# Looking for Magnetic Monopoles AT The Large Hadron Collider. Vicente Vento Universidad de Valencia-IFIC

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Looking for Magnetic Monopoles AT The Large Hadron Collider Vicente Vento Universidad de Valencia-IFIC

2 Luis Epele Huner Fanchiotti Carlos García Canal Vasiliki Mitsou

3 Introduction Monopoles Monopole Production and Detection Monopolium Monopolium Production and Detection Moedal Concluding Remarks

4 Introduction In 1884 Pierre Curie suggested that magnetic monopoles could exist About the possibility of existence of magnetic conductivity and free magnetism. by M. P. Curie The paralelism between electric and magnetic phenomena leads to question us if this analogy is more complete. Is it absurd to assume that there exist bodies which are conductors of magnetism, of magnetic currents, of free magnetism?

5 Appealing because: It Restores Electric-Magnetic Symmetry in Maxwell s Equations

6 Monopoles Dirac 1931 : Monopole and Quantum Mechanics: Magnetic Coulomb Field: B = g r / r 2 Conflict when defining the vector potential The solution of a Genius

7

8 A particle with charge, say an electron, traveling around some path P in a region with zero magnetic field (B = 0 = x A) must acquire a phase φ; given by:. The only way we would NOT see the Dirac string is if the wave function of the electron only acquired a trivial phase i.e. Φ = 2π N (n =1,2,3..). That is, if: Charge Quantization

9 Monopole Properties The Dirac monopole is a point like particle magnetic charge g = 68.5 e and no electric charge Monopoles accelerate along field lines according to the Equivalent Lorentz Eqn. F = gb + ep " B /#m 0 The monopole mass is not predicted within the Dirac s theory.!

10 Monopoles and Grand Unification Grand Unified gauge theories predict Monopoles: t Hooft and Polyakov (1974) discovered that monopoles are fundamental solutions to non- Abelian gauge GUT theories These Monopoles have structure and no string singularity. The field of the GUT monopole is B ~ g/r 2 outside The Mass m(gut)m mx/g > GeV. not producible by particle accelerators primordial monopoles present in the Universe GUT monopoles can catalyze proton decay!

11 There are models For the desert where monopoles appear in a mass range accessible to the LHC: The electroweak Cho-Maison monopole The Troost-Vinciarelli monopole The model of Weinberg, E. and collaborators Superstring models We shall take a phenomenological approach and assume that the mass is a parameter

12 The Monopole is a wishful object Dirac felt that he "would be surprised if Nature had made no use of it". Witten once asserted in his Loeb Lecture at Harvard, almost all theoretical physicists believe in the existence of magnetic monopoles, or at least hope that there is one. Polchinski described the existence of monopoles as "one of the safest bets that one can make about physics not yet seen" and that their existence seems inevitable in any framework that explains the quantization of electric charge. Of course their mass scale and abundance are highly uncertain,...

13 Monopole Production and Detection e -> β g generalization as an s dependent form factor

14 term to be sufficient, for our purposes. Guided by simplicity and phenomenological inspiration we introduce an effective theory which is finite and well defined and we call this proposal the β scheme. Note that the Ginzburg-Schiller scheme and the β scheme are in some sense complementary. The former is valid below the monopole threshold, while the latter above since β vanishes below threshold. The aim here is to study possible signals of magnetic monopoles at LHC. According to previous studies [?], the most promising mechanism is photon fusion. The elementary diagrams contributing to pair production are those in Fig.??, wheretheexplicit couplings have been shown. The photon-fusion elementary cross section is obtained fromthewell-knownqed electron-positron pair creation cross section [?], simply changing the coupling constant (e gβ )andtheelectronmassbythemonopolemassm e m, leadingto σ(γγ mm) = π ( ( ) ) g4 (1 β 2 ) β 4 3 β 4 1+β log (2 β 2 ), (4) 2 m 2 2β 1 β Monopole Production where β is the monopole velocity, a function of the center-of-mass energy, E. InFig.?? we show the ω = E/2 m dependence of the adimensional functional form of Eq.(??) to 10. show the effect of the β g coupling. The solid curve corresponds to the electron-positron case, the dashed one to the monopole case which contains the β 4 factor. One should notice the large effect associated 1. e e with this factor in the vicinity of the threshold. LHC detectors, apart from the MoEDAL experiment [?], have not beendesigned m m Σ Ω Figure 3: Ω Adimensional functional form of the elementary photon-fusion cross section

15 Production from photon fusion at Large Hadron Collider

16 i) inelastic p + p -> X + X + m + m (photons radiated from partons) ii) semielastic p + p -> p + X + m + m (one photon from partons the other from the other proton leaving the proton intact) iii) elastic p + p -> p + p + m + m (both photons from protons)

17 /4 m and the choice of Q2=1 Ge& is made such Q & to ed scalars el r to be s applicable. /4. mentioned above there %'ith 4m /s 4m /sx for that charged the fermions. photons These are fer- he semielastic cross section for ~H+H l 4m p inelastic proton structure function. There /sx& x& sufficiently duction is a cer reads. pp (L off'shel L be the m beapq'(s)= the maximum f dx) f value dx2total of the pp cross dz) mo z):f )=f the logarithm r (z in Eq. dx,f, f, &q r (z) (4). = We choose ln( Q /Q22 where F(2 Q to is the &q deep inelastic proton structure & o" 2~ 50 "'(s)=2f, z & 1 1 dz, 1 dz, e choice of Q2=1 Ge& is made such that the photo ble. write (3) in a more compact form as by s/4 m and the choice of Q2=1 Ge& is )px is given by le Q 4m /s 4m /sx l 4m /sx l z l X 1 has been chosen throughout f model dx) f to be applicable. The semielastic dx2 dz) (x&, g )fq.&~(x2, Q )fr&q(z, )fry. (zz)8&r(x, x2z, z2 dx,f, f, f, 4m /s 4m /sx l 4m /sx& x& 4m /sx (4) x&z& & either K or L*,e = ' ed dz, = dz, F~2(x,, Q')f, ( m /s 4m /sx l 4m /sx l z X l, 1 subprocess energy now is given by +s =Qsx, z, z2 elastic photon spectrum f' '&~(z) has been obtained i form 2 of an integral [ll]. (2 is =Qx&x2z&zzs. the deep inelastic Theproton structure However, structure functions wefunction. usehave an ap th T l l rgument of the logarithm +s rgy now is =Qsx, given by in Eq. z, (4). z2. We choose Q, imate Q )fy(z) analytic )f),(z2)oyer(x)x2z)z2s), expression given in [12] with which. withthe subprocess energy now is given by +s =Q n to reproduce exact results to about 10%. Th and the choice of Q2=1 Ge& is made such spectrum m f' '&~(z) The = elastic hasphoton been obtained spectrum in )/\$06. nwe use 00is2 given by o be applicable. in the argument of the logarithm in Eq. (4). W ross section for pp ~H+H (L L )px is given by dx,f, (x,z, z,s) f, o" "'(s)=2f, ', and o dz, is the p 4m /s 4m /sx ~~ l 4m /sx F~2(x,, Q')f, (z, )f"~ (z2)o f &q is the photon spectrum inside a quark. W Q; = 2m cross section for pp ~H+H gral aboutin [ll]. the choicehowever, of the scales we Q,. use an apexpression given in [12] pp which is (L L emielastic cross section for ~H+H )p e- of the momentum proximate = transfer analytic [1+(1 given expression given in [12] ntly f'y'ip(z) off'shell known for the to quark-parton reproduce z) is ] exact results to about e exact results about 10%. The 27TZ form we use is given by (5) Q; = + 2 = f' '&~(z) has been o the form of an integral in [ll]. However, we + [(s+m )(s zs+m )

18 M 2!("") E/M ure 4: We show the photon fusion production cross section for monopolium (solid curve R =1.5 and Γ M =0.1, and for monopole-antimonopole (dotted curve) as a function of th rgy variable E = E/M.

19 monopole mass limit

20 Monopole Detection ed) scattering given in fb/gev as a function of the invariant mass. We have assumed a monopole of mass 750 GeV, chosen because s turned out to be close to the expected magnitude of the Higgs to n above background. The cross sections are wide, almostgaussian, softly just above threshold (1500 GeV). LHC detectors are blind for g and have black spots due to construction features in the non-forward not allow for a full detection of photons. Therefore in order to obtain imation of the observable cross section we take the right-angle cross tiply it by 4π. Thisdifferential cross section is the smallest possible. rom threshold, it corresponds quite well to a realistic estimate, since,, the elementary differential cross section drops fast with angle and at the LHC. ould consider an efficiency factor for the various detectors. in a LogLog plot. The Higgs signal abov make it visible. The figures correspond t from the curves that monopole-antimonop of the cross section above the background expected background from Standard Mo region E γ 1TeV. Hencetherequiredselec thus the majority of the photon pairs pro Thus the search for monopole-antimonop H ΓΓ x 50 dσ fb GeV dσ fb GeV m m ΓΓ EΓ GeV EΓ GeV ard (solid) and the right-angle cross sections for a monopole of mass Figure 12: Comparison of the γγ monopol

21 Dirac (1934) The attractive force between two magnetic poles is /4 time that between the electron and the proton. This very large force may perhaps account for why the monopoles have never been separated... - Monopolium -

22 Monopolium production Monopolium is a monopole - antimonopole boundstate r m r m g -g 2 /r +g

23 Monopolium production from photon fusion at Large Hadron Collider M

24 i) inelastic p + p -> X + X + M (photons radiated from partons) ii) semielastic p + p -> p + X + M (one photon from partons the other from the other proton leaving the proton intact) iii) elastic p + p -> p + p + M (both photons from protons)

25 /4 m and the choice of Q2=1 Ge& is made such Q & to ed scalars el r to be s applicable. /4. mentioned above there %'ith 4m /s 4m /sx for that charged the photons fermions. These are fer- he semielastic cross section for ~H+H l 4m p inelastic proton structure function. There /sx& x& sufficiently duction is a cer off'shel reads. pp (L L be the m beapq'(s)= the maximum f dx) f value dx2total of the pp cross mom dz) z):f )=f the logarithm r (z in Eq. dx,f, f, &q r (z) (4). = We choose ln( Q /Q22 where F(2 Q to is the &q deep inelastic proton structure & o" 2~ 50 "'(s)=2f, z & 1 1 dz, 1 dz, e choice of Q2=1 Ge& is made such that the photo ble. write (3) in a more compact form as by s/4 m and the choice of Q2=1 Ge& is )px is given by le Q 4m /s 4m /sx l 4m /sx l z l X 1 has been chosen throughout f model dx) f to be applicable. The semielastic dx2 dz) (x&, g )fq.&~(x2, Q )fr&q(z, )fry. (zz)8&r(x, x2z, z2 dx,f, f, f, dx,f, either elastic Kphoton or L*,e = ' ed o" = spectrum dz, "'(s)=2f, dz, f' '&~(z) has ', F~2(x,, Q')f, ( been obtained i, and o dz, is the p 4m /s 4m /sx ~~ l 4m /sx ~2(x, Q')f, 4m /s 4m /sx l 4m /sx& x& 4m /sx, (z, )f"~(4)(z2)o (x,z, z,s) x&z&. & subprocess energy now is given by +s =Qsx, z, z2 form 2 of an integral [ll]. (2 is =Qx&x2z&zzs. the deep inelastic Theproton structure However, structure functions wefunction. usehave an ap th T l l rgument of the logarithm +s rgy now is =Qsx, given by in Eq. z, (4). z2. We choose Q, imate Q )fy(z) analytic )f),(z2)oyer(x)x2z)z2s), expression given in [12] with which f &q is the photon spectrum inside a quark. W withthe subprocess energy now is given by +s =Q n to reproduce exact results to about 10%. Th. and the choice of Q2=1 Ge& is made such spectrum m f' '&~(z) The = elastic hasphoton been obtained spectrum in )/\$06. we use 00is2 given by n Q; = 2m o be applicable. in the argument of the logarithm in Eq. (4). W ross section for pp ~H+H (L L )px is given by m /s 4m /sx l 4m /sx l z l X 1 cross section for pp ~H+H gral aboutin [ll]. the choicehowever, of the scales we Q,. use an apexpression given in [12] pp which is (L L emielastic cross section for ~H+H )p e- of the momentum proximate = transfer analytic [1+(1 given expression given in [12] ntly f'y'ip(z) off'shell known for the to quark-parton reproduce z) s ] exact results to about e exact results about 10%. The 27TZ form we use is given by (5) Q; = + 2 = f' '&~(z) has been o the form of an integral in [ll]. However, we + [(s+m )(s zs+m )

26 Monopolium photon coupling

27 Monopolium wave function The monopole can be regarded as possessing some spatial extension that avoids the singularity at the origin. r m r m g -g 2 /r +g

28 We have represented this complex scenario by a potential which behaves like a magnetic Coulomb for r >> 2 r classical and is finite at the origin.

29 Excited Coulomb states Texto n > 13 well defined ρ = Two parameters : M, m

30 M m-m

31 Small Binding Large Binding =2m/M Lower mass threshold M < 2m

32 Binding Effect Threshold effect Example: for m = 1 TeV and M= 1 TeV at LHC for 100 fb monopoles and 10 8 monopolia.

33 Total cross section for monopolium production at LHC with 3.5 TeV beams and monopole masses ranging from 500 to 1000 GeV, with binding energies 2 m/15 and widths 10 GeV.

34 Monopolium detection at LHC with diphoton events Ψ M Ψ M

35 Mass effect m= 750 GeV M= 1400 GeV Γ M = 10 GeV

36 Moedal

37

38 Some toughts for monopolium detection i) near threshold (grounstate -> l= 0) M γ β small -> elastic multiparticle collisions In presence of magnetic fields huge polarizability d r 3 M B (α E binding ) -3 B γ

39 ii) boundstate -> excited states -> l > 0 multipoles -> bending (photon emission) -> excitation and ionization

40 iii) Monopolium (weak binding and/or excited states) -> (capturing electrons or protons) -> Dions e D +g M g +e D

41 M D D

42 Concluding remarks We have shown that if non relic monopoles exist and their masses are in the TeV region they are soon to be found either as m - m pairs or monopolium much effort is going to go both in the more traditional schemes, Atlas and CMS, but also in a dedicated experiment Moedal. Magnetic monopoles can be detected by their high ionization, their binding to conventional particles and nuclei, diphoton events,...

43 Monopolium groud state is a very heavy neutral object -> good diphoton signal (Z 0, W ±,...) -> large magnetic polarizability (in the presence of large B-fields) -> naively : difficult object for Moedal (?? elastic collisions) Monopolium excitations -> multiphoton processes (pseudo-polynomial trajectories) -> excitation and ionization (multipole interactions) Dion formation -> good Moedal candidates

44 Thank you for your attention!

### Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15

Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15 Examples of The questions are roughly ordered by chapter but are often connected across the different chapters. Ordering is as in

### LHC discoveries and Particle Physics Concepts for Education

LHC discoveries and Particle Physics Concepts for Education Farid Ould- Saada, University of Oslo On behalf of IPPOG EPS- HEP, Vienna, 25.07.2015 A successful program LHC data are successfully deployed

### Cross section, Flux, Luminosity, Scattering Rates

Cross section, Flux, Luminosity, Scattering Rates Table of Contents Paul Avery (Andrey Korytov) Sep. 9, 013 1 Introduction... 1 Cross section, flux and scattering... 1 3 Scattering length λ and λ ρ...

### 1 Anomalies and the Standard Model

1 Anomalies and the Standard Model The Glashow-Weinberg-Salam model of the electroweak interactions has been very successful in explaining a wide range of experimental observations. The only major prediction

### Fundamental Particles, Fundamental Questions. Elizabeth H. Simmons Dean and Professor, Lyman Briggs College

Fundamental Particles, Fundamental Questions Elizabeth H. Simmons Dean and Professor, Lyman Briggs College The smallest pieces of matter Nuclear physics and particle physics study the smallest known building

### Searches for Non-Standard Model Higgs Bosons at CMS

Searches for Non-Standard Model Higgs Bosons at CMS Paolo SPAGNOLO on behalf of the CMS Collaboration INFN Pisa, Italy These proceedings report the results on the Higgs Searches beyond the Standard Model

### STRING THEORY: Past, Present, and Future

STRING THEORY: Past, Present, and Future John H. Schwarz Simons Center March 25, 2014 1 OUTLINE I) Early History and Basic Concepts II) String Theory for Unification III) Superstring Revolutions IV) Remaining

### Search for Higgs bosons

Dezső Horváth: Search for Higgs bosons Balaton Summer School, Balatongyörök, 07.07.2009 p. 1/25 Search for Higgs bosons Balaton Summer School, Balatongyörök, 07.07.2009 Dezső Horváth MTA KFKI Research

### High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

High Energy Physics Lecture 4 More kinematics and a picture show of particle collisions 1 Recall from the previous lecture: the momentum of the scattered Particle in an elastic collision is given by p

### Formulas for HAMC. Robert Michaels. Thomas Jefferson National Accelerator Facility. June 3, 2008

Formulas for HAMC Robert Michaels Thomas Jefferson National Accelerator Facility June 3, 2008 This note explains the formulas needed by the Physics classes for the C++ Monte Carlo hamc. First we explain

### Beyond the Hype: The Status of the ATLAS Experiment and the Large Hadron Collider at CERN. Kenneth Johns University of Arizona

Beyond the Hype: The Status of the ATLAS Experiment and the Large Hadron Collider at CERN Kenneth Johns University of Arizona A Dream LHC Schedule LHC (Large Hadron Collider) 3 First Beam in the LHC September

### A SUSY SO(10) GUT with 2 Intermediate Scales

A SUSY SO(10) GUT with 2 Intermediate Scales Manuel Drees Bonn University & Bethe Center for Theoretical Physics SUSY SO(10) p. 1/25 Contents 1 Motivation: SO(10), intermediate scales SUSY SO(10) p. 2/25

### Top rediscovery at ATLAS and CMS

Top rediscovery at ATLAS and CMS on behalf of ATLAS and CMS collaborations CNRS/IN2P3 & UJF/ENSPG, LPSC, Grenoble, France E-mail: julien.donini@lpsc.in2p3.fr We describe the plans and strategies of the

### W-boson production in association with jets at the ATLAS experiment at LHC

W-boson production in association with jets at the ATLAS experiment at LHC Seth Zenz Qualifying Examination Talk January 14 2008 (Introductory section only; modified slightly for public distribution.)

### Introduction: Measurements in Particle Physics

Subatomic Physics: Particle Physics Lecture 2 Introduction to Measurements in Particle Physics Measuring properties of particles and interactions Particle quantum numbers and conservation laws Review of

### The accurate calibration of all detectors is crucial for the subsequent data

Chapter 4 Calibration The accurate calibration of all detectors is crucial for the subsequent data analysis. The stability of the gain and offset for energy and time calibration of all detectors involved

### Concepts in Theoretical Physics

Concepts in Theoretical Physics Lecture 6: Particle Physics David Tong e 2 The Structure of Things 4πc 1 137 e d ν u Four fundamental particles Repeated twice! va, 9608085, 9902033 Four fundamental forces

### PX434 Physics of the Standard Model Dr Steven Boyd : P448. ATLAS Event Display

PX434 Physics of the Standard Model Dr Steven Boyd : P448 ATLAS Event Display Intro Stuff Lectures are divided in chapters each chapter has a writeup which will be put online There is a module homepage

### Search for Dark Matter at the LHC

Search for Dark Matter at the LHC Steven Lowette Vrije Universiteit Brussel - IIHE 19 November 2014 3rd CosPa Meeting Université de Liège Content Introduction Generic DM searches at the LHC Explicit DM

### Supersymmetry Supergravity Superstring Supercolliders

The Super Era of Sub-Atomic Particle Physics Jay Hauser Abstract: Particle physics has now moved into the "Super" era, in which Supersymmetry, Supergravity, and Superstring theories will be investigated

### Introduction: what is quantum field theory?

Introduction: what is quantum field theory? Asaf Pe er 1 January 13, 2015 This part of the course is based on Ref. [1] 1. Relativistic quantum mechanics By the mid 1920 s, the basics of quantum mechanics

### Physik des Higgs Bosons. Higgs decays V( ) Re( ) Im( ) Figures and calculations from A. Djouadi, Phys.Rept. 457 (2008) 1-216

: Higgs decays V( ) Re( ) Im( ) Figures and calculations from A. Djouadi, Phys.Rept. 457 (2008) 1-216 1 Reminder 10.6.2014 Higgs couplings: 2 Reminder 10.6.2014 Higgs BF as a function of mh Higgs total

### Minimal Flavour Violation and leptogenesis

Minimal Flavour Violation and leptogenesis in collab. with Vincenzo Cirigliano and Gino Isidori Flavour problem and motivation for the MFV hypothesis High energy constraints: leptogenesis Low energy predictions:

### High Energy Frontier Recent Results from the LHC. Lecture 3

High Energy Frontier Recent Results from the LHC University of Heidelberg WS 2012/13 Lecture 3 LHC-Searches II Supersymmetry 1 Please Register! https://uebungen.physik.uni-heidelberg.de/v/339 2 Searches

### Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

### CALCULATE THE TOP QUARK MASS TEACHER NOTES

CALCULATE THE TOP QUARK MASS TEACHER NOTES DESCRIPTION Students use momentum conservation, energy conservation and two-dimensional vector addition to calculate the mass of the heaviest of the six known

### Spontaneous symmetry breaking in particle physics: a case of cross fertilization

Spontaneous symmetry breaking in particle physics: a case of cross fertilization Yoichiro Nambu lecture presented by Giovanni Jona-Lasinio Nobel Lecture December 8, 2008 1 / 25 History repeats itself 1960

### JANVIDA ROU. Introduction

HANBURY BROWN-TWISS INTERFEROMETRY IN SUBATOMIC PARTICLES JANVIDA ROU Introduction Many different experiments utilizing collisions have been developed to study nuclei and elementary particles. For example,

### Theory of electrons and positrons

P AUL A. M. DIRAC Theory of electrons and positrons Nobel Lecture, December 12, 1933 Matter has been found by experimental physicists to be made up of small particles of various kinds, the particles of

### Lecture 2 - The current state of fundamental physics

Lecture 2 - The current state of fundamental physics 1) Einstein & General Relativity Gravity as Spacetime Curvature Gravitational Radiation, LIGO & LISA Cosmology & the Expanding Universe Dark Energy

### Physics - programme subject in programmes for specialization in general studies

Physics - programme subject in programmes for specialization in Dette er en oversettelse av den fastsatte læreplanteksten. Læreplanen er fastsatt på Bokmål Laid down as a regulation by the Norwegian Directorate

### Subatomic Physics: Particle Physics Lecture 4. Quantum Electro-Dynamics & Feynman Diagrams. Antimatter. Virtual Particles. Yukawa Potential for QED

Ψ e (r, t) exp i/ (E)(t) (p) (r) Subatomic Physics: Particle Physics Lecture Quantum ElectroDynamics & Feynman Diagrams Antimatter Feynman Diagram and Feynman Rules Quantum description of electromagnetism

### The Higgs Boson. Linac08 Victoria BC, Canada CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS

CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

### POSSIBL-E EXPERIMENTS ON THE 200-GeV ACCELERATOR. A. D. Krisch University of Michigan. R. Serber Columbia University.

FN-68 POSSIBL-E EXPERIMENTS ON THE 200-GeV ACCELERATOR A. D. Krisch University of Michigan R. Serber Columbia University August 23, 1967 We will describe a number of experiments that might be dcne on.,he

### Highlights of Recent CMS Results. Dmytro Kovalskyi (UCSB)

Highlights of Recent CMS Results Dmytro Kovalskyi (UCSB) Introduction Number of CMS publication is over 0 already It is very hard to review all the recent results in one talk This talk concentrates on

### Part 3 tracking detectors material effects track models fitting with momentum

Part 3 tracking detectors material effects track models fitting with momentum passage of particles through matter particles traversing through a medium interact with that medium they loose energy ionization:

### REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe

REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe The End of Physics Albert A. Michelson, at the dedication of Ryerson Physics Lab, U. of Chicago, 1894 The Miracle Year - 1905 Relativity Quantum

### The Early Universe. Lecture 27-1

The Early Universe Lecture 27-1 Back to the Big Bang The total energy of the universe consists of both radiation and matter. As the Universe cooled, it went from being radiation dominated to being matter

### Calorimetry in particle physics experiments

Calorimetry in particle physics experiments Unit n. 8 Calibration techniques Roberta Arcidiacono Lecture overview Introduction Hardware Calibration Test Beam Calibration In-situ Calibration (EM calorimeters)

### Lecture Outlines. Chapter 27. Astronomy Today 7th Edition Chaisson/McMillan. 2011 Pearson Education, Inc.

Lecture Outlines Chapter 27 Astronomy Today 7th Edition Chaisson/McMillan Chapter 27 The Early Universe Units of Chapter 27 27.1 Back to the Big Bang 27.2 The Evolution of the Universe More on Fundamental

### Special Relativity and Electromagnetism Yannis PAPAPHILIPPOU CERN

Special Relativity and Electromagnetism Yannis PAPAPHILIPPOU CERN United States Particle Accelerator School, University of California - Santa Cruz, Santa Rosa, CA 14 th 18 th January 2008 1 Outline Notions

### 5.111 Principles of Chemical Science

MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary

### at Low and High Q 2 at H1

1 Measurement of F c c and F b b at Low and High Q at H1 Tatsiana Klimkovich DESY, FLC, H1 Contents Heavy Flavour Production in Perturbative QCD H1 Experiment at HERA Motivation for the Analysis Inclusive

### 2. Interaction of Charged Particles with Matter

2. Interaction of Charged Particles with Matter Detection through interaction of the particles with matter, e.g. via energy loss in a medium (ionization and excitation) Energy loss must be detected, made

### Open access to data and analysis tools from the CMS experiment at the LHC

Open access to data and analysis tools from the CMS experiment at the LHC Thomas McCauley (for the CMS Collaboration and QuarkNet) University of Notre Dame, USA thomas.mccauley@cern.ch! 5 Feb 2015 Outline

### A Guide to Detectors Particle Physics Masterclass. M. van Dijk

A Guide to Particle Physics Masterclass M. van Dijk 16/04/2013 How detectors work Scintillation Ionization Particle identification Tracking Calorimetry Data Analysis W & Z bosons 2 Reconstructing collisions

### Chapter 27: The Early Universe

Chapter 27: The Early Universe The plan: 1. A brief survey of the entire history of the big bang universe. 2. A more detailed discussion of each phase, or epoch, from the Planck era through particle production,

### Chapter 8 Molecules. Some molecular bonds involve sharing of electrons between atoms. These are covalent bonds.

Chapter 8 Molecules (We have only three days for chapter 8!) 8.1 The Molecular Bond A molecule is an electrically neutral group of atoms held together strongly enough to behave as a single particle. A

### 21.1 Coulomb s Law - Electric Charge - Conductors and Insulators - Coulomb s law 21.2 Charge is quantized 21.3* Charge is conserved

INTRODUCTION We will understand how electric and magnetic fields affect charged particles Lorentz Force Law: we will learn to describe how electric and magnetic fields are produced by charged particles

### Selected Topics in Elementary Particle Physics ( Haupt-Seminar )

Selected Topics in Elementary Particle Physics ( Haupt-Seminar ) Paola Avella, Veronika Chobanova, Luigi Li Gioi, Christian Kiesling, Hans-Günther Moser, Martin Ritter, Pit Vanhoefer Time: Do, 12 ct -14

### PHYSICS WITH LHC EARLY DATA

PHYSICS WITH LHC EARLY DATA ONE OF THE LAST PROPHETIC TALKS ON THIS SUBJECT HOPEFULLY We may have some two month of the Machine operation in 2008 LONG HISTORY... I will extensively use: Fabiola GIANOTTI

### Lecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline:

Lecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline: Intro to Magnetostatics. Magnetic Field Flux, Absence of Magnetic Monopoles. Force on charges moving in magnetic field. 1 Structure

### Lecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline:

Lecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline: Intro to Magnetostatics. Magnetic Field Flux, Absence of Magnetic Monopoles. Force on charges moving in magnetic field. 1 Intro to

### Appendix 12.A: One-Dimensional Collision Between Two Objects General Case An extension of Example in the text.

Chapter 1 Appendices Appendix 1A: One-Dimensional Collision Between Two Objects General Case An extension of Example 11 in the text Appendix 1B: Two-Dimensional Elastic Collisions Between Two Objects with

### The Higgs Particle, Pivot of the Standard Model of the Subatomic Particles

The Higgs Particle, Pivot of the Standard Model of the Subatomic Particles Utrecht University Gerard t Hooft, Public Lecture, Sendai, April 24, 2015 CERN European Center for Nuclear Research LHC Large

### FCC 1309180800 JGU WBS_v0034.xlsm

1 Accelerators 1.1 Hadron injectors 1.1.1 Overall design parameters 1.1.1.1 Performance and gap of existing injector chain 1.1.1.2 Performance and gap of existing injector chain 1.1.1.3 Baseline parameters

### Adiabatic Expansion. From the Friedmann equations, it is straightforward to appreciate that cosmic expansion is an adiabatic process:

Adiabatic Expansion From the Friedmann equations, it is straightforward to appreciate that cosmic expansion is an adiabatic process: In other words, there is no ``external power responsible for pumping

### Chapter 20. Magnetic Forces and Magnetic Fields

Chapter 20 Magnetic Forces and Magnetic Fields Magnetic Fields The most familiar example of magnetism for most people is a magnet. Every magnet has two poles, North and South --> called this since if the

### Relativity II. Selected Problems

Chapter Relativity II. Selected Problems.1 Problem.5 (In the text book) Recall that the magnetic force on a charge q moving with velocity v in a magnetic field B is equal to qv B. If a charged particle

### A given Nucleus has the following particles Total number of nucleons : atomic mass number, A Proton number: atomic number, Z Neutron number: N = A Z

Chapter 30 Nuclear Physics and Radioactivity Units of Chapter 30 Structure and Properties of the Nucleus Binding Energy and Nuclear Forces Radioactivity Alpha Decay Beta Decay Gamma Decay Conservation

### Testing the In-Memory Column Store for in-database physics analysis. Dr. Maaike Limper

Testing the In-Memory Column Store for in-database physics analysis Dr. Maaike Limper About CERN CERN - European Laboratory for Particle Physics Support the research activities of 10 000 scientists from

### emission of light from atoms discrete line spectra - energy levels, Franck-Hertz experiment

Introduction Until the early 20 th century physicists used to explain the phenomena in the physical world around them using theories such a mechanics, electromagnetism, thermodynamics and statistical physics

### People s Physics book

The Big Idea Quantum Mechanics, discovered early in the 20th century, completely shook the way physicists think. Quantum Mechanics is the description of how the universe works on the very small scale.

### SubAtomic Physics Nuclear Physics

SubAtomic Physics Nuclear Physics Lecture 4 Main points of Lecture 3 Strong and coulomb interaction processes conserve angular momentum and parity External properties 1) Charge number of protons (ze) 2)

### Study of Rutherford Scattering Cross Section via Geant4 Methods

Kasetsart J. (Nat. Sci.) 45 : 960-966 (011) Study of Rutherford Scattering Cross Section via Geant4 Methods Rachanee Rujiwarodom 1 *, Burin Asavapibhop and Pat Sangpeng 1 ABSTRACT The measurement of alpha

### PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

### The Birth of Our Universe Today s Lecture:

The Birth of Our Universe Today s Lecture: (Chapter 19, pages 454-481) Cosmic Microwave Background (CMB) The first few minutes of the Universe Inflation! Cosmic Microwave Background (CMB) A. Penzias and

### Gauge theories and the standard model of elementary particle physics

Gauge theories and the standard model of elementary particle physics Mark Hamilton 21st July 2014 1 / 35 Table of contents 1 The standard model 2 3 2 / 35 The standard model The standard model is the most

### From Jet Scaling to Jet Vetos

From Jet Scaling to Jet Vetos Heidelberg DESY, 2/202 LHC Higgs analyses Two problems for LHC Higgs analyses [talks Rauch, Englert] observe H b b decays [fat Higgs jets, Marcel s talk] 2 understand jet

### Extensions of the Standard Model (part 2)

Extensions of the Standard Model (part 2) Prof. Jorgen D Hondt Vrije Universiteit Brussel Inter-university Institute for High Energies Content: The Higgs sector of the Standard Model and extensions Theoretical

### arxiv:1008.4792v2 [hep-ph] 20 Jun 2013

A Note on the IR Finiteness of Fermion Loop Diagrams Ambresh Shivaji Harish-Chandra Research Initute, Chhatnag Road, Junsi, Allahabad-09, India arxiv:008.479v hep-ph] 0 Jun 03 Abract We show that the mo

### K. K. GAN. Stanford Linear Accelerator Center Stanford University, Stanford, California ABSTRACT

SLAC - PUB - 4512 December 1987 (E) AN ANALYSIS OF THE p MASS SPECTRUM IN r DECAY* K. K. GAN Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 ABSTRACT The p mass spectrum

### Extraction of Polarised Quark Distributions of the Nucleon from Deep Inelastic Scattering at the HERMES Experiment

Extraction of Polarised Quark Distributions of the Nucleon from Deep Inelastic Scattering at the HERMES Experiment Marc Beckmann FAKULTÄT FÜR PHYSIK ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG Extraction of Polarised

### PrHEP JHW2002. Experiments on high energy reactions in the diffractive regime at LHC. 1. Introduction. Twenty-sixth Johns Hopkins Workshop

PROCEEDINGS Experiments on high energy reactions in the diffractive regime at LHC Helsinki Institute for Physics, c/o CERN, Route de Meyrin, CH-1211 Geneva 23, Switzerland E-mail: Stefan.Tapprogge@cern.ch

### Middle East Technical University. Studying Selected Tools for HEP: CalcHEP

Middle East Technical University Department of Physics Advanced Selected Problems in Physics Studying Selected Tools for HEP: CalcHEP Author: Jack Yakup Araz Supervisor: Assoc. Prof Ismail Turan December

### Gravity and running coupling constants

Gravity and running coupling constants 1) Motivation and history 2) Brief review of running couplings 3) Gravity as an effective field theory 4) Running couplings in effective field theory 5) Summary 6)

### The High Redshift Universe Reprise

The High Redshift Universe Reprise Planck time Particle physics stuff Inflation Element creation All in first 1000 seconds Bit of a snooze for the next 400000 years Atoms form from the ions and electrons

### Relativistic kinematics basic energy, mass and momentum units, Lorents force, track bending, sagitta. First accelerator: cathode ray tube

Accelerators Relativistic kinematics basic energy, mass and momentum units, Lorents force, track bending, sagitta Basic static acceleration: First accelerator: cathode ray tube Cathode C consist of a filament,

### 3. Open Strings and D-Branes

3. Open Strings and D-Branes In this section we discuss the dynamics of open strings. Clearly their distinguishing feature is the existence of two end points. Our goal is to understand the effect of these

### Energy loss. Calorimeters. First: EM calorimeters

Calorimeters The energy of hadrons, pions, photons and electrons can be measured with calorimeters. This in contrast with muons: their momentum is measured from their track curvature (sagitta). The principle

### Performance of track and vertex reconstruction and b-tagging studies with CMS in pp collisions at s =7 TeV

Performance of track and vertex reconstruction and b-tagging studies with CMS in pp collisions at s =7 TeV Universität Zürich, CH-857 Zürich, Switzerland E-mail: Alexander.Schmidt@cern.ch First 7 TeV proton-proton

### The Building Blocks of Nature

The Building Blocks of Nature PCES 5.18 Schematic picture of constituents of an atom, & rough length scales. The size quoted for the nucleus here (10-14 m) is too large- a single nucleon has size 10-15

### Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter NP-5 Nuclear Physics Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 2.0 NEUTRON INTERACTIONS 2.1 ELASTIC SCATTERING 2.2 INELASTIC SCATTERING 2.3 RADIATIVE CAPTURE 2.4 PARTICLE

### My Website:

PH203 Recitation Week 09 Problem Set Spring 2015 Ryan Scheirer Email: scheirer@onid.orst.edu My Website: http://people.oregonstate.edu/~scheirer/ph203_rec.html Problem 01 For the following questions, use

### MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced

### COLLEGE PHYSICS. Chapter 29 INTRODUCTION TO QUANTUM PHYSICS

COLLEGE PHYSICS Chapter 29 INTRODUCTION TO QUANTUM PHYSICS Quantization: Planck s Hypothesis An ideal blackbody absorbs all incoming radiation and re-emits it in a spectrum that depends only on temperature.

### Elementary Particle Physics Fall Term 2014. Course Information

Physics 145 Harvard University Elementary Particle Physics Fall Term 2014 Course Information Instructors: Gary Feldman, Professor, Lyman 232, 496-1044, gfeldman@fas.harvard.edu Teaching Fellow, Stephen

### The spin of an elementary particle would appear, on the surface, to be little different from the

Chapter 6 Particle Spin and the Stern-Gerlach Experiment The spin of an elementary particle would appear, on the surface, to be little different from the spin of a macroscopic object the image of a microscopic

### Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:

... Vlll Contents 3. Textures and Supercurrents in Superfluid Phases of 3He 3.1. Textures, Gradient Energy and Rigidity 3.2. Why Superfuids are Superfluid 3.3. Superfluidity and Response to a Transverse

### 8. Electromagnetic Calorimeter 8.1 General considerations calorimeter

8. Electromagnetic Calorimeter 8.1 General considerations calorimeter energy- vs momentum measurement resolution: calorimeter σe/e 1/ E tracking detectors σp/p p e.g. at E p = 100 GeV σe/e 3.5% (ZEUS)

### Physik des Higgs Bosons. Higgs decays V( ) Re( ) Im( ) Figures and calculations from A. Djouadi, Phys.Rept. 457 (2008) 1-216

: Higgs decays V( ) Re( ) Im( ) Figures and calculations from A. Djouadi, Phys.Rept. 457 (2008) 1-216 1 Reminder 10.6.2014 Higgs couplings: 2 Reminder 10.6.2014 Higgs BF as a function of mh Higgs total

### Outline. book content motivations storyline

Outline book content motivations storyline Content history from 1968 (Veneziano amplitude) to 1984 (first string revolution) 7 parts with introductions, 35 contributors and 5 appendices: I. Overview (Veneziano,

### What was before the Big Bang?

1 / 68 Std. What was before the Big Bang? of the Very Robert Brandenberger McGill University February 21, 2013 2 / 68 Outline Std. 1 What is? 2 Standard Big Bang 3 ary 4 String 5 3 / 68 Plan Std. 1 What

### Evolution of the Universe from 13 to 4 Billion Years Ago

Evolution of the Universe from 13 to 4 Billion Years Ago Prof. Dr. Harold Geller hgeller@gmu.edu http://physics.gmu.edu/~hgeller/ Department of Physics and Astronomy George Mason University Unity in the

### 3. Energy measurement in calorimeters

Part II, 3. Energy measurement in calorimeters 3.1 Concept of a calorimeter in particle physics 3.2 Interactions of photons with matter 3.3 Electromagnetic and hadronic showers 3.4 Layout and readout of

### Particle Physics. The Standard Model. A New Periodic Table

5 Particle Physics This lecture is about particle physics, the study of the fundamental building blocks of Nature and the forces between them. We call our best theory of particle physics the Standard Model

### variables to investigate Monte Carlo methods of t t production

Using the M 2 and variables to investigate Monte Carlo methods of t t production Caitlin Jones September 8, 25 Abstract In this project the behaviour of Monte Carlo simulations for the event t t! ` `+b

### Precession of spin and Precession of a top

6. Classical Precession of the Angular Momentum Vector A classical bar magnet (Figure 11) may lie motionless at a certain orientation in a magnetic field. However, if the bar magnet possesses angular momentum,