A SUSY SO(10) GUT with 2 Intermediate Scales


 Oliver Cannon
 3 years ago
 Views:
Transcription
1 A SUSY SO(10) GUT with 2 Intermediate Scales Manuel Drees Bonn University & Bethe Center for Theoretical Physics SUSY SO(10) p. 1/25
2 Contents 1 Motivation: SO(10), intermediate scales SUSY SO(10) p. 2/25
3 Contents 1 Motivation: SO(10), intermediate scales 2 The Model SUSY SO(10) p. 2/25
4 Contents 1 Motivation: SO(10), intermediate scales 2 The Model 3 Neutralino Dark Matter SUSY SO(10) p. 2/25
5 Contents 1 Motivation: SO(10), intermediate scales 2 The Model 3 Neutralino Dark Matter 4 LHC Phenomenology SUSY SO(10) p. 2/25
6 Contents 1 Motivation: SO(10), intermediate scales 2 The Model 3 Neutralino Dark Matter 4 LHC Phenomenology 5 Summary SUSY SO(10) p. 2/25
7 Contents 1 Motivation: SO(10), intermediate scales 2 The Model 3 Neutralino Dark Matter 4 LHC Phenomenology 5 Summary Based on: MD, Ju Min Kim, arxiv: v1 (JHEP); MD, Ju Min Kim, EunKyung Park, to appear very soon SUSY SO(10) p. 2/25
8 Introduction: Why SO(10)? 3 gauge couplings of SM unify quite nicely in MSSM SUSY SO(10) p. 3/25
9 Introduction: Why SO(10)? 3 gauge couplings of SM unify quite nicely in MSSM Minimal unified group has rank 4: SU(5). SUSY SO(10) p. 3/25
10 Introduction: Why SO(10)? 3 gauge couplings of SM unify quite nicely in MSSM Minimal unified group has rank 4: SU(5). In SU(5), ν R would have to be gauge singlet. SUSY SO(10) p. 3/25
11 Introduction: Why SO(10)? 3 gauge couplings of SM unify quite nicely in MSSM Minimal unified group has rank 4: SU(5). In SU(5), ν R would have to be gauge singlet. Instead, in SO(10): ν R required to fill 16 with matter (s)fermions! SUSY SO(10) p. 3/25
12 Introduction: Why SO(10)? 3 gauge couplings of SM unify quite nicely in MSSM Minimal unified group has rank 4: SU(5). In SU(5), ν R would have to be gauge singlet. Instead, in SO(10): ν R required to fill 16 with matter (s)fermions! Naturally allows to implement see saw mechanism! SUSY SO(10) p. 3/25
13 Introduction: Why intermediate scales? SO(10) has rank 5 SUSY SO(10) p. 4/25
14 Introduction: Why intermediate scales? SO(10) has rank 5 Usually need several Higgs reps to break it to SM gauge group SUSY SO(10) p. 4/25
15 Introduction: Why intermediate scales? SO(10) has rank 5 Usually need several Higgs reps to break it to SM gauge group No reason why the corresponding vevs should be the same SUSY SO(10) p. 4/25
16 Introduction: Why intermediate scales? SO(10) has rank 5 Usually need several Higgs reps to break it to SM gauge group No reason why the corresponding vevs should be the same See saw: m ν = m2 ν D M νr < 3 mev, if m νd m t = 170 GeV, M νr M X GeV! SUSY SO(10) p. 4/25
17 Introduction: Why intermediate scales? SO(10) has rank 5 Usually need several Higgs reps to break it to SM gauge group No reason why the corresponding vevs should be the same See saw: m ν = m2 ν D M νr < 3 mev, if m νd m t = 170 GeV, M νr M X GeV! Need m ν3 > 50 mev! SUSY SO(10) p. 4/25
18 Introduction: Why intermediate scales? SO(10) has rank 5 Usually need several Higgs reps to break it to SM gauge group No reason why the corresponding vevs should be the same See saw: m ν = m2 ν D M νr < 3 mev, if m νd m t = 170 GeV, M νr M X GeV! Need m ν3 > 50 mev! = need M νr GeV! SUSY SO(10) p. 4/25
19 The model Ref: al. et Senjanovic, Nucl. Phys B597 (2001) 89 SO(10) SU(4) SU(2) L SU(2) R D at M X using 54 SU(3) C U(1) B L SU(2) L SU(2) R at M C using 45 SU(3) C SU(2) L U(1) Y at M R using 126,126 D: Discrete symmetry, ensures parity (same L and R couplings) SUSY SO(10) p. 5/25
20 Higgs fields Most general renormalizable superpotential = light Higgs states: SUSY SO(10) p. 6/25
21 Higgs fields Most general renormalizable superpotential = light Higgs states: 54 = (1,1,1) (20,1,1) (1,3,3) (6,2,2); 45 = (15,1,1) (1,1,3) (1,3,1) (6,2,2); 126 = (10,1,3) (10,3,1) (15,2,2) (6,1,1); 126 = (10,1,3) (10,3,1) (15,2,2) (6,1,1). Decomposition under SU(4) SU(2) L SU(2) R ; components obtaining vev are written first. SUSY SO(10) p. 6/25
22 Higgs spectrum all of 54 State Mass all of 45, except (15,1,1) 45 all of 126 and 126, except 10, 10 of SU(4) M X (10,3,1) 126 and (10,3,1) 126 3, 6 of SU(3) C in (10,1,3) 126 and (10,1,3) 126 M C color triplets of (15,1,1) 45 (δ 0 δ 0 ), δ +, δ M R [ ] M 2 color octet and singlet of (15,1,1) A M 1 max R M C, M2 C M X (δ 0 + δ 0 ), δ ++, δ M2 M 2 R /M X δ = (1,1,3) 126 ; δ = (1,1,3) 126 SUSY SO(10) p. 7/25
23 Running gauge couplings Existence of states with mass < M R is crucial for allowing intermediate scales, given that single step unification works. SUSY SO(10) p. 8/25
24 Running gauge couplings Existence of states with mass < M R is crucial for allowing intermediate scales, given that single step unification works. From RGE: Can compute M C and M R for given M X (and given weak scale parameters): No prediction for M X or ratios of weak scale couplings. SUSY SO(10) p. 8/25
25 Running gauge couplings Existence of states with mass < M R is crucial for allowing intermediate scales, given that single step unification works. From RGE: Can compute M C and M R for given M X (and given weak scale parameters): No prediction for M X or ratios of weak scale couplings. In particular, M X = M C = M R remains possible: allows smooth transition to Grand Desert SUSY SO(10) p. 8/25
26 Running gauge couplings Existence of states with mass < M R is crucial for allowing intermediate scales, given that single step unification works. From RGE: Can compute M C and M R for given M X (and given weak scale parameters): No prediction for M X or ratios of weak scale couplings. In particular, M X = M C = M R remains possible: allows smooth transition to Grand Desert Introduce second pair of 10, 10 with mass M 2, to allow more realistic fermion masses (see below). SUSY SO(10) p. 8/25
27 Relation between scales log(q/gev) log(m X /GeV) log(m C /GeV) log(m R /GeV) /α U SUSY SO(10) p. 9/25
28 Superpotential above M C W = Y 1 F c FΦ Y N ( F c ΣR F c + F Σ L F ) F = (4, 2, 1): left handed matter fields F c = ( 4, 1, 2): right handed matter fields Φ 1,2 = (1, 2, 2): Higgs bi doublets Σ R = (10, 1, 3) of 126 Σ L = (10, 3, 1) of 126 SUSY SO(10) p. 10/25
29 Superpotential above M C W = Y 1 F c FΦ Y N ( F c ΣR F c + F Σ L F ) F = (4, 2, 1): left handed matter fields F c = ( 4, 1, 2): right handed matter fields Φ 1,2 = (1, 2, 2): Higgs bi doublets Σ R = (10, 1, 3) of 126 Σ L = (10, 3, 1) of 126 Have set coupling Y 2 of Φ 2 to zero: can always be done via field re definition SUSY SO(10) p. 10/25
30 Superpotential above M C W = Y 1 F c FΦ Y N ( F c ΣR F c + F Σ L F ) F = (4, 2, 1): left handed matter fields F c = ( 4, 1, 2): right handed matter fields Φ 1,2 = (1, 2, 2): Higgs bi doublets Σ R = (10, 1, 3) of 126 Σ L = (10, 3, 1) of 126 Have set coupling Y 2 of Φ 2 to zero: can always be done via field re definition Y N generates ν R mass! SUSY SO(10) p. 10/25
31 Superpotential between M R and M C W = Y q1 Q c QΦ 1 + Y l1 L c LΦ Y NL c δl c Q c = ( 3, 1, 2, 1/3): right handed quarks Q = (3, 2, 1, 1/3): left handed quarks L c = (1, 1, 2, 1): right handed leptons L = (1, 2, 1, 1): left handed leptons δ = (1, 1, 3, 2): breaks SU(2) R U(1) B L U(1) Y. SUSY SO(10) p. 11/25
32 Superpotential between M R and M C W = Y q1 Q c QΦ 1 + Y l1 L c LΦ Y NL c δl c Q c = ( 3, 1, 2, 1/3): right handed quarks Q = (3, 2, 1, 1/3): left handed quarks L c = (1, 1, 2, 1): right handed leptons L = (1, 2, 1, 1): left handed leptons δ = (1, 1, 3, 2): breaks SU(2) R U(1) B L U(1) Y. Matching condition at E = M C : Y q1 = Y l1 = Y 1 SUSY SO(10) p. 11/25
33 Superpotential between M R and M 2 W = Y u1 U c QH u1 + Y d1 D c QH d1 + Y l1 E c LH d Y NE c δ E c SUSY SO(10) p. 12/25
34 Superpotential between M R and M 2 W = Y u1 U c QH u1 + Y d1 D c QH d1 + Y l1 E c LH d Y NE c δ E c Matching condition at E = M R : Y u1 = Y d1 = Y q1 SUSY SO(10) p. 12/25
35 Superpotential below M 2 As in MSSM: W = Y u U c QH u + Y d D c H d + Y l E c LH d SUSY SO(10) p. 13/25
36 Superpotential below M 2 As in MSSM: W = Y u U c QH u + Y d D c H d + Y l E c LH d Matching: H u,d = cosϕ u,d H (u,d)1 +sin ϕ u,d H (u,d)2 = Y u,d = Y (u,d)1 cosϕ u,d SUSY SO(10) p. 13/25
37 Superpotential below M 2 As in MSSM: W = Y u U c QH u + Y d D c H d + Y l E c LH d Matching: H u,d = cosϕ u,d H (u,d)1 +sin ϕ u,d H (u,d)2 = Y u,d = Y (u,d)1 cosϕ u,d = need cos ϕ u 1, since Y t already near maximal SUSY SO(10) p. 13/25
38 Superpotential below M 2 As in MSSM: W = Y u U c QH u + Y d D c H d + Y l E c LH d Matching: H u,d = cosϕ u,d H (u,d)1 +sin ϕ u,d H (u,d)2 = Y u,d = Y (u,d)1 cosϕ u,d = need cos ϕ u 1, since Y t already near maximal = cosϕ d = Y d(m 2 ) Y u (M R ) [ g 2 1 (M R ) g 2 1 (M 2) ] 1/60 = Y d1 Y u,1 : always in large tanβ scenario for E M 2! SUSY SO(10) p. 13/25
39 Gaugino masses Assume unified boundary conditions: scalar mass m 0, gaugino mass M 1/2, single parameter A 0. SUSY SO(10) p. 14/25
40 Gaugino masses Assume unified boundary conditions: scalar mass m 0, gaugino mass M 1/2, single parameter A 0. Gauge β functions increase for E > M 2 = ratios M i /M 1/2 decrease (M i, i = 1, 2, 3: weak scale gaugino masses) SUSY SO(10) p. 14/25
41 Gaugino masses Assume unified boundary conditions: scalar mass m 0, gaugino mass M 1/2, single parameter A 0. Gauge β functions increase for E > M 2 = ratios M i /M 1/2 decrease (M i, i = 1, 2, 3: weak scale gaugino masses) E.g. for M X = GeV (minimal value): M 1 = 0.23M 1/2 M 2 = 0.46M 1/2 M 3 = 1.4M 1/2 Coefficients nearly two times smaller than in msugra. SUSY SO(10) p. 14/25
42 Gaugino masses Assume unified boundary conditions: scalar mass m 0, gaugino mass M 1/2, single parameter A 0. Gauge β functions increase for E > M 2 = ratios M i /M 1/2 decrease (M i, i = 1, 2, 3: weak scale gaugino masses) E.g. for M X = GeV (minimal value): M 1 = 0.23M 1/2 M 2 = 0.46M 1/2 M 3 = 1.4M 1/2 Coefficients nearly two times smaller than in msugra. Ratios M 1 : M 2 : M 3 same as in msugra! SUSY SO(10) p. 14/25
43 Sfermion masses (1 st generation) For fixed M i, get larger gaugino loop contributions to sfermion masses; partly cancels previous effect when expressed in terms of M 1/2 : SUSY SO(10) p. 15/25
44 Sfermion masses (1 st generation) For fixed M i, get larger gaugino loop contributions to sfermion masses; partly cancels previous effect when expressed in terms of M 1/2 : m 2 f(m SUSY ) = m c fm 2 1/2 cẽr = 0.15 (as in msugra); cẽl = 0.21 (smaller than in msugra); c q = 1.15 (smaller than in msugra). SUSY SO(10) p. 15/25
45 Sfermion masses (1 st generation) For fixed M i, get larger gaugino loop contributions to sfermion masses; partly cancels previous effect when expressed in terms of M 1/2 : m 2 f(m SUSY ) = m c fm 2 1/2 cẽr = 0.15 (as in msugra); cẽl = 0.21 (smaller than in msugra); c q = 1.15 (smaller than in msugra). mẽr 1.68 M 1 : No co annihilation of χ 0 1 with ẽ R, µ R! mẽl M 2 : No W l L decays! m q 0.75m g : Similar to msugra SUSY SO(10) p. 15/25
46 3 rd generation sfermions & Higgs Y N reduces m τl,r, m t L,R, m br SUSY SO(10) p. 16/25
47 3 rd generation sfermions & Higgs Y N reduces m τl,r, m t L,R, m br = increases m 2 H u (M SUSY ) (and hence m A ) SUSY SO(10) p. 16/25
48 3 rd generation sfermions & Higgs Y N reduces m τl,r, m t L,R, m br = increases m 2 H u (M SUSY ) (and hence m A ) = reduces µ(m SUSY ) via EWSB condition SUSY SO(10) p. 16/25
49 3 rd generation sfermions & Higgs Y N reduces m τl,r, m t L,R, m br = increases m 2 H u (M SUSY ) (and hence m A ) = reduces µ(m SUSY ) via EWSB condition m ν3 m2 t Y N M R = smaller m ν3 implies larger Y N! SUSY SO(10) p. 16/25
50 Effect on the spectrum 2e+06 (a) m 0 = 1500GeV, M 12 = 900GeV, A 0 = 0, tanb = (b) m 0 = 700GeV, A 0 = 0, tanb = 50, m ν = 0.4eV M 12 = 700GeV M 12 = 1400GeV m 2 sf (M S ) 1.5e+06 1e m A0 /2mχ m 2 t m 2 L τ m 2 L 0.9 t m 2 R τ R m ν (ev) log (M X /GeV) SUSY SO(10) p. 17/25
51 Survey of parameter space (a) tanb=40, A 0 =0, m ν =0.4eV (a) tanb=40, A 0 =0, m ν =0.2eV m 0 (GeV) 1000 m 0 (GeV) M 1/2 (GeV) M 1/2 (GeV) Grey: no ESWB or tachyonic sfermion; red: mass bounds; pink: b sγ excluded; blue: favored by g µ ; green: DM allowed; black: all ok SUSY SO(10) p. 18/25
52 Survey of parameter space (a) tanb=40, A 0 =0, m ν =0.4eV (a) tanb=40, A 0 =0, m ν =0.2eV m 0 (GeV) 1000 m 0 (GeV) M 1/2 (GeV) M 1/2 (GeV) Grey: no ESWB or tachyonic sfermion; red: mass bounds; pink: b sγ excluded; blue: favored by g µ ; green: DM allowed; black: all ok In msugra: don t find allowed region (DM & g µ ) with m 2 0 M2 1/2! SUSY SO(10) p. 18/25
53 Same for tanβ = 50 (a) tanb=50, A 0 =0, m ν =0.4eV (a) tanb=50, A 0 =0, m ν =0.2eV m 0 (GeV) 1000 m 0 (GeV) M 1/2 (GeV) M 1/2 (GeV) SUSY SO(10) p. 19/25
54 Same for tanβ = 50 (a) tanb=50, A 0 =0, m ν =0.4eV (a) tanb=50, A 0 =0, m ν =0.2eV m 0 (GeV) 1000 m 0 (GeV) M 1/2 (GeV) M 1/2 (GeV) In right frame, DM relic density too small everywhere SUSY SO(10) p. 19/25
55 Same for tanβ = 50 (a) tanb=50, A 0 =0, m ν =0.4eV (a) tanb=50, A 0 =0, m ν =0.2eV m 0 (GeV) 1000 m 0 (GeV) M 1/2 (GeV) M 1/2 (GeV) In right frame, DM relic density too small everywhere 50% of plane DM allowed for tan β = 49! SUSY SO(10) p. 19/25
56 Impact on DM searches For m 0 M 1/2 : ( focus point, but no focussing in this scenario!) Very similar to msugra, if m χ 0 1, Ω χ 0 1 are fixed. SUSY SO(10) p. 20/25
57 Impact on DM searches For m 0 M 1/2 : ( focus point, but no focussing in this scenario!) Very similar to msugra, if m χ 0 1, Ω χ 0 1 are fixed. τ 1 co annihilation region: More promising, due to reduced µ = more higgsino gaugino mixing = enhanced couplings of χ 0 1 to Higgs bosons and Z0! SUSY SO(10) p. 20/25
58 Impact on DM searches For m 0 M 1/2 : ( focus point, but no focussing in this scenario!) Very similar to msugra, if m χ 0 1, Ω χ 0 1 are fixed. τ 1 co annihilation region: More promising, due to reduced µ = more higgsino gaugino mixing = enhanced couplings of χ 0 1 to Higgs bosons and Z0! cross section[*1036 cm 2 ] 1e05 1e06 1e07 1e08 1e09 tanβ=40, A 0 =0, m ν =0.2eV, M 1/2 =1000GeV FP CO CDMS II XENON100 (projected) 1e log M X [GeV] SUSY SO(10) p. 20/25
59 LHC signals: large m 0 region In SO(10) model: can get large bino higgsino mixing for relatively modest m 0, where q can be produced at LHC. This is not possible in msugra. SUSY SO(10) p. 21/25
60 LHC signals: large m 0 region In SO(10) model: can get large bino higgsino mixing for relatively modest m 0, where q can be produced at LHC. This is not possible in msugra. To get correct DM density in msugra for same m q, m g : have to increase tan β quite a lot (to reach A funnel ) SUSY SO(10) p. 21/25
61 LHC signals: large m 0 region In SO(10) model: can get large bino higgsino mixing for relatively modest m 0, where q can be produced at LHC. This is not possible in msugra. To get correct DM density in msugra for same m q, m g : have to increase tan β quite a lot (to reach A funnel ) = msugra has much smaller heavy Higgs masses: can be detected in τ + τ channel! SUSY SO(10) p. 21/25
62 LHC signals: large m 0 region In SO(10) model: can get large bino higgsino mixing for relatively modest m 0, where q can be produced at LHC. This is not possible in msugra. To get correct DM density in msugra for same m q, m g : have to increase tan β quite a lot (to reach A funnel ) = msugra has much smaller heavy Higgs masses: can be detected in τ + τ channel! msugra has much larger µ :changes χ 0, χ ± spectrum; can be checked via l + l invariant mass distribution! SUSY SO(10) p. 21/25
63 M l + l distribution (m 0 M 1/2 ) SO(10) msugra Events/10 GeV/300fb Invariant mass (GeV) Only msugra has Z 0 peak; SO(10) model has softer spectrum SUSY SO(10) p. 22/25
64 LHC signals: co annihilation region In msugra: either slightly change A 0 (option a) or slightly increase tanβ (option b) to match Ω χ 0 1 for fixed m q, m g. SUSY SO(10) p. 23/25
65 LHC signals: co annihilation region In msugra: either slightly change A 0 (option a) or slightly increase tanβ (option b) to match Ω χ 0 1 for fixed m q, m g. In SO(10): smaller m t 1,2, m b1 SUSY SO(10) p. 23/25
66 LHC signals: co annihilation region In msugra: either slightly change A 0 (option a) or slightly increase tanβ (option b) to match Ω χ 0 1 for fixed m q, m g. In SO(10): smaller m t 1,2, m b1 Smaller µ = smaller m χ 0 3,4, m χ ± 2 SUSY SO(10) p. 23/25
67 LHC signals: co annihilation region In msugra: either slightly change A 0 (option a) or slightly increase tanβ (option b) to match Ω χ 0 1 for fixed m q, m g. In SO(10): smaller m t 1,2, m b1 Smaller µ = smaller m χ 0 3,4, m χ ± 2 = more g χ 0 3,4, χ± 2 decays SUSY SO(10) p. 23/25
68 LHC signals: co annihilation region In msugra: either slightly change A 0 (option a) or slightly increase tanβ (option b) to match Ω χ 0 1 for fixed m q, m g. In SO(10): smaller m t 1,2, m b1 Smaller µ = smaller m χ 0 3,4, m χ ± 2 = more g χ 0 3,4, χ± 2 decays = more g Z 0 on shell in SO(10)! SUSY SO(10) p. 23/25
69 ubtracted M l + l distribution (m 0 M 1/2 ) Events/10 GeV/300fb SO(10) msugra 2b msugra 2a Invariant mass (GeV) SO(10) has significantly more pronounced Z 0 peak SUSY SO(10) p. 24/25
70 ubtracted M l + l distribution (m 0 M 1/2 ) Events/10 GeV/300fb SO(10) msugra 2b msugra 2a Invariant mass (GeV) SO(10) has significantly more pronounced Z 0 peak SO(10) model also has more like sign di lepton events: 492 vs. 422 (434). SUSY SO(10) p. 24/25
71 Summary and Outlook SO(10) model natural if ν R state! SUSY SO(10) p. 25/25
72 Summary and Outlook SO(10) model natural if ν R state! Allows intermediate scale; required for see saw. SUSY SO(10) p. 25/25
73 Summary and Outlook SO(10) model natural if ν R state! Allows intermediate scale; required for see saw. This modifies the RG running below M X. SUSY SO(10) p. 25/25
74 Summary and Outlook SO(10) model natural if ν R state! Allows intermediate scale; required for see saw. This modifies the RG running below M X. For fixed boundary condition at M X : reduced µ tends to make DM detection easier! SUSY SO(10) p. 25/25
75 Summary and Outlook SO(10) model natural if ν R state! Allows intermediate scale; required for see saw. This modifies the RG running below M X. For fixed boundary condition at M X : reduced µ tends to make DM detection easier! Points with same m q, m g, m χ 0 1, Ω χ 0 1 can be distinguished at LHC, using di lepton events and heavy Higgs searches SUSY SO(10) p. 25/25
76 Summary and Outlook SO(10) model natural if ν R state! Allows intermediate scale; required for see saw. This modifies the RG running below M X. For fixed boundary condition at M X : reduced µ tends to make DM detection easier! Points with same m q, m g, m χ 0 1, Ω χ 0 1 can be distinguished at LHC, using di lepton events and heavy Higgs searches Results should be qualitatively same in other models where M R < M X. SUSY SO(10) p. 25/25
77 Summary and Outlook SO(10) model natural if ν R state! Allows intermediate scale; required for see saw. This modifies the RG running below M X. For fixed boundary condition at M X : reduced µ tends to make DM detection easier! Points with same m q, m g, m χ 0 1, Ω χ 0 1 can be distinguished at LHC, using di lepton events and heavy Higgs searches Results should be qualitatively same in other models where M R < M X. To fix high scale physics: need to know m ν, proton lifetime! SUSY SO(10) p. 25/25
Mass Spectrum and Dark Matter in the CSE 6 SSM
Mass Spectrum and Dark Matter in the CSE 6 SSM P. Athron D. Harries R. Nevzorov A. G. Williams March 8, 016 New Directions in Subatomic Physics 1 / 0 The MSSM MSSM at treelevel: m h 1 M Z cos β (91 GeV)
More informationHigh Energy Frontier Recent Results from the LHC. Lecture 3
High Energy Frontier Recent Results from the LHC University of Heidelberg WS 2012/13 Lecture 3 LHCSearches II Supersymmetry 1 Please Register! https://uebungen.physik.uniheidelberg.de/v/339 2 Searches
More informationThe NMSSM in SPheno: Twoloop RGEs and oneloop mass spectrum
The NMSSM in SPheno: Twoloop RGEs and oneloop mass spectrum Björn Herrmann Deutsches ElektronenSynchrotron (DESY) Hamburg / Germany In collaboration with Werner Porod and Florian Staub Based on JHEP
More informationSUSY Breaking and Axino Cosmology
SUSY Breaking and Axino Cosmology Masahiro Yamaguchi Tohoku University Nov. 10, 2010 ExDiP2010@KEK, Japan 1. Introduction Fine Tuning Problems of Particle Physics Smallness of electroweak scale Smallness
More informationQuick Overview: 1. R/ SUSY. Why bother? 2. L/ in PYTHIA Trigger studies. 4. Sensitivity Estimates. 5. Summary & Outlook.
LViolating Supersymmetry Preliminary Studies and Pythia 6.2 Peter Z. Skands (zeiler@thep.lu.se) Niels Bohr Institute  Experimental High Energy Physics Lund University  Theoretical High Energy Physics
More informationffmssmsc a C++ library for spectrum calculation and renormalization group analysis of the MSSM
ffmssmsc a C++ library for spectrum calculation and renormalization group analysis of the MSSM Alexei Sheplyakov Joint Institute for Nuclear Research, Dubna, Russia SUSY 07 Karlsruhe, July 31, 2007 version
More informationMinimal Flavour Violation and leptogenesis
Minimal Flavour Violation and leptogenesis in collab. with Vincenzo Cirigliano and Gino Isidori Flavour problem and motivation for the MFV hypothesis High energy constraints: leptogenesis Low energy predictions:
More informationSearch for Higgs bosons
Dezső Horváth: Search for Higgs bosons Balaton Summer School, Balatongyörök, 07.07.2009 p. 1/25 Search for Higgs bosons Balaton Summer School, Balatongyörök, 07.07.2009 Dezső Horváth MTA KFKI Research
More information1 Anomalies and the Standard Model
1 Anomalies and the Standard Model The GlashowWeinbergSalam model of the electroweak interactions has been very successful in explaining a wide range of experimental observations. The only major prediction
More informationThreegeneration models in heterotic asymmetric orbifolds
Threegeneration models in heterotic asymmetric orbifolds Shogo Kuwakino (Chung Yuan Christian U., Taiwan) Based on arxiv:1304.5621 [hepth] and 1311.4687 [hepth] Collaborator : Florian Beye (Nagoya university)
More informationSearches for NonStandard Model Higgs Bosons at CMS
Searches for NonStandard Model Higgs Bosons at CMS Paolo SPAGNOLO on behalf of the CMS Collaboration INFN Pisa, Italy These proceedings report the results on the Higgs Searches beyond the Standard Model
More informationThe Higgs masses in the NMSSM at one and twoloop level
The Higgs masses in the NMSSM at one and twoloop level Florian Staub (University of Würzburg) in collaboration with: W. Porod (Uni. Würzburg), B. Herrmann (DESY) Reference: JHEP10(2010)040, arxiv:1007.4049
More informationMass spectrum prediction in nonminimal supersymmetric models
Mass spectrum prediction in nonminimal supersymmetric models Dissertation zur Erlangung des wissenschaftlichen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt von Dipl.Phys. Alexander Voigt
More informationRighthanded neutrinos
Righthanded neutrinos O. Steinkamp, N. Serra, B. Storaci Flavor physics Neutrino oscillations: Last Lecture Interpretation of neutrino mixing in two and three neutrino family formalism Neutrino oscillation
More informationAxion/Saxion Cosmology Revisited
Axion/Saxion Cosmology Revisited Masahiro Yamaguchi (Tohoku University) Based on Nakamura, Okumura, MY, PRD77 ( 08) and Work in Progress 1. Introduction Fine Tuning Problems of Particle Physics Smallness
More informationTheoretical Particle Physics FYTN04: Oral Exam Questions, version ht15
Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15 Examples of The questions are roughly ordered by chapter but are often connected across the different chapters. Ordering is as in
More informationMeasurement of Neutralino Mass Differences with CMS in Dilepton Final States at the Benchmark Point LM9
Measurement of Neutralino Mass Differences with CMS in Dilepton Final States at the Benchmark Point LM9, Katja Klein, Lutz Feld, Niklas Mohr 1. Physikalisches Institut B RWTH Aachen Introduction Fast discovery
More informationSearch for supersymmetric Dark Matter with GLAST!!
Search for supersymmetric Dark Matter with GLAST!! Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata ICCRC2003 The 28th International Cosmic Ray Conference Tsukuba, Japan, July 31
More informationSearches for New Physics Beyond the Standard Model (BSM)
Searches for New Physics Beyond he Sandard Model (BSM) Problems of he Sandard Model Supersymmery (SUSY) Exra Dimensions Furher Alernaives Sandard Model Fermions Why 3 generaions of quarks and lepons? Why
More informationSelected Topics in Elementary Particle Physics ( HauptSeminar )
Selected Topics in Elementary Particle Physics ( HauptSeminar ) Paola Avella, Veronika Chobanova, Luigi Li Gioi, Christian Kiesling, HansGünther Moser, Martin Ritter, Pit Vanhoefer Time: Do, 12 ct 14
More informationVectorlike quarks t and partners
Vectorlike quarks t and partners Luca Panizzi University of Southampton, UK Outline Motivations and Current Status 2 Couplings and constraints 3 Signatures at LHC Outline Motivations and Current Status
More informationPhysics Department, Southampton University Highfield, Southampton, S09 5NH, U.K.
\ \ IFT Instituto de Física Teórica Universidade Estadual Paulista July/92 IFTP.025/92 LEPTON MASSES IN AN SU(Z) L U(1) N GAUGE MODEL R. Foot a, O.F. Hernandez ", F. Pisano e, and V. Pleitez 0 Physics
More informationMiniSplit. Stanford University, Stanford, CA 94305 USA. and Institute for Advanced Study, Princeton, NJ 08540 USA
MiniSplit arxiv:1210.0555v2 [hepph] 19 Oct 2012 Asimina Arvanitaki a, Nathaniel Craig b, Savas Dimopoulos a, and Giovanni Villadoro c a Stanford Institute for Theoretical Physics, Stanford University,
More informationFINDING SUPERSYMMETRY AT THE LHC
FINDING SUPERSYMMETRY AT THE LHC Tilman Plehn MPI München & University of Edinburgh TeV scale supersymmetry Signals at Tevatron and LHC Measurements at LHC SUSY parameters at LHC (and ILC) Tilman Plehn:
More informationHiggs Vacuum Stability & Physics Beyond the Standard Model
Higgs Vacuum Stability & Physics Beyond the Standard Model Archil Kobakhidze AK & A. SpencerSmith, Phys Lett B 722 (2013) 130 [arxiv:1301.2846] AK & A. SpencerSmith, JHEP 1308 (2013) 036 [arxiv:1305.7283]
More informationThe Higgs sector in the MSSM with CPphases at higher orders
The Higgs sector in the MSSM with CPphases at higher orders PaulScherrerInstitut in coll. with T. Hahn, S. Heinemeyer, W. Hollik and G. Weiglein Outline Higgs sector in the MSSM with CPphases Mass
More informationLHC discoveries and Particle Physics Concepts for Education
LHC discoveries and Particle Physics Concepts for Education Farid Ould Saada, University of Oslo On behalf of IPPOG EPS HEP, Vienna, 25.07.2015 A successful program LHC data are successfully deployed
More informationSTRING THEORY: Past, Present, and Future
STRING THEORY: Past, Present, and Future John H. Schwarz Simons Center March 25, 2014 1 OUTLINE I) Early History and Basic Concepts II) String Theory for Unification III) Superstring Revolutions IV) Remaining
More informationQuanta of Geometry and Unification
Quanta of Geometry and Unification Memorial Meeting for Abdus Salam 90 th Birthday Ali Chamseddine American University of Beirut (AUB) and Institut des Hautes Etudes Scientifique (IHES) January 2528,
More informationExtensions of the Standard Model (part 2)
Extensions of the Standard Model (part 2) Prof. Jorgen D Hondt Vrije Universiteit Brussel Interuniversity Institute for High Energies Content: The Higgs sector of the Standard Model and extensions Theoretical
More informationThe muon g2: what does it tell us?
The muon g2: what does it tell us? Fred Jegerlehner Institute of Physics, University of Silesia, Katowice fjeger@physik.huberlin.de KWW LHC 2009, Warsaw University, May 20, 2010 Abstract On status and
More informationThe Flavor Puzzle. Wolfgang Altmannshofer Colloquium Aspen Center for Physics. June 26, 2014
The Flavor Puzzle Wolfgang Altmannshofer waltmannshofer@perimeterinstitute.ca Colloquium Aspen Center for Physics June 26, 2014 Wolfgang Altmannshofer The Flavor Puzzle June 26, 2014 1 / 40 The Search
More informationarxiv:hepph/9501407v1 31 Jan 1995
TU476 January, 995 LeptonFlavor Violation in the Supersymmetric Standard Model with SeesawInduced Neutrino Masses arxiv:hepph/950407v 3 Jan 995 J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi and T. Yanagida
More informationKINEMATIC ENDPOINT VARIABLES AND PHYSICS BEYOND THE STANDARD MODEL
KINEMATIC ENDPOINT VARIABLES AND PHYSICS BEYOND THE STANDARD MODEL A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the
More informationStandard Model of Particle Physics
Standard Model of Particle Physics Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK SUSSP61, St Andrews August 8th 3rd 006 Contents 1. Spontaneous Symmetry
More informationSUSY Studies. LCWS 05, Stanford, 1822 March 2005. Jan Kalinowski. Warsaw University
SUSY Studies LCWS 05, Stanford, 1822 March 2005 Warsaw University Outline Key questions Why SUSY Activities The frame Recent progress What if... Summary and outlook SUSY Studies, LCWS'05, Stanford 2 Key
More informationYueLiang Wu. KITPC at CAS Institute of Theoretical Physics, CAS 1924, 06, 2006, Beijing
YueLiang Wu ( ) KITPC at CAS Institute of Theoretical Physics, CAS 1924, 06, 2006, Beijing 1. Introduction and Motivations 2. Maximally Symmetric Minimal Unification (MSMU) Hypothesis 3. Maximal Symmetry
More informationGRAVITINO DARK MATTER
GRAVITINO DARK MATTER Wilfried Buchmüller DESY, Hamburg LAUNCH09, Nov. 2009, MPK Heidelberg Why Gravitino Dark Matter? Supergravity predicts the gravitino, analog of W and Z bosons in electroweak theory;
More informationSearches for SUSY in events with two or more leptons in CMS
Searches for SUSY in events with two or more leptons in CMS On behalf of the CMS Collaboration Eidgenössische Technische Hochschule Zürich (ETH Zurich), Email: pablom@cern.ch We present results of searches
More informationat Low and High Q 2 at H1
1 Measurement of F c c and F b b at Low and High Q at H1 Tatsiana Klimkovich DESY, FLC, H1 Contents Heavy Flavour Production in Perturbative QCD H1 Experiment at HERA Motivation for the Analysis Inclusive
More informationProbing Majorana Phases and Neutrino Mass Spectrum in the Higgs Triplet Model at the LHC
Probing Majorana Phases and Neutrino Mass Spectrum in the Higgs Triplet Model at the LHC Andrew Akeroyd National Cheng Kung University, Tainan, Taiwan TeV scale mechanisms ( testable ) for neutrino mass
More informationPresenting limits of simplified dark matter models from collider searches in. 0 m DM planes and selfannihilation crosssections.
Internal working document not intended for broader distribution Presenting limits of simplified dark matter models from collider searches in SD/SI m DM planes and selfannihilation crosssections. Oliver
More informationImplications of CMS searches for the Constrained MSSM A Bayesian approach
Implications of CMS searches for the Constrained MSSM A Bayesian approach Małgorzata Kazana, YueLin Sming Tsai On behalf of the BayesFITS group National Centre for Nuclear Research Warsaw, Poland BayesFITS,
More informationGammarays from Dark Matter MiniSpikes in Andromeda Galaxy M31. Mattia Fornasa Dipartimento di Fisica G. Galilei I.N.F.N. Padova
Gammarays from Dark Matter MiniSpikes in Andromeda Galaxy M31 Mattia Fornasa Dipartimento di Fisica G. Galilei I.N.F.N. Padova based on astroph/0703757 by M. Fornasa, M. Taoso and G.Bertone Journal
More informationThursday, 14 March, 13
The Hot Big Bang http://www.bayho.com/info/vote universe @ the big bang was dense at the Planck time (t ~ 1043 sec) our visible universe was ~ 0.01 cm across (10 30 smaller) but any observer only sees
More informationarxiv:hepph/9906521v1 28 Jun 1999
PROCEEDINGS Yukawa Unification on the Bilinear RParity model Instituto Superior Técnico, Departamento de Física A. Rovisco Pais 1, 1049001 Lisboa, Portugal Email: fromao@alfa.ist.utl.pt arxiv:hepph/990651v1
More informationSearches for Physics Beyond the Standard Model at the LHC. Karl Jakobs Physikalisches Institut Universität Freiburg
Searches for Physics Beyond the Standard Model at the LHC Karl Jakobs Physikalisches Institut Universität Freiburg Outline of the lectures: 1. Introduction. Brief summary of detector performance and Standard
More informationTop rediscovery at ATLAS and CMS
Top rediscovery at ATLAS and CMS on behalf of ATLAS and CMS collaborations CNRS/IN2P3 & UJF/ENSPG, LPSC, Grenoble, France Email: julien.donini@lpsc.in2p3.fr We describe the plans and strategies of the
More informationHiggs and Electroweak Physics
Higgs and Electroweak Physics [theory summary] Southampton University & Rutherford Appleton LAB WIN2015 June 12, 2015, MPIK Heidelberg 1 Present: impressive success of LHC RUN 1 on the Higgs&EW Physics
More informationBounding the Higgs width at the LHC
Bounding the Higgs width at the LHC Higgs XSWG workshop, June 2014 John Campbell, Fermilab with K. Ellis, C. Williams 1107.5569, 1311.3589, 1312.1628 Reminder of the method This is the essence of the original
More informationMass hierarchy and physics beyond the Standard Model
Mass hierarchy and physics beyond the Standard Model I. Antoniadis International School of subnuclear physics  51st Course Reflections on the next step for LHC; Erice, 24 June  3 July 2013 Mass hierarchy
More informationHigh Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions
High Energy Physics Lecture 4 More kinematics and a picture show of particle collisions 1 Recall from the previous lecture: the momentum of the scattered Particle in an elastic collision is given by p
More informationHighlights of Recent CMS Results. Dmytro Kovalskyi (UCSB)
Highlights of Recent CMS Results Dmytro Kovalskyi (UCSB) Introduction Number of CMS publication is over 0 already It is very hard to review all the recent results in one talk This talk concentrates on
More informationAspects of Electroweak Symmetry Breaking in Physics Beyond the Standard Model
Aspects of Electroweak Symmetry Breaking in Physics Beyond the Standard Model Peter Athron Department of Physics and Astronomy University of Glasgow Presented as a thesis for the degree of Ph.D. in the
More informationHigh Precision Tools for Slepton Pair Production Processes at Hadron Colliders
High Precision Tools for Slepton Pair Production Processes at Hadron Colliders Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften am Fachbereich Physik, Mathematik und Informatik der
More informationIntroduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.
June 2012 Introduction to SME and Scattering Theory Don Colladay New College of Florida Sarasota, FL, 34243, U.S.A. This lecture was given at the IUCSS summer school during June of 2012. It contains a
More informationarxiv:hepph/9310295v1 17 Oct 1993
HUTFT9351 Signatures of leftright symmetry at high energies 1 arxiv:hepph/9310295v1 17 Oct 1993 J. Maalampi 2 Department of Theoretical Physics, University of Helsinki Helsinki, Finland Abstract We
More informationdecays at LEP2 and NLC
Search for flavor lepton number violation in slepton decays at LEP2 and NLC arxiv:hepph/9511464v1 30 Nov 1995 N.V.Krasnikov TH Division, CERN, CH 1211, Geneva 23, Switzerland November, 1995 Abstract We
More informationThe Compact Muon Solenoid Experiment. CMS Note. Mailing address: CMS CERN, CH1211 GENEVA 23, Switzerland. D. J. Mangeol, U.
Available on CMS information server CMS NOTE 6/96 The Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH11 GENEVA 3, Switzerland July, 6 Search for χ decays to ττ and SUSY mass spectrum
More informationSearch for Dark Matter at the LHC
Search for Dark Matter at the LHC Steven Lowette Vrije Universiteit Brussel  IIHE 19 November 2014 3rd CosPa Meeting Université de Liège Content Introduction Generic DM searches at the LHC Explicit DM
More informationProduction of Dark Matter in the Early Universe
Production of Dark Matter in the Early Universe Ulrich Feindt May 7, 2010 1 / 27 Outline Introduction Boltzmann equation Cold Dark Matter Hot Dark Matter Conclusion 2 / 27 Introduction Equilibrium in the
More informationarxiv:1006.5339v1 [hepph] 28 Jun 2010
FRPHENO2010021 arxiv:1006.5339v1 [hepph] 28 Jun 2010 NLO QCD corrections to 4 bquark production University of Illinois at UrbanaChampaign, Urbana IL, 61801 USA Email: ngreiner@illinois.edu Alberto
More informationThe High Redshift Universe Reprise
The High Redshift Universe Reprise Planck time Particle physics stuff Inflation Element creation All in first 1000 seconds Bit of a snooze for the next 400000 years Atoms form from the ions and electrons
More informationCalorimetry in particle physics experiments
Calorimetry in particle physics experiments Unit n. 8 Calibration techniques Roberta Arcidiacono Lecture overview Introduction Hardware Calibration Test Beam Calibration Insitu Calibration (EM calorimeters)
More informationParticle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims
Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 7 : Symmetries and the Quark Model Prof. M.A. Thomson Michaelmas 2011 206 Introduction/Aims Symmetries play a central role in particle physics;
More informationMonodromies, Fluxes, and Compact ThreeGeneration Ftheory GUTs
arxiv:0906.4672 CALT682733 Monodromies, Fluxes, and Compact ThreeGeneration Ftheory GUTs arxiv:0906.4672v2 [hepth] 1 Jul 2009 Joseph Marsano, Natalia Saulina, and Sakura SchäferNameki California
More informationBeauty Production and Identification at CMS
Beauty Production and Identification at CMS Alexander Schmidt PhysikInstitut presented at: Outline  the CMS detector  bproduction in hadron collisions  applications of bidentification methods  some
More informationPhysik des Higgs Bosons. Higgs decays V( ) Re( ) Im( ) Figures and calculations from A. Djouadi, Phys.Rept. 457 (2008) 1216
: Higgs decays V( ) Re( ) Im( ) Figures and calculations from A. Djouadi, Phys.Rept. 457 (2008) 1216 1 Reminder 10.6.2014 Higgs couplings: 2 Reminder 10.6.2014 Higgs BF as a function of mh Higgs total
More informationBeyond the Hype: The Status of the ATLAS Experiment and the Large Hadron Collider at CERN. Kenneth Johns University of Arizona
Beyond the Hype: The Status of the ATLAS Experiment and the Large Hadron Collider at CERN Kenneth Johns University of Arizona A Dream LHC Schedule LHC (Large Hadron Collider) 3 First Beam in the LHC September
More informationRisultati recenti dell'esperimento CMS ad LHC e prospettive per il run a 14 TeV
Risultati recenti dell'esperimento CMS ad LHC e prospettive per il run a 14 TeV Luca Lista INFN Napoli 1 78 reconstructed vertices CMS experiment CMS recorded 5fb1 at 7 TeV and 20 fb1 at 8 TeV 2 Electroweak
More informationChannels & Challenges New Physics at LHC
Channels & Challenges New Physics at LHC Jürgen Reuter Carleton University, Ottawa Southampton, 15. January 2007 The success of the Standard Model Standard Model describes microcosm gauge interactions:
More informationFundamental Particles, Fundamental Questions. Elizabeth H. Simmons Dean and Professor, Lyman Briggs College
Fundamental Particles, Fundamental Questions Elizabeth H. Simmons Dean and Professor, Lyman Briggs College The smallest pieces of matter Nuclear physics and particle physics study the smallest known building
More informationSupersymmetry Supergravity Superstring Supercolliders
The Super Era of SubAtomic Particle Physics Jay Hauser Abstract: Particle physics has now moved into the "Super" era, in which Supersymmetry, Supergravity, and Superstring theories will be investigated
More informationIntroduction: Measurements in Particle Physics
Subatomic Physics: Particle Physics Lecture 2 Introduction to Measurements in Particle Physics Measuring properties of particles and interactions Particle quantum numbers and conservation laws Review of
More informationConsiderations on supersymmetric Dark Matter beyond the MSSM
Considerations on supersymmetric Dark Matter beyond the MSSM Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen JuliusMaximiliansUniversität Würzburg vorgelegt von Florian
More informationOpen access to data and analysis tools from the CMS experiment at the LHC
Open access to data and analysis tools from the CMS experiment at the LHC Thomas McCauley (for the CMS Collaboration and QuarkNet) University of Notre Dame, USA thomas.mccauley@cern.ch! 5 Feb 2015 Outline
More informationPhysik des Higgs Bosons. Higgs decays V( ) Re( ) Im( ) Figures and calculations from A. Djouadi, Phys.Rept. 457 (2008) 1216
: Higgs decays V( ) Re( ) Im( ) Figures and calculations from A. Djouadi, Phys.Rept. 457 (2008) 1216 1 Reminder 10.6.2014 Higgs couplings: 2 Reminder 10.6.2014 Higgs BF as a function of mh Higgs total
More informationComputation of Neutrino Masses in R parity Violating Supersymmetry in SOFTSUSY
Computation of Neutrino Masses in R parity Violating Supersymmetry in SOFTSUSY B.C. Allanach a, C.H. Kom a,b, M. Hanussek c a DAMTP, CMS, University of Cambridge, Wilberforce road, Cambridge, CB3 0WA,
More informationModel Building in AlmostCommutative Geometry
Model Building in AlmostCommutative Geometry Christoph Stephan Institut für Mathematik Universität Potsdam NCG and Particle Physics Leiden 2013 Overview 1 NCG: Basic Ideas 2 The Standard Model 3 Beyond
More information1 Introduction. 1 There may, of course, in principle, exist other universes, but they are not accessible to our
1 1 Introduction Cosmology is the study of the universe as a whole, its structure, its origin, and its evolution. Cosmology is soundly based on observations, mostly astronomical, and laws of physics. These
More informationPX434 Physics of the Standard Model Dr Steven Boyd : P448. ATLAS Event Display
PX434 Physics of the Standard Model Dr Steven Boyd : P448 ATLAS Event Display Intro Stuff Lectures are divided in chapters each chapter has a writeup which will be put online There is a module homepage
More informationLooking for Magnetic Monopoles AT The Large Hadron Collider. Vicente Vento Universidad de ValenciaIFIC
Looking for Magnetic Monopoles AT The Large Hadron Collider Vicente Vento Universidad de ValenciaIFIC Luis Epele Huner Fanchiotti Carlos García Canal Vasiliki Mitsou Introduction Monopoles Monopole Production
More informationBasic Nuclear Concepts
Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section
More informationScalar Mediated Fermion Masses for Technicolor
HELSINKI INSTITUTE OF PHYSICS INTERNAL REPORT SERIES HIP0104 Scalar Mediated Fermion Masses for Technicolor Matti Antola Helsinki Institute of Physics and Division of Elementary Particle Physics Department
More informationPhysics Beyond the Standard Model
2014 BUSSTEPP LECTURES Physics Beyond the Standard Model Ben Gripaios Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom. November 11, 2014 Email: gripaios@hep.phy.cam.ac.uk Contents
More informationWhy the high lying glueball does not mix with the neighbouring f 0. Abstract
Why the high lying glueball does not mix with the neighbouring f 0. L. Ya. Glozman Institute for Theoretical Physics, University of Graz, Universitätsplatz 5, A800 Graz, Austria Abstract Chiral symmetry
More informationThe Higgs Boson. Linac08 Victoria BC, Canada CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS
CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada
More informationFundamental Physics at Extreme High Energies
Fundamental Physics at Extreme High Energies Michael Kachelrieß NTNU, Trondheim [] Outline: Introduction Testing (new?) strong interactions Lorentz invariance violation Topological defects & superheavy
More informationA Study of the Top Quark Production Threshold at a Future ElectronPositron Linear Collider
A Study of the Top Quark Production Threshold at a Future ElectronPositron Linear Collider Filimon Gournaris Department of Physics and Astronomy University College London A thesis submitted for the degree
More informationInitial sensitivity studies of a dark matterinspired SUSY model at the LHC
University of Amsterdam NIKHEF Bachelorthesis in physics, July 10 th 2015 Initial sensitivity studies of a dark matterinspired SUSY model at the LHC Author: Wiebe Stolp Supervisors: Ingrid Deigaard Paul
More informationThreenucleon interaction dynamics studied via the deuteronproton breakup. Elżbieta Stephan Institute of Physics, University of Silesia
Threenucleon interaction dynamics studied via the deuteronproton breakup Elżbieta Stephan Institute of Physics, University of Silesia Studies of the 1 H(d,pp)n Breakup at 130 MeV University of Silesia,
More information0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3
Chapter 16 Constituent Quark Model Quarks are fundamental spin 1 particles from which all hadrons are made up. Baryons consist of three quarks, whereas mesons consist of a quark and an antiquark. There
More informationFrom Jet Scaling to Jet Vetos
From Jet Scaling to Jet Vetos Heidelberg DESY, 2/202 LHC Higgs analyses Two problems for LHC Higgs analyses [talks Rauch, Englert] observe H b b decays [fat Higgs jets, Marcel s talk] 2 understand jet
More informationGauge theories and the standard model of elementary particle physics
Gauge theories and the standard model of elementary particle physics Mark Hamilton 21st July 2014 1 / 35 Table of contents 1 The standard model 2 3 2 / 35 The standard model The standard model is the most
More informationWeak Interactions: towards the Standard Model of Physics
Weak Interactions: towards the Standard Model of Physics Weak interactions From βdecay to Neutral currents Weak interactions: are very different world CPviolation: power of logics and audacity Some experimental
More informationAllowed and observable phases in twohiggsdoublet Standard Models
Allowed and observable phases in twohiggsdoublet Standard Models G Sartori and G Valente Dipartimento di Fisica,Università di Padova and INFN, Sezione di Padova via Marzolo 8, I 35131 Padova, Italy (email:
More informationarxiv:hepph/0201001v1 31 Dec 2001
TIFR/TH/149 NUBTH/35 arxiv:hepph/1v1 31 Dec 1 Supersymmetric Dark Matter and Yukawa Unification Utpal Chattopadhyay (a), Achille Corsetti (b) and Pran Nath (b) (a) Department of Theoretical Physics,
More informationThe Supersymmetric Standard Model. FB Physik, D06099 Halle, Germany. Rutgers University. Piscataway, NJ 088550849, USA
hepth/yymmnnn The Supersymmetric Standard Model Jan Louis a, Ilka Brunner b and Stephan J. Huber c a Martin{Luther{Universitat Halle{Wittenberg, FB Physik, D06099 Halle, Germany email:j.louis@physik.unihalle.de
More informationSession 42 Review The Universe, and its Dark Side
95% Session 42 Review The Universe, and its Dark Side Dec 9, 2011 Email: ph116@u.washington.edu Announcements Final exam: Monday 12/12, 2:304:20 pm Same length/format as previous exams (but you can have
More informationAdiabatic Expansion. From the Friedmann equations, it is straightforward to appreciate that cosmic expansion is an adiabatic process:
Adiabatic Expansion From the Friedmann equations, it is straightforward to appreciate that cosmic expansion is an adiabatic process: In other words, there is no ``external power responsible for pumping
More information