color Physics 1230: Light and Color Instructor: Joseph Maclennan TOPIC 3 - Resonance and the Generation of Light http://www.colorado.edu/physics/phys1230 How do we generate light? How do we detect light? Concept

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

UNIT 1: mechanical waves / sound

UNIT 1: mechanical waves / sound 1. waves/intro 2. wave on a string 3. sound waves UNIT 1: mechanical waves / sound Chapter 16 in Cutnell, Johnson: Physics, 8th Edition Properties of waves, example of waves (sound. Light, seismic), Reflection,

More information

AC Line Voltage and Guitar Tone Mania

AC Line Voltage and Guitar Tone Mania AC Line Voltage and Guitar Tone Mania Hans Michel UIUC Physics 199 POM Physics of Music Fall Semester, 2004 Ever since Eddie Van Halen plugged his amplifier into one in the mid seventies, the variac has

More information

TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1

TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1 TEACHER S CLUB EXAMS GRADE 11 PHYSICAL SCIENCES: PHYSICS Paper 1 MARKS: 150 TIME: 3 hours INSTRUCTIONS AND INFORMATION 1. This question paper consists of 12 pages, two data sheets and a sheet of graph

More information

Advanced Techniques for the Walkingbass

Advanced Techniques for the Walkingbass Advanced Techniques for the Walkingbass I have seen guys with 5 string basses who can t get half the sounds that you are getting out of just three. -Buddy Fo of the Invitations If you have read the Beginners

More information

PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction. Name. Constants and Conversion Factors

PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction. Name. Constants and Conversion Factors PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction Name Constants and Conversion Factors Speed of sound in Air œ $%!7Î= "'!*7/>/

More information

Chapter 15, example problems:

Chapter 15, example problems: Chapter, example problems: (.0) Ultrasound imaging. (Frequenc > 0,000 Hz) v = 00 m/s. λ 00 m/s /.0 mm =.0 0 6 Hz. (Smaller wave length implies larger frequenc, since their product,

More information

How they invented chord patterns for the guitar. J. Chaurette. Dec., 2012

How they invented chord patterns for the guitar. J. Chaurette. Dec., 2012 How they invented chord patterns for the guitar J. Chaurette Dec., 2012 The guitar has a very long history; it has evolved over the ages to what it is now. It has achieved its final distinct form in 1770,

More information

Gas Dynamics Prof. T. M. Muruganandam Department of Aerospace Engineering Indian Institute of Technology, Madras. Module No - 12 Lecture No - 25

Gas Dynamics Prof. T. M. Muruganandam Department of Aerospace Engineering Indian Institute of Technology, Madras. Module No - 12 Lecture No - 25 (Refer Slide Time: 00:22) Gas Dynamics Prof. T. M. Muruganandam Department of Aerospace Engineering Indian Institute of Technology, Madras Module No - 12 Lecture No - 25 Prandtl-Meyer Function, Numerical

More information

Using light scattering method to find The surface tension of water

Using light scattering method to find The surface tension of water Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector

More information

The Physics of Music - Physics 15 University of California, Irvine. Instructor: David Kirkby dkirkby@uci.edu. Lecture 14.

The Physics of Music - Physics 15 University of California, Irvine. Instructor: David Kirkby dkirkby@uci.edu. Lecture 14. Miscellaneous Office hours this week are Wed 9-10am, 3-4pm. Lecture 14 Percussion Instruments Keyboard Instruments Office hours next week are Wed 2-4pm. There is a typo in 2(b) of Problem Set #6. The length

More information

Drum-Set Tuning Guide

Drum-Set Tuning Guide Drum-Set Tuning Guide Tune-Bot enables you to accurately tune your drums to a specific notes or frequencies and once you know the notes or frequencies you want, you can quickly tune and retune your drums.

More information

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.)

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.) PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.) Sound Waves Test -- each multiple choice question is worth 3 points. 1. Sound waves are

More information

Developing Finger Technique

Developing Finger Technique Lesson Twenty One Developing Lead Guitar Techniques (Hammering On and Pulling Off) Gigajam Guitar School Lesson 21 IGS HOPO Lesson Objectives. Develop a library of Lead Guitar Playing Techniques. Develop

More information

Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

More information

Physics in Entertainment and the Arts

Physics in Entertainment and the Arts Physics in Entertainment and the Arts Chapter VII Wave Transfer and Waves incident on a rigid boundary almost completely reflect Almost all the wave s energy is reflected back the way it came Waves incident

More information

Tensions of Guitar Strings

Tensions of Guitar Strings 1 ensions of Guitar Strings Darl Achilles 1/1/00 Phsics 398 EMI Introduction he object of this eperiment was to determine the tensions of various tpes of guitar strings when tuned to the proper pitch.

More information

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Module - 2 Vibration Theory Lecture - 8 Forced Vibrations, Dynamic Magnification Factor Let

More information

Exercises on Oscillations and Waves

Exercises on Oscillations and Waves Exercises on Oscillations and Waves Exercise 1.1 You find a spring in the laboratory. When you hang 100 grams at the end of the spring it stretches 10 cm. You pull the 100 gram mass 6 cm from its equilibrium

More information

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

More information

If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

More information

Simple Harmonic Motion Experiment. 1 f

Simple Harmonic Motion Experiment. 1 f Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring

More information

explain your reasoning

explain your reasoning I. A mechanical device shakes a ball-spring system vertically at its natural frequency. The ball is attached to a string, sending a harmonic wave in the positive x-direction. +x a) The ball, of mass M,

More information

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

More information

Chapter 21 Study Questions Name: Class:

Chapter 21 Study Questions Name: Class: Chapter 21 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If a fire engine is traveling toward you, the Doppler

More information

2.5 Transformations of Functions

2.5 Transformations of Functions 2.5 Transformations of Functions Section 2.5 Notes Page 1 We will first look at the major graphs you should know how to sketch: Square Root Function Absolute Value Function Identity Function Domain: [

More information

APPLICATION NOTE AP050830

APPLICATION NOTE AP050830 APPLICATION NOTE AP050830 Selection and use of Ultrasonic Ceramic Transducers Pro-Wave Electronics Corp. E-mail: sales@pro-wave.com.tw URL: http://www.prowave.com.tw The purpose of this application note

More information

Getting to know your computer

Getting to know your computer Getting to know your computer Introduction This is intended to be a very basic introduction to personal computers (PCs) which will enable you to: switch them on and off understand what is shown on the

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

Learning To Play The Guitar An Absolute Beginner s Guide By Anthony Pell

Learning To Play The Guitar An Absolute Beginner s Guide By Anthony Pell Learning To Play The Guitar An Absolute Beginner s Guide By Anthony Pell http://www.learningtoplaytheguitar.net All Rights Reserved. No part of this publication may be reproduced in any form or by any

More information

A-level PHYSICS (7408/1)

A-level PHYSICS (7408/1) SPECIMEN MATERIAL A-level PHYSICS (7408/1) Paper 1 Specimen 2014 Morning Time allowed: 2 hours Materials For this paper you must have: a pencil a ruler a calculator a data and formulae booklet. Instructions

More information

Introduction to acoustic imaging

Introduction to acoustic imaging Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3

More information

How does a microwave oven work?

How does a microwave oven work? last lecture Electromagnetic waves oscillating electric and magnetic fields c = c = 3x10 8 m/s or 186,282 miles/sec Radios using the tank circuit to emit and receive electromagnetic waves of a specific

More information

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

More information

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make

More information

Practice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C

Practice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C Practice Test 1) Increase the pressure in a container of oxygen gas while keeping the temperature constant and you increase the A) molecular speed. B) molecular kinetic energy. C) Choice A and choice B

More information

Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.

Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. HW1 Possible Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 14.P.003 An object attached to a spring has simple

More information

Physics 6C, Summer 2006 Homework 2 Solutions

Physics 6C, Summer 2006 Homework 2 Solutions Physics 6C, Summer 006 Homework Solutions All problems are from the nd edition of Walker. Numerical values are different for each student. Chapter 3 Problems. Figure 3-30 below shows a circuit containing

More information

Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.

Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore. Power Electronics Prof. K. Gopakumar Centre for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture - 1 Electric Drive Today, we will start with the topic on industrial drive

More information

f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y

f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y Fourier Series When the French mathematician Joseph Fourier (768 83) was tring to solve a problem in heat conduction, he needed to epress a function f as an infinite series of sine and cosine functions:

More information

The CAGED Guitar System

The CAGED Guitar System The CAGED Guitar System First of all, let s look at an example below on how to use the CAGED guitar system: 1 The example showed above demonstrates the general idea of how the CAGED system works in a certain

More information

GUITAR THEORY REVOLUTION. Part 1: How To Learn All The Notes On The Guitar Fretboard

GUITAR THEORY REVOLUTION. Part 1: How To Learn All The Notes On The Guitar Fretboard GUITAR THEORY REVOLUTION Part 1: How To Learn All The Notes On The Guitar Fretboard Contents Introduction Lesson 1: Numbering The Guitar Strings Lesson 2: The Notes Lesson 3: The Universal Pattern For

More information

Tuning Subwoofers - Calibrating Subwoofers

Tuning Subwoofers - Calibrating Subwoofers Tuning Subwoofers - Calibrating Subwoofers WHY The purpose of a subwoofer is to fill in the bottom octaves below the capabilities of the mains speakers. There are many reasons to use a subwoofer to do

More information

SOLUTIONS TO CONCEPTS CHAPTER 15

SOLUTIONS TO CONCEPTS CHAPTER 15 SOLUTIONS TO CONCEPTS CHAPTER 15 1. v = 40 cm/sec As velocity of a wave is constant location of maximum after 5 sec = 40 5 = 00 cm along negative x-axis. [(x / a) (t / T)]. Given y = Ae a) [A] = [M 0 L

More information

How to compute Random acceleration, velocity, and displacement values from a breakpoint table.

How to compute Random acceleration, velocity, and displacement values from a breakpoint table. How to compute Random acceleration, velocity, and displacement values from a breakpoint table. A random spectrum is defined as a set of frequency and amplitude breakpoints, like these: 0.050 Acceleration

More information

Chapter 2 How To Cheat A Barre Chord

Chapter 2 How To Cheat A Barre Chord Chapter 2 How To Cheat A Barre Chord Now that you ve learned a variety of chords in different positions, there are times that we want to eliminate some of the notes. I know, in the previous chapter I explained

More information

Basics of Digital Recording

Basics of Digital Recording Basics of Digital Recording CONVERTING SOUND INTO NUMBERS In a digital recording system, sound is stored and manipulated as a stream of discrete numbers, each number representing the air pressure at a

More information

Guitar Method Beginner: Book 1

Guitar Method Beginner: Book 1 Guitar Method Beginner: Book 1 This book has been a project in the works for over a year, and now my dream of releasing it has finally come true. I would like to thank everyone who has encouraged or helped

More information

Little LFO. Little LFO. User Manual. by Little IO Co.

Little LFO. Little LFO. User Manual. by Little IO Co. 1 Little LFO User Manual Little LFO by Little IO Co. 2 Contents Overview Oscillator Status Switch Status Light Oscillator Label Volume and Envelope Volume Envelope Attack (ATT) Decay (DEC) Sustain (SUS)

More information

Timing Errors and Jitter

Timing Errors and Jitter Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big

More information

AP PHYSICS 2012 SCORING GUIDELINES

AP PHYSICS 2012 SCORING GUIDELINES AP PHYSICS 2012 SCORING GUIDELINES General Notes About 2012 AP Physics Scoring Guidelines 1. The solutions contain the most common method of solving the free-response questions and the allocation of points

More information

Congratulations on purchasing Molten MIDI B by Molten Voltage

Congratulations on purchasing Molten MIDI B by Molten Voltage OWNER S MANUAL Congratulations on purchasing Molten MIDI B by Molten Voltage Molten MIDI B is designed to control the Digitech Bass Whammy. When configured for Whammy & Clock output, Molten MIDI B also

More information

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved.

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved. Section 5. : Horn Physics Section 5. : Horn Physics By Martin J. King, 6/29/8 Copyright 28 by Martin J. King. All Rights Reserved. Before discussing the design of a horn loaded loudspeaker system, it is

More information