Milli- Kilo- Cu Cu Inches metres Miles metres Feet Metres. Cu Cu Sq Sq Yards Metres Feet Metres Feet Metres. Pints Litres Gallons Litres Yards Metres

Size: px
Start display at page:

Download "Milli- Kilo- Cu Cu Inches metres Miles metres Feet Metres. Cu Cu Sq Sq Yards Metres Feet Metres Feet Metres. Pints Litres Gallons Litres Yards Metres"

Transcription

1 CONVERSIONS AND CALCULATIONS The figures in the central columns can be read as either the metric or the Canadian measure. Thus 1 inch = 25.4 millimetres; or 1 millimetre = inches. Milli- Kilo- Cu Cu Inches metres Miles metres Feet Metres l Cu Cu Sq Sq Yards Metres Feet Metres Feet Metres Pints Litres Gallons Litres Yards Metres Sq Sq Kilo Yards Metres Ounces Grams Pounds grams Circumference of a Circle = d Area: Volume: Rectangle = L x W Rectangle = L x W x D Triangle = 1/2 B x H Prism = 1/2 B x H x D Circle = r 2 or d 2 or.785(d 2 ) Cylinder = r 2 x D or d 2 x D or 4 4 Sphere = d 2 or 4 r 2 or 4x.785(d 2 ) Cylinder = (0.785) (d 2 ) (h) Cone = r 2 x h 3 Sphere = (d) 3 or 2/3 (0.785) (d 3 ) 6 1 U.S. Gallon = 8.33 lb 1 U.S. Gallon = 3.785L 7.48 U.S. gallon/ft 3 1 U.S. Gallon =.833 ig 1 L = U.S. Gallon 1 ig = 1.2 U.S. Gallon Velocity = flow rate divided by cross sectional area Detention time = volume/flow 1 ig = 10 lb 1 m 3 = 1000 kg 1 psi pressure = 2.31 ft head (water) 1 ft (water) = psi ft water/in. of mercury 1 metre head = 9.8 kpa 1 ft 3 = 6.24 ig 1440 min/day 5280 ft/mile 1760 yd/mile 43,560 sq. ft/acre 10,000 sqm/hectare

2 Horsepower Power (kw)= Flow (L/sec) x Head (m) x 9.8 l hp = kw 1000 = 33,000 ft lb/min Water hp = lb of H 2 O raised per min. x head in ft 33,000 Brake hp = Whp divided by efficiency l Bhp = 746 watts Density (Water) 8.34 lb/u.s. gallon 10 lb/ig 62.4 lb/ft 3 MISC CONVERSIONS temperature: C = 5/9 ( F - 32 F) F = 9/5 ( C) + 32 F mass: 1 grain = gram mass: 1 gram = grains 1 grain/u.s gallon = 17.1 mg/l 1 grain/imperial gallon = mg/l L = 1 kg at + 4 degrees Celsius power: 1 Newton metre (N. m) = ft lb Volume: 1m 3 = ig pressure: 1 kilopascal (Kpa) = psi area: 1 hectare (ha) = 2.47 acres force: 45 Newtons = 1 lb force energy: 1 kilojoule (kj) = BTU flow: 1 igpd x = m 3 /day electricity: Watts = I (amps) x V (volts) V (volts) = I (current) x R (ohms resistance) Backwash rate normally 24 in rise per minute requires 12.5 IGPM/sq. ft or 15 U.S.GPM/sq ft Water Softening Equations Carbonate hardness 1. Ca(HCO 3 ) 2 + Ca(OH) 2 = 2CaCO 3 + 2H 2 O (Lime) 2. Mg(HCO ) + Ca(OH) 2 = CaCO 3 + Mg CO 3 + 2H 2 O 3 2 (Lime) Non Carbonate hardness 3. CaSO 4 + Na 2 CO 3 = CaCO 3 + Na 2 SO 4 (soda ash) 4. MgSO + Ca(OH) 2 + Na 2 CO 3 = CaCO 3 + Mg(OH) 2 + Na 2 SO 4 4 (Lime) CO 2 reaction 5. CO 2 + Ca(OH) 2 = CaCO 3 + H 2 O WATER TREATMENT CALCULATIONS

3 Wastewater Calculations Loading = Flow (m 3 /day) x conc. (mg/l) = kg/day 1000 BOD 5 = DO 1 - DO 2 x 300 ml ml of sample Sludge Volume index = ml settled sludge x 1000 mg/l MLSS Wastewater Treatment Calculations F:M ratio = kg/day BOD: kg/day MLVSS in aeration tank Sludge Age Aeration tank plus Clarifier (days) = MCRT (mean cell residence time) Sludge Age = Suspended Solids in Aerator, lbs Suspended Solids in Primary Effluent, lb/day MLSS mg/l x Aerator Vol,. M.G. x 8.34 lb/u.s. gal Prim.Eff. SS,. mg/l x Flow MGD x 8.34 lb/u.s. gal or MLSS mg/l x Aerator Vol, m 3 Prim.Eff, SS, mg/l x Flow m 3 /day = Days Sludge Age MCRT = (Va)(x)+(Vc)(x) (Qw)(Xu)+(Qe)(xe) Va = Volume of aeration tanks (gal) x = average solids conc. in aeration tanks (mg/l) Vc = volume of final settling tank (gal) Qw = flow rate per day of sludge wasted (gpd) x u = average activated sludge conc. in final settling tank (mg/l) Qe = final effluent flow rate (gpd) xe = final effluent average solids conc.(mg/l) SS Wasting Rate (lb/day): = solids conc. of aeration (lb) - Solids conc. in effluent (lb/day) MCRT (days) SS Wasting Rate (gal/day): = SS wasted (lb.day) x 1,000,000 mg/l RAS SS (mg/l) x 10 lb/gal Activated Sludge SOLVING WASTEWATER TREATMENT PLANT PROBLEMS 1. MLSS, lbs = (Aer Vol, MG)(MLSS, mg/l)(8.34 lbs/u.s. gal) 2a. Settleable Solids % = (Settleable Solids, ml)(100%) 2b. Return Sludge Rate, MGD = (Total Flow, MGD)(Settling volume ml/l, x 100%) 1000 ml/l (settling volume, ml/l) 3a. Solids in Aerator, lbs = (Aerator Vol, MG)(MLSS, mg/l)(8.34 lbs/u.s. gal) 3b. Solids Added, lbs/day = (Flow, MGD)(PE SS, mg/l)(8.34 lbs/u.s. gal) 3c. Sludge Age, days = Suspended Solids in Aerators, lbs Solids added by PE, lbs/day 4a. Desired MLSS, lbs = (Sludge Age, days)(solids Added, lbs/day)

4 4b. Desired MLSS, mg/l = Desired MLSS, lbs (Aerator Vol, MG)(8.34 lb/u.s. gal) 5a. Change in WAS Pumping, MGD = (Actual MLSS, lbs - Desired MLSS, lbs)/day (Waste Sludge Conc, mg/l)(8.34 lbs/u.s. gal) 5b New WAS Pumping GPM = Current WAS + Change in WAS Pumping, GPM Pumping, GPM 6a. Aerator Loading, lbs COD/day = (Flow, MGD) (PE COD, mg/l) (8.34 lbs/u.s. gal) 6b. MLVSS, lbs = Aerator Loading, lbs COD/day Loading Factor, lbs COD/day/lb MLVSS 6c. MLVSS, mg/l = MLVSS, lbs (Aerator Vol, MG)(8.34 lbs/u.s. gal) 6d. Food/Microorganisms = Aerator Loading, lbs COD/day (Aerator Vol, MG) (MLVSS, mg/l) (8.34 lbs/u.s. gal) 7. MCRT, days = Suspended Solids in Aeration System, lbs SS Wasted, lbs/day, + SS Lost, lbs/day 8a. WAS, lbs/day = SS in Aeration System, lbs - SS Lost, lbs/day MCRT, days 8b. WAS Pumping, MGD = WAS, lbs/day (WAS SS, mg/l)(8.34 lbs/u.s. gal) SLUDGE DIGESTION 9. Seed Sludge, gal = Digester Volume, gal) (Seed Sludge, %) 100% 10a.Volatile Solids Pumped lbs/day = (Raw Sludge, GPD) (Raw SI Sol, %) (Volatile, %) (8.34 UG gal) (100%) (100%) 10b. Seed Sludge, lbs Volatile Solids = Volatile Solids Pumped, lbs VS/day Loading Factor, lbs VS/day/lb VS in Digester 10c. Seed Sludge, gallons = Volatile Solids Pumped, lbs VS/day (Seed Sludge, lbs/gal)(solids, %)( VS, %) 100% 100% 11. Lime Req'd lbs = (Sludge volume MG)(Volatile Acids, mg/l)(8.34 lbs/u.s. gal) 12. Piston Pump Vol., gal/stroke = (0.785)(Diameter, ft) 2 (Distance, ft/stroke)(7.5 U.S. gal/cu ft) 13a. Dry Solids, lbs = (Raw Sludge, gal) (Raw Sludge %) (8.34 lbs/u.s. gal) 100% 13b. Volatile Solids, lbs = (Dry Solids, lbs) (Raw Sludge, % VS) 100% 14. Reduction of Volatile Solids, % = (In - Out)(100%) In - (In x Out) 15. Digester Loading, lbs VS/day/cu ft = Volatile Solids Added, lbs/day

5 Digester Volume, cu ft 16. Digested Sludge in Storage, lbs = (VS Added, lbs/day) x (Loading, lbs Dig. SI) lbs VS/day 17. VS Destroyed, lbs/day/cu ft = (VS Added, lbs/day) (VS Reduction, %) (Digester Volume, cu ft) (100%) 18. Gas Production, cu ft/lb VS = Gas Produced, cu ft/day VS Destroyed, lbs/day 19. Solids Balance Water Change, lbs = EFFLUENT DISPOSAL (Water In, lbs) - (Water Out, lbs) - ( Supernatant Out, lbs) 20. BOD Load, lbs BOD/day = (Flow, MGD)(BOD, mg/l)(8.34 lbs/u.s. gal) 21. Average BOD, mg/l = Sum of Measurements, mg/l Number of Measurements MAINTENANCE 22. Pump Capacity, GPM = Volume Pumped Pumping Time, minutes 23a. Velocity, ft/sec = Distance, ft Time, sec. 23b. Flow, cu ft/sec = (Area, sq ft)(velocity, ft/sec) LABORATORY 24. Temperature, o F = (Temperature, o C)(1.8) + 32 o 25. Sludge pumped, GPD = (Sludge Removed, ml/l)(1000 mg/ml)(flow, MGD) 26a. Total Susp. Sol, mg/l = (Dry Weight, mg)(1000 ml/l) 26b. Volatile Susp. Sol, mg/l = (Volatile Weight, mg)(1000 mg/l) 26c. Volatile SS, % = (Volatile SS, mg/l)(100%) Total SS, mg/l 26d. Fixed Susp Solids, mg/l = (Ash Weight, mg)(1000 ml/l) 26e. Fixed SS, % = (Fixed SS, mg/l)(100%) Total SS, mg/l 27. Removal, % = (In - Out)(100%) In 28. Suspended Solids Removed, lbs/day = 29. SVI = (Set Sol, %)(10,000) (Flow MGD)(SS Removed, mg/l)(8.34 lbs/u.s. gal)

6 MLSS, mg/l 30. CO 2,% = (Total Volume, ml - Gas Remaining, ml)(100%) Total Volume ml 31. DO Saturation, % = (DO of Sample, mg/l)(100%) DO at Saturation, mg/l 32. BOD Sample Size, ml = 1200 Estimated BOD, mg/l 33. BOD5, mg/l = [Initial DO of Diluted Sample, mg/l - DO of Sample After 5 days, mg/l] [BOD Bottle Vol, ml Sample Vol, ml DATA ANALYSIS 34a. Mean = Sum of All Measurements Number of Measurements 34b. Median = Middle measurement 34c. Mode = Measurement that occurs most frequently 34d. Range = Largest Measurement - Smallest Measurement

( ) ABC Formula/Conversion Table for Wastewater Treatment, Industrial, Collection and Laboratory Exams. Alkalinity, as mg CaCO 3 /L =

( ) ABC Formula/Conversion Table for Wastewater Treatment, Industrial, Collection and Laboratory Exams. Alkalinity, as mg CaCO 3 /L = ABC Formula/Conversion Table for Wastewater Treatment, Industrial, Collection and Laboratory Exams Alkalinity, as mg CaCO 3 /L = (Titrant Volume, ml) (Acid Normality)(50,000) Volts Amps = Ohms Area of

More information

BASIC MATH FORMULAS - CLASS I. A. Rectangle [clarifiers, ponds] I = length; w = width; A = area; area in square ft [sq ft]

BASIC MATH FORMULAS - CLASS I. A. Rectangle [clarifiers, ponds] I = length; w = width; A = area; area in square ft [sq ft] WASTEWATER MATH CONVERSION FACTORS 1. 1 acre =43,560 sq ft 2. 1 acre =2.47 hectares 3. 1 cu ft [of water] = 7.48 gallons 4. 1 cu ft [of water] = 62.4 Ibs/ft 3 5. Diameter =radius plus radius, D =r + r

More information

ABC & C 2 EP Formula/Conversion Table for Wastewater Treatment, Industrial, Collection, & Laboratory Exams

ABC & C 2 EP Formula/Conversion Table for Wastewater Treatment, Industrial, Collection, & Laboratory Exams ABC & C EP Formula/Conversion Table for Wastewater Treatment, Industrial, Collection, & Laboratory Exams Alkalinity, as mg CaCO /L (Titrant, ml) (Acid Normality)(50,000) Sample, ml Volts Amps Ohms * of

More information

ABC & C 2 EP Formula/Conversion Table for Water Treatment, Distribution, & Laboratory Exams

ABC & C 2 EP Formula/Conversion Table for Water Treatment, Distribution, & Laboratory Exams ABC & C EP Formula/Conversion Table for Water Treatment, Distribution, & Laboratory Exams Alkalinity, as mg CaCO 3 /L = (Titrant, ml) (Acid Normality)(50,000) Sample, ml Volts Amps = Ohms * of Circle =

More information

Practice Tests Answer Keys

Practice Tests Answer Keys Practice Tests Answer Keys COURSE OUTLINE: Module # Name Practice Test included Module 1: Basic Math Refresher Module 2: Fractions, Decimals and Percents Module 3: Measurement Conversions Module 4: Linear,

More information

Illinois Environmental Protection Agency Division of Water Pollution Control Class K Study Guide Industrial Wastewater Operator Certification

Illinois Environmental Protection Agency Division of Water Pollution Control Class K Study Guide Industrial Wastewater Operator Certification Illinois Environmental Protection Agency Division of Water Pollution Control Class K Study Guide Industrial Wastewater Operator Certification Revised March 2003 The purpose of this study guide is to help

More information

Math. The top number (numerator) represents how many parts you have and the bottom number (denominator) represents the number in the whole.

Math. The top number (numerator) represents how many parts you have and the bottom number (denominator) represents the number in the whole. Math This chapter is intended to be an aid to the operator in solving everyday operating problems in the operation of a water system. It deals with basic math that would be required for an operator to

More information

Formula/Conversion Table for Water Treatment and Water Distribution

Formula/Conversion Table for Water Treatment and Water Distribution Formula/Conversion Table for Water Treatment and Water Distribution Measurement Conversion Measurement Conversion Measurement Conversion Measurement Conversion 1 ft. = 12 in. 1 MGD = 1.55 cfs 1 grain /

More information

Example Calculations Evaluation for Fine Bubble Aeration System. Red Valve Company, Inc. 700 NORTH BELL AVENUE CARNEGIE, PA 15106-0548

Example Calculations Evaluation for Fine Bubble Aeration System. Red Valve Company, Inc. 700 NORTH BELL AVENUE CARNEGIE, PA 15106-0548 Revision Date 6/10/02 9:52 Red Valve Company, Inc. 700 NORTH BELL AVENUE CARNEGIE, PA 15106-0548 PHONE (412) 279-0044 FAX (412) 279-5410 Red Valve Representative Sample Air Diffuser Calcs.xls Input Data

More information

SECTION 3 - SUMMARY OF KEY WATER PLANT OPERATOR MATH FORMULAS

SECTION 3 - SUMMARY OF KEY WATER PLANT OPERATOR MATH FORMULAS MATH FORMULAS Most mathematics problems found on Grade I - IV level examinations are process control problems that are responsive to a host of math formulas that have been developed over a period of time

More information

Module 16: The Activated Sludge Process - Part II Instructor Guide Answer Key

Module 16: The Activated Sludge Process - Part II Instructor Guide Answer Key Unit 1 Process Control Strategies Exercise Module 16: The Activated Sludge Process - Part II Instructor Guide Answer Key 1. What are the six key monitoring points within the activated sludge process? Ans:

More information

MATHEMATICS FOR WATER OPERATORS

MATHEMATICS FOR WATER OPERATORS MATHEMATICS FOR WATER OPERATORS Chapter 16: Mathematics The understanding of the mathematics of water hydraulics (flows, pressures, volumes, horsepower, velocities) and water treatment (detention time,

More information

Best Practice Guide NO. BPGCS002. Wastewater Treatment Activated Sludge Process

Best Practice Guide NO. BPGCS002. Wastewater Treatment Activated Sludge Process Best Practice Guide NO. BPGCS002 Wastewater Treatment Activated Sludge Process The following is intended to provide a first check for those involved in the operation, management and monitoring of the activated

More information

INTERIM UNITS OF MEASURE As suggested by Federal Standard 376B January 27, 1993. hectare (ha) Hundred for traffic buttons.

INTERIM UNITS OF MEASURE As suggested by Federal Standard 376B January 27, 1993. hectare (ha) Hundred for traffic buttons. SI - The Metrics International System of Units The International System of Units (SI) is a modernized version of the metric system established by international agreement. The metric system of measurement

More information

Pump Formulas Imperial and SI Units

Pump Formulas Imperial and SI Units Pump Formulas Imperial and Pressure to Head H = head, ft P = pressure, psi H = head, m P = pressure, bar Mass Flow to Volumetric Flow ṁ = mass flow, lbm/h ρ = fluid density, lbm/ft 3 ṁ = mass flow, kg/h

More information

Preferred SI (Metric) Units

Preferred SI (Metric) Units Quantity Unit Symbol LENGTH meter m Preferred SI (Metric) Units Metric-U.S. Customary Unit Equivalents 1 m = 1000 mm = 39.37 in. = millimeter mm 25.4 mm = 1 inch micrometer μm 1 μm = 10-6 m Remarks 3.281

More information

METRIC CONVERSION TABLE Multiply By To Obtain Millimetres 0.03937 Inches Millimetres 0.003281 Feet Metres 3.281 Feet Kilometres 0.

METRIC CONVERSION TABLE Multiply By To Obtain Millimetres 0.03937 Inches Millimetres 0.003281 Feet Metres 3.281 Feet Kilometres 0. Linear Measure Square Measure or Area Volume or Capacity Mass Density Force* Pressure* or Stress* Temperature METRIC CONVERSION TABLE Multiply By To Obtain Millimetres 0.03937 Inches Millimetres 0.003281

More information

Conversions between the common units of length used in the Imperial system are listed below 12 in = 1 ft 3 ft = 1 yard 1760 yards = 1 mile

Conversions between the common units of length used in the Imperial system are listed below 12 in = 1 ft 3 ft = 1 yard 1760 yards = 1 mile THE METRIC SYSTEM The metric system or SI (International System) is the most common system of measurements in the world, and the easiest to use. The base units for the metric system are the units of: length,

More information

Wastewater Collection Practice Test #3 Page 1 of 26

Wastewater Collection Practice Test #3 Page 1 of 26 Wastewater Collection Practice Test #3 Page 1 of 26 1) A 54 in. storm sewer flowing half full, at a velocity of 1.35 Ft./sec., will discharge how much flow into a creek in MGD? a) 13.85 MGD b) 10.73 MGD

More information

Using Magnesium Hydroxide

Using Magnesium Hydroxide Industrial Wastewater Neutralization Using Magnesium Hydroxide May 15, 2012 Steve Leykauf, Presenter Discussion Topics What is Magnesium Hydroxide? Technical Benefits of Magnesium Hydroxide Economic Benefits

More information

Appendix C: Conversions and Calculations

Appendix C: Conversions and Calculations Appendix C: Conversions and Calculations Effective application of pesticides depends on many factors. One of the more important is to correctly calculate the amount of material needed. Unless you have

More information

MEASUREMENTS. U.S. CUSTOMARY SYSTEM OF MEASUREMENT LENGTH The standard U.S. Customary System units of length are inch, foot, yard, and mile.

MEASUREMENTS. U.S. CUSTOMARY SYSTEM OF MEASUREMENT LENGTH The standard U.S. Customary System units of length are inch, foot, yard, and mile. MEASUREMENTS A measurement includes a number and a unit. 3 feet 7 minutes 12 gallons Standard units of measurement have been established to simplify trade and commerce. TIME Equivalences between units

More information

Multiply circumference by 0.3183. Or divide circumference by 3.1416. Multiply diameter by 3.1416. Or divide diameter by 0.3183.

Multiply circumference by 0.3183. Or divide circumference by 3.1416. Multiply diameter by 3.1416. Or divide diameter by 0.3183. RULES RELATIVE TO THE CIRCLE TO FIND DIAMETER TO FIND CIRCUMFERENCE TO FIND RADIUS TO FIND SIDE OF AN INSCRIBED SQUARE TO FIND SIDE OF AN EQUAL SQUARE Multiply circumference by 0.383. Or divide circumference

More information

1. Metric system- developed in Europe (France) in 1700's, offered as an alternative to the British or English system of measurement.

1. Metric system- developed in Europe (France) in 1700's, offered as an alternative to the British or English system of measurement. GS104 Basics Review of Math I. MATHEMATICS REVIEW A. Decimal Fractions, basics and definitions 1. Decimal Fractions - a fraction whose deonominator is 10 or some multiple of 10 such as 100, 1000, 10000,

More information

Imperial and metric quiz

Imperial and metric quiz Level A 1. Inches are a metric measure of length. 2. Pints are smaller than gallons. 3. 1 foot is the same as: A) 12 inches B) 14 inches C) 16 inches D) 3 yards 4. foot is usually shortened to: A) 1 f

More information

1.85 WATER AND WASTEWATER TREATMENT ENGINEERING FINAL EXAM DECEMBER 20, 2005

1.85 WATER AND WASTEWATER TREATMENT ENGINEERING FINAL EXAM DECEMBER 20, 2005 1.85 WATER AND WASTEWATER TREATMENT ENGINEERING FINAL EXAM DECEMBER 20, 2005 This is an open-book exam. You are free to use your textbook, lecture notes, homework, and other sources other than the internet.

More information

UNIT 1 MASS AND LENGTH

UNIT 1 MASS AND LENGTH UNIT 1 MASS AND LENGTH Typical Units Typical units for measuring length and mass are listed below. Length Typical units for length in the Imperial system and SI are: Imperial SI inches ( ) centimetres

More information

Module 9: Basics of Pumps and Hydraulics Instructor Guide

Module 9: Basics of Pumps and Hydraulics Instructor Guide Module 9: Basics of Pumps and Hydraulics Instructor Guide Activities for Unit 1 Basic Hydraulics Activity 1.1: Convert 45 psi to feet of head. 45 psis x 1 ft. = 103.8 ft 0.433 psi Activity 1.2: Determine

More information

Sorting Cards: Common Measures

Sorting Cards: Common Measures Sorting Cards: Common Measures The mass, capacity, length and time cards (pages 2-3) were originally used as a starter activity in a pre-gcse maths class (Level 1 and Level 2 numeracy), after we had done

More information

Wastewater Collection Practice Test #3 Page 1 of 15

Wastewater Collection Practice Test #3 Page 1 of 15 Wastewater Collection Practice Test #3 Page 1 of 15 1) A 54 in. storm sewer flowing half full, at a velocity of 1.35 Ft./sec., will discharge how much flow into a creek in MGD? 13.85 MGD 10.73 MGD 1.85

More information

SECONDARY TREATMENT ACTIVATED SLUDGE

SECONDARY TREATMENT ACTIVATED SLUDGE SECONDARY TREATMENT ACTIVATED SLUDGE Activated sludge is another biological process used to remove organics from wastewater. Like the trickling filter, activated sludge processes are used to grow a biomass

More information

Handout Unit Conversions (Dimensional Analysis)

Handout Unit Conversions (Dimensional Analysis) Handout Unit Conversions (Dimensional Analysis) The Metric System had its beginnings back in 670 by a mathematician called Gabriel Mouton. The modern version, (since 960) is correctly called "International

More information

ADVANCED MATH HANDBOOK. For Class III & IV Water Operators

ADVANCED MATH HANDBOOK. For Class III & IV Water Operators ADVANCED MATH HANDBOOK For Class III & IV Water Operators 2009 ADVANCED MATH HANDBOOK Overview This handbook is designed for operators taking the Class III or Class IV water operator certification exam.

More information

WEIGHTS AND MEASURES. Linear Measure. 1 Foot12 inches. 1 Yard 3 feet - 36 inches. 1 Rod 5 1/2 yards - 16 1/2 feet

WEIGHTS AND MEASURES. Linear Measure. 1 Foot12 inches. 1 Yard 3 feet - 36 inches. 1 Rod 5 1/2 yards - 16 1/2 feet WEIGHTS AND MEASURES Linear Measure 1 Foot12 inches 1 Yard 3 feet - 36 inches 1 Rod 5 1/2 yards - 16 1/2 feet 1 Furlong 40 rods - 220 yards - 660 feet 1 Mile 8 furlongs - 320 rods - 1,760 yards 5,280 feet

More information

Illinois Environmental Protection Agency Bureau of Water Class 4 Study Guide Wastewater Operator Certification

Illinois Environmental Protection Agency Bureau of Water Class 4 Study Guide Wastewater Operator Certification Revised March 2003 Illinois Environmental Protection Agency Bureau of Water Class 4 Study Guide Wastewater Operator Certification The purpose of this study guide is to explain the testing process and to

More information

Exercise Worksheets. Copyright. 2002 Susan D. Phillips

Exercise Worksheets. Copyright. 2002 Susan D. Phillips Exercise Worksheets Copyright 00 Susan D. Phillips Contents WHOLE NUMBERS. Adding. Subtracting. Multiplying. Dividing. Order of Operations FRACTIONS. Mixed Numbers. Prime Factorization. Least Common Multiple.

More information

Hardness - Multivalent metal ions which will form precipitates with soaps. e.g. Ca 2+ + (soap) Ca(soap) 2 (s)

Hardness - Multivalent metal ions which will form precipitates with soaps. e.g. Ca 2+ + (soap) Ca(soap) 2 (s) Water Softening (Precipitation Softening) (3 rd DC 178; 4 th DC 235) 1. Introduction Hardness - Multivalent metal ions which will form precipitates with soaps. e.g. Ca 2+ + (soap) Ca(soap) 2 (s) Complexation

More information

Computer Assisted Procedure for the Design and Evaluation of Wastewater Treatment Systems

Computer Assisted Procedure for the Design and Evaluation of Wastewater Treatment Systems Anexos Sistema Lagunar. Computer Assisted Procedure for the Design and Evaluation of Wastewater Treatment Systems CCCCC AAAAA PPPPPP DDDDD EEEEEE TTTTTTTT PPPPPP CCCCC CC CC AA AA PP PP DD DD EE TT PP

More information

Conversion Formulas and Tables

Conversion Formulas and Tables Conversion Formulas and Tables Metric to English, Introduction Most of the world, with the exception of the USA, uses the metric system of measurements exclusively. In the USA there are many people that

More information

Ion Exchange Softening

Ion Exchange Softening Ion Exchange Softening Ion-exchange is used extensively in small water systems and individual homes. Ion-exchange resin, (zeolite) exchanges one ion from the water being treated for another ion that is

More information

MEASUREMENT. Historical records indicate that the first units of length were based on people s hands, feet and arms. The measurements were:

MEASUREMENT. Historical records indicate that the first units of length were based on people s hands, feet and arms. The measurements were: MEASUREMENT Introduction: People created systems of measurement to address practical problems such as finding the distance between two places, finding the length, width or height of a building, finding

More information

HVAC FORMULAS. TON OF REFRIGERATION - The amount of heat required to melt a ton (2000 lbs.) of ice at 32 F. 288,000 BTU/24 hr. 12,000 BTU/hr.

HVAC FORMULAS. TON OF REFRIGERATION - The amount of heat required to melt a ton (2000 lbs.) of ice at 32 F. 288,000 BTU/24 hr. 12,000 BTU/hr. HVAC FORMULAS TON OF REFRIGERATION - The amount of heat required to melt a ton (2000 lbs.) of ice at 32 F 288,000 BTU/24 hr. 12,000 BTU/hr. APPROXIMATELY 2 inches in Hg. (mercury) = 1 psi WORK = Force

More information

CONVERSION INFORMATION

CONVERSION INFORMATION CONVERSION INFORMATION Compiled by Campbell M Gold (2008) CMG Archives http://campbellmgold.com IMPORTANT The health information contained herein is not meant as a substitute for advice from your physician,

More information

Metric Mania Conversion Practice. Basic Unit. Overhead Copy. Kilo - 1000 units. Hecto - 100 units. Deka - 10 units. Deci - 0.

Metric Mania Conversion Practice. Basic Unit. Overhead Copy. Kilo - 1000 units. Hecto - 100 units. Deka - 10 units. Deci - 0. Metric Mania Conversion Practice Overhead Copy Kilo - 1000 Hecto - 100 Deka - 10 To convert to a larger unit, move decimal point to the left or divide. Basic Unit Deci - 0.1 To convert to a smaller unit,

More information

Revision Notes Adult Numeracy Level 2

Revision Notes Adult Numeracy Level 2 Revision Notes Adult Numeracy Level 2 Place Value The use of place value from earlier levels applies but is extended to all sizes of numbers. The values of columns are: Millions Hundred thousands Ten thousands

More information

APPENDIX I SI AND ENGLISH UNITS AND CONVERSION FACTORS

APPENDIX I SI AND ENGLISH UNITS AND CONVERSION FACTORS APPENDIX I SI AND ENGLISH UNITS AND CONVERSION FACTORS The International System of Units (Systéme International d Unités, or SI) recognizes seven basic units from which all others are derived. They are:

More information

Equivalents & Conversion Factors 406 Capacity Formulas for Steam Loads 407 Formulas for Control Valve Sizing 408-409

Equivalents & Conversion Factors 406 Capacity Formulas for Steam Loads 407 Formulas for Control Valve Sizing 408-409 Engineering Data Table of Contents Page No. I II Formulas, Conversions & Guidelines Equivalents & Conversion Factors 406 Capacity Formulas for Steam Loads 407 Formulas for Control Sizing 408-409 Steam

More information

Perimeter, Area, and Volume

Perimeter, Area, and Volume Perimeter, Area, and Volume Perimeter of Common Geometric Figures The perimeter of a geometric figure is defined as the distance around the outside of the figure. Perimeter is calculated by adding all

More information

Experts Review of Aerobic Treatment Unit Operation and Maintenance. Bruce Lesikar Texas AgriLife Extension Service

Experts Review of Aerobic Treatment Unit Operation and Maintenance. Bruce Lesikar Texas AgriLife Extension Service Experts Review of Aerobic Treatment Unit Operation and Maintenance Bruce Lesikar Texas AgriLife Extension Service Overview Overview of Aerobic Treatment Units Installing for accessibility to system components

More information

Conversion from customary to metric units (in alphabetical order).

Conversion from customary to metric units (in alphabetical order). 316 Conversion Factors Conversion from customary to metric units (in alphabetical order). acre ac 4.047 10 3 m 2 0.404 7 ha (hectare) acre-foot ac-ft 1233 m 3 atmosphere atm 101.3 kpa (kilopascal) bar

More information

Water Softening for Hardness Removal. Hardness in Water. Methods of Removing Hardness 5/1/15. WTRG18 Water Softening and Hardness

Water Softening for Hardness Removal. Hardness in Water. Methods of Removing Hardness 5/1/15. WTRG18 Water Softening and Hardness Water Softening for Removal 1 in Water High concentration of calcium (Ca2+) and magnesium (Mg2+) ions in water cause hardness Generally, water containing more than 100 mg/l of hardness expressed as calcium

More information

Appendix B: Water Treatment Scenarios from AMD Treat

Appendix B: Water Treatment Scenarios from AMD Treat Appendix B: Water Treatment Scenarios from AMD Treat 103 of 104 Jeddo Tunnel Abandoned Mine Drainage Passive vs. Active Treatment Cost Estimates Provided by Office of Surface Mining AMD Treat Software

More information

FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication

FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST Mathematics Reference Sheets Copyright Statement for this Assessment and Evaluation Services Publication Authorization for reproduction of this document is hereby

More information

Metric Prefixes. 10 12 Tera- T 10 2 centi- c 10 9 Giga- G 10 3 milli- m 10 6 Mega- M 10 6 micro- µ 10 3 kilo- k 10 9 nano- n

Metric Prefixes. 10 12 Tera- T 10 2 centi- c 10 9 Giga- G 10 3 milli- m 10 6 Mega- M 10 6 micro- µ 10 3 kilo- k 10 9 nano- n Metric Prefixes Meaning Name Abbreviation Meaning Name Abbreviation 10 12 Tera- T 10 2 centi- c 10 9 Giga- G 10 3 milli- m 10 6 Mega- M 10 6 micro- µ 10 3 kilo- k 10 9 nano- n These are the most commonly

More information

LAB 5 - PLANT NUTRITION. Chemical Ionic forms Approximate dry Element symbol Atomic weight Absorbed by plants tissue concentration

LAB 5 - PLANT NUTRITION. Chemical Ionic forms Approximate dry Element symbol Atomic weight Absorbed by plants tissue concentration LAB 5 PLANT NUTRITION I. General Introduction All living organisms require certain elements for their survival. Plants are known to require carbon (C), hydrogen (H), oxygen (O), nitrogen (N), phosphorus

More information

q = 6.74x1 =6.74 10-1 mg/l x 3.78x10 L/d = 3.4x10 mg / day a) Single CMFR mg/g C Organic Load = Carbon requirement = 6.74 mg 1000 g C inf = 10 mg/l

q = 6.74x1 =6.74 10-1 mg/l x 3.78x10 L/d = 3.4x10 mg / day a) Single CMFR mg/g C Organic Load = Carbon requirement = 6.74 mg 1000 g C inf = 10 mg/l Example An industrial wastewater contains 10 mg/l chlorophenol, and is going to be treated by carbon adsorption. 90% removal is desired. The wastewater is discharged at a rate of 0.1 MGD. Calculate the

More information

Quarter One: August-October

Quarter One: August-October Quarter One: August-October (Chapters 1 3, 5-6, 10) August - December Quarterly Addition facts with sums through 20 General Math Content 1. Write sums through 20. 1. Choose and enter the appropriate answer.

More information

PROPERTIES OF TYPICAL COMMERCIAL LIME PRODUCTS. Quicklimes High Calcium Dolomitic

PROPERTIES OF TYPICAL COMMERCIAL LIME PRODUCTS. Quicklimes High Calcium Dolomitic National Lime Association L I M E The Versatile Chemical Fact Sheet PROPERTIES OF TYPICAL COMMERCIAL LIME PRODUCTS Quicklimes High Calcium Dolomitic Primary Constituents CaO CaO MgO Specific Gravity 3.2-3.4

More information

Fluid Power Formula. These Formula Cover All Fluid Power Applications In This Manual

Fluid Power Formula. These Formula Cover All Fluid Power Applications In This Manual These Formula Cover All Fluid Power Applications In This Manual For Computer Programs To Work Problems By Simply Filling In The Blanks See Your Local Fluid Power Distributor Many Companies Web Site Or

More information

Appendix 2 Metric Conversion Table

Appendix 2 Metric Conversion Table atmospheres bars 1.01325* atmospheres inches of mercury 29.921256 atmospheres inches of water 406.80172 atmospheres kilograms per square centimeter 1.0332275 atmospheres kilopascals 101.325* atmospheres

More information

CWD BALDWIN PLANT NEW RESIDUALS HANDLING SYSTEM

CWD BALDWIN PLANT NEW RESIDUALS HANDLING SYSTEM CWD BALDWIN PLANT NEW RESIDUALS HANDLING SYSTEM OTCO Water Workshop March, 2011 Frank Woyma Plant Manager Nick Pizzi Vice-President EE&T ENVIRONMENTAL ENGINEERING & TECHNOLOGY, INC. Objectives Review the

More information

IV. POWER. P = W t. = E t. where W is the work done, t is the time required to do the work, and E is the energy used. 1 horsepower = 1 hp = 550

IV. POWER. P = W t. = E t. where W is the work done, t is the time required to do the work, and E is the energy used. 1 horsepower = 1 hp = 550 IV. POWER A. INTRODUCTION Power is the rate at which work is done. Work involves a force or force-like quantity acting on object and causing its displacement in the direction of the force. The time required

More information

Chapter 19. Mensuration of Sphere

Chapter 19. Mensuration of Sphere 8 Chapter 19 19.1 Sphere: A sphere is a solid bounded by a closed surface every point of which is equidistant from a fixed point called the centre. Most familiar examples of a sphere are baseball, tennis

More information

Appendix 3 Water-Harvesting Calculations

Appendix 3 Water-Harvesting Calculations Appendix 3 Water-Harvesting Calculations List of Equations and Other Information Box A3.1. Abbreviations, Conversions, and Constants for English and Metric Measurement Units Equation 1. Catchment Area

More information

Bio-P Removal- Principles and examples in MI and elsewhere S. Joh Kang, Ph.D., P.E. Tetra Tech, Inc. Ann Arbor, MI 2010 Presentation Outline Optimization of Chemicals and Energy Bio-P Removal - Review

More information

Mass Balance and Water Treatment Contraction

Mass Balance and Water Treatment Contraction DOCUMENT RESUME ED 221 394 SE 039 206 AUTHOR Carnegie, John W. TITLE Mass Balance. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook. INSTITUTION

More information

Feasibility study of crystallization process for water softening in a pellet reactor

Feasibility study of crystallization process for water softening in a pellet reactor International A. H. Mahvi, Journal et al. of Environmental Science & Technology Feasibility study of crystallization... Vol. 1, No. 4, pp. 1-4, Winter 5 Feasibility study of crystallization process for

More information

Module 17: The Activated Sludge Process Part III

Module 17: The Activated Sludge Process Part III Wastewater Treatment Plant Operator Certification Training Module 17: The Activated Sludge Process Part III Revised October 2014 This course includes content developed by the Pennsylvania Department of

More information

MODELING WASTEWATER AERATION SYSTEMS TO DISCOVER ENERGY SAVINGS OPPORTUNITIES By Steven A. Bolles Process Energy Services, LLC

MODELING WASTEWATER AERATION SYSTEMS TO DISCOVER ENERGY SAVINGS OPPORTUNITIES By Steven A. Bolles Process Energy Services, LLC Introduction MODELING WASTEWATER AERATION SYSTEMS TO DISCOVER ENERGY SAVINGS OPPORTUNITIES By Steven A. Bolles Process Energy Services, LLC Aeration systems for conventional wastewater activated sludge

More information

= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C

= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.

More information

Sewerage Management System for Reduction of River Pollution

Sewerage Management System for Reduction of River Pollution Sewerage Management System for Reduction of River Pollution Peter Hartwig Germany Content page: 1 Introduction 1 2 Total emissions 3 3 Discharge from the wastewater treatment plants 4 4 Discharge from

More information

HVAC FORMULAS. CFM = BTU/Hr / ( 1.08 x Temperature Difference) TON OF REFRIGERATION -

HVAC FORMULAS. CFM = BTU/Hr / ( 1.08 x Temperature Difference) TON OF REFRIGERATION - HVAC FORMULAS CFM = BTU/Hr / ( 1.08 x Temperature Difference) TON OF REFRIGERATION - The amount of heat required to melt a ton (2000 lbs.) of ice at 32 F 288,000 BTU/24 hr. 12,000 BTU/hr. APPROXIMATELY

More information

Energy and Cost Required to Lift or Pressurize Water

Energy and Cost Required to Lift or Pressurize Water University of California Tulare County Cooperative Extension Energy and Cost Required to Lift or Pressurize Water Bill Peacock, Tulare County Farm Advisor Pub. IG6-96 Power Requirements to Lift Water It

More information

Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION. Chapter 3 Metric System You shall do no unrighteousness in judgment, in measure of length, in weight, or in quantity. Just balances, just weights, shall ye have. Leviticus. Chapter 19, verse 35 36. Exhibit

More information

Neutralization of Acid Mine Drainage Using Stabilized Flue Gas Desulfurization Material

Neutralization of Acid Mine Drainage Using Stabilized Flue Gas Desulfurization Material Neutralization of Acid Mine Drainage Using Stabilized Flue Gas Desulfurization Material W. Wolfe 1, C.-M. Cheng 1, R. Baker 1, T. Butalia 1, J. Massey-Norton 2 1 The Ohio State University, 2 American Electric

More information

ENGINEERING REPORT Sewage Treatment System

ENGINEERING REPORT Sewage Treatment System CIVIL & STRUCTURAL ENGINEERING CONSULTANTS 7A Barbados Avenue, Kingston 5, Jamaica, Tele: (876) 754-2154/5 Fax: (876) 754-2156 E-mail: mail@fcsconsultants.com GORE FLORENCE HALL DEVELOPMENT FCS # 0827/76/C

More information

Cambridge Wastewater Treatment Facility

Cambridge Wastewater Treatment Facility Cambridge Wastewater Treatment Facility Emergency Situations If you have a water or sewer emergency that relates to the City s utility system call the Public Works office at 763-689-1800 on normal working

More information

Basic Nameplate Information

Basic Nameplate Information Basic Nameplate Information General Information: Most equipment nameplates will have some common items of information. Many of these are self explanatory, and include: Manufacturer Manufacturerʼs address

More information

Metric System Conversion Factors

Metric System Conversion Factors 133 Metric System Conversion Factors Area Equivalents 1 acre = 43,560 ft 2 = 4840 yd 2 = 0.4047 hectares = 160 rods 2 = 4047 m 2 = 0.0016 sq. mile 1 acre-inch = 102.8 m 3 = 27,154 gal = 3630 ft 3 1 hectare

More information

Unit 1: Fire Engineering Science (Y/505/5749) SAMPLE QUESTIONS

Unit 1: Fire Engineering Science (Y/505/5749) SAMPLE QUESTIONS THE INSTITUTION OF FIRE ENGINEERS Founded 1918 Incorporated 1924 IFE Level 3 Certificate in Fire Science, Operations, Fire Safety and Management Unit 1: Fire Engineering Science (Y/505/5749) SAMPLE QUESTIONS

More information

How To Understand Fluid Mechanics

How To Understand Fluid Mechanics Module : Review of Fluid Mechanics Basic Principles for Water Resources Engineering Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Mass quantity of matter that a substance

More information

UNDERSTANDING REFRIGERANT TABLES

UNDERSTANDING REFRIGERANT TABLES Refrigeration Service Engineers Society 1666 Rand Road Des Plaines, Illinois 60016 UNDERSTANDING REFRIGERANT TABLES INTRODUCTION A Mollier diagram is a graphical representation of the properties of a refrigerant,

More information

Metric System Conversion Factors 1

Metric System Conversion Factors 1 AGR39 1 J. Bryan Unruh, Barry J. Brecke, and Ramon G. Leon-Gonzalez 2 Area Equivalents 1 Acre (A) = 43,560 square feet (ft 2 ) = 4,840 square yards (yd 2 ) = 0.405 hectares (ha) = 160 square rods (rd 2

More information

Application Form 2E. Facilities Which Do Not Discharge Process Wastewater

Application Form 2E. Facilities Which Do Not Discharge Process Wastewater United States Environmental Protection Agency Office of Water Enforcement and Permits Washington, DC 20460 EPA Form 3510-2E Revised August 1990 Permits Division Application Form 2E Facilities Which Do

More information

Calculating Area and Volume of Ponds and Tanks

Calculating Area and Volume of Ponds and Tanks SRAC Publication No. 103 Southern Regional Aquaculture Center August 1991 Calculating Area and Volume of Ponds and Tanks Michael P. Masser and John W. Jensen* Good fish farm managers must know the area

More information

CONNECT: Currency, Conversions, Rates

CONNECT: Currency, Conversions, Rates CONNECT: Currency, Conversions, Rates CHANGING FROM ONE TO THE OTHER Money! Finances! $ We want to be able to calculate how much we are going to get for our Australian dollars (AUD) when we go overseas,

More information

Area & Volume. 1. Surface Area to Volume Ratio

Area & Volume. 1. Surface Area to Volume Ratio 1 1. Surface Area to Volume Ratio Area & Volume For most cells, passage of all materials gases, food molecules, water, waste products, etc. in and out of the cell must occur through the plasma membrane.

More information

Measurement. Customary Units of Measure

Measurement. Customary Units of Measure Chapter 7 Measurement There are two main systems for measuring distance, weight, and liquid capacity. The United States and parts of the former British Empire use customary, or standard, units of measure.

More information

Ion Exchange Design Hand calculation. Brian Windsor (Purolite International Ltd)

Ion Exchange Design Hand calculation. Brian Windsor (Purolite International Ltd) Ion Exchange Design Hand calculation Brian Windsor (Purolite International Ltd) Introduction Before design programmes were introduced, every engineer had to calculate the design by hand using resin manufacturers

More information

WATER DISTRIBUTION SYSTEM OPERATOR CERTIFICATION COURSE MANUAL

WATER DISTRIBUTION SYSTEM OPERATOR CERTIFICATION COURSE MANUAL WATER DISTRIBUTION SYSTEM OPERATOR CERTIFICATION COURSE MANUAL NOVEMBER 2008 1 WATER DISTRIBUTION SYSTEM OPERATOR CERTIFICATION COURSE MANUAL Overview/Preface This manual is designed for operators taking

More information

UNIT (1) MEASUREMENTS IN CHEMISTRY

UNIT (1) MEASUREMENTS IN CHEMISTRY UNIT (1) MEASUREMENTS IN CHEMISTRY Measurements are part of our daily lives. We measure our weights, driving distances, and gallons of gasoline. As a health professional you might measure blood pressure,

More information

Energy Audits Waste Water Treatment Plants

Energy Audits Waste Water Treatment Plants Energy Audits Waste Water Treatment Plants Ohio Water Environment Association Conference June 20, 2012 Presented by: Samuel J. Morgan, P.E., LEED AP CT Consultants, Inc. World Energy Trend US Total Energy

More information

Chemigation Calibration for Center Pivot Irrigation Systems

Chemigation Calibration for Center Pivot Irrigation Systems April 1993 (reformatted May 2000) Chemigation Calibration for Center Pivot Irrigation Systems A Workbook for Certified Pesticide Applicators To accompany the VHS tape Chemigation Calibration Based on materials

More information

Coagulation and Flocculation

Coagulation and Flocculation Coagulation and Flocculation Groundwater and surface water contain both dissolved and suspended particles. Coagulation and flocculation are used to separate the suspended solids portion from the water.

More information

WASTE WATER TREATMENT SYSTEM (OPERATING MANUALS )

WASTE WATER TREATMENT SYSTEM (OPERATING MANUALS ) Page 1 of 76 1.0 PURPOSE The purpose of the Wastewater Treatment System is to remove contaminates from plant wastewater so that it may be sent to the Final Plant Effluent Tank and eventually discharged

More information

NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT.

NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT. September 1, 2003 CONCRETE MANUAL 5-694.300 MIX DESIGN 5-694.300 NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT. 5-694.301

More information

ENE 806, Project Report 3 CHEMICAL PRECIPITATION: WATER SOFTENING. Grégoire Seyrig Wenqian Shan

ENE 806, Project Report 3 CHEMICAL PRECIPITATION: WATER SOFTENING. Grégoire Seyrig Wenqian Shan ENE 806, Project Report 3 CHEMICAL PRECIPITATION: WATER SOFTENING Grégoire Seyrig Wenqian Shan College of Engineering, Michigan State University Spring 2007 ABSTRACT The groundwater with high level initial

More information

GRADE 6 MATHEMATICS CORE 1 VIRGINIA STANDARDS OF LEARNING. Spring 2006 Released Test. Property of the Virginia Department of Education

GRADE 6 MATHEMATICS CORE 1 VIRGINIA STANDARDS OF LEARNING. Spring 2006 Released Test. Property of the Virginia Department of Education VIRGINIA STANDARDS OF LEARNING Spring 2006 Released Test GRADE 6 MATHEMATICS CORE 1 Property of the Virginia Department of Education 2006 by the Commonwealth of Virginia, Department of Education, P.O.

More information

Basic Math for the Small Public Water Systems Operator

Basic Math for the Small Public Water Systems Operator Basic Math for the Small Public Water Systems Operator Small Public Water Systems Technology Assistance Center Penn State Harrisburg Introduction Area In this module we will learn how to calculate the

More information