1.2 The Strain-Displacement Relations

Size: px
Start display at page:

Download "1.2 The Strain-Displacement Relations"

Transcription

1 1. The Strain-Displacement Relations The strain was introdced in ook I: 4. The concepts eamined there are now etended to the case of strains which var continosl throghot a material The Strain-Displacement Relations Normal Strain Consider a line element of length emanating from position (, ) and ling in the - direction, denoted b A in Fig After deformation the line element occpies A, having ndergone a translation, etension and rotation. (, ) (, ) A A Figre 1..1: deformation of a line element The particle that was originall at has ndergone a displacement (, ) and the other end of the line element has ndergone a displacement (, ). the definition of (small) normal strain, In the limit 0 one has A A (, ) (, ) (1..1) A (1..) This partial derivative is a displacement gradient, a measre of how rapid the displacement changes throgh the material, and is the strain at (, ). Phsicall, it represents the (approimate) nit change in length of a line element, as indicated in Fig Kell

2 A A Figre 1..: nit change in length of a line element Similarl, b considering a line element initiall ling in the direction, the strain in the direction can be epressed as Shear Strain (1..3) The particles A and in Fig also ndergo displacements in the direction and this is shown in Fig In this case, one has (1..4) (, ) A (, ) A Figre 1..3: deformation of a line element A similar relation can be derived b considering a line element initiall ling in the direction. A smmar is given in Fig From the figre, / tan 1 / provided that (i) is small and (ii) the displacement gradient / is small. A similar epression for the angle can be derived, and hence the shear strain can be written in terms of displacement gradients. 10 Kell

3 Figre 1..4: strains in terms of displacement gradients The Small-Strain Stress-Strain Relations In smmar, one has 1 -D Strain-Displacement relations (1..5) 1.. Geometrical Interpretation of Small Strain A geometric interpretation of the strain was given in ook I: This interpretation is repeated here, onl now in terms of displacement gradients. Positive Normal Strain Fig. 1..5a, Negative Normal Strain Fig 1..5b, 1 0, 0, 0 (1..6) 1 0, 0, 0 (1..7) 11 Kell

4 () ( ) () Figre 1..5: some simple deformations; (a) positive normal strain, (b) negative normal strain, (c) simple shear Simple Shear Fig. 1..5c, ( a) ( b) (c) 1 1 0, 0, (1..8) Pre Shear Fig 1..6a, 1 0, 0, (1..9) 1..3 The Rotation Consider an arbitrar deformation (omitting normal strains for ease of description), as shown in Fig As sal, the angles and are small, eqal to their tangents, and /, /. () () 1 Figre 1..6: arbitrar deformation (shear and rotation) 1 Kell

5 Now this arbitrar deformation can be decomposed into a pre shear and a rigid rotation 1 as depicted in Fig In the pre shear,. In the rotation, the 1 angle of rotation is then. arbitrar shear strain pre shear rotation (no strain) Figre 1..7: decomposition of a strain into a pre shear and a rotation This leads one to define the rotation of a material particle,, the signifing the ais abot which the element is rotating: 1 (1..10) The rotation will in general var throghot a material. When the rotation is everwhere ero, the material is said to be irrotational. For a pre rotation, note that 1 0, (1..11) 13 Kell

6 1..4 Fiing Displacements The strains give information abot the deformation of material particles bt, since the do not encompass translations and rotations, the do not give information abot the precise location in space of particles. To determine this, one mst specif three displacement components (in two-dimensional problems). Mathematicall, this is eqivalent to saing that one cannot niqel determine the displacements from the strain-displacement relations Eample Consider the strain field 0.01, 0. The displacements can be obtained b integrating the strain-displacement relations: d 0.01 d g( ) f ( ) (1..1) where f and g are nknown fnctions of and respectivel. Sbstitting the displacement epressions into the shear strain relation gives f ( ) g( ). (1..13) An epression of the form F( ) G( ) which holds for all and implies that F and G are constant 1. Since f, g are constant, one can integrate to get f ( ) A D, g( ) C. From 1..13, C D, and A C C (1..14) There are three arbitrar constants of integration, which can be determined b specifing three displacement components. For eample, sppose that it is known that ( 0,0) 0, (0,0) 0, (0, a) b. (1..15) In that case, A 0, 0, C b / a, and, finall, 0.01 ( b / a) ( b / a) (1..16) which corresponds to Fig. 1..8, with ( b / a) being the (tan of the small) angle b which the element has rotated. 1 since, if this was not so, a change in wold change the left hand side of this epression bt wold not change the right hand side and so the eqalit cannot hold 14 Kell

7 b a Figre 1..8: an element ndergoing a normal strain and a rotation In general, the displacement field will be of the form A C C (1..17) and indeed Eqn is of this form. Phsicall, A, and C represent the possible rigid bod motions of the material as a whole, since the are the same for all material particles. A corresponds to a translation in the direction, corresponds to a translation in the direction, and C corresponds to a positive (conterclockwise) rotation Three Dimensional Strain The three-dimensional stress-strain relations analogos to Eqns are, 1,, 1 1, 3-D Stress-Strain relations (1..18) The rotations are 1 1 1,, (1..19) 1..6 Problems 1. The displacement field in a material is given b A 3, A where A is a small constant. 15 Kell

8 (a) Evalate the strains. What is the rotation? Sketch the deformation and an rigid bod motions of a differential element at the point ( 1, 1) (b) Sketch the deformation and rigid bod motions at the point ( 0, ), b sing a pre shear strain sperimposed on the rotation.. The strains in a material are given b, 0, Evalate the displacements in terms of three arbitrar constants of integration, in the form of Eqn , A C C What is the rotation? 3. The strains in a material are given b A, A, A where A is a small constant. Evalate the displacements in terms of three arbitrar constants of integration. What is the rotation? 4. Show that, in a state of plane strain ( 0 ) with ero bod force, e where e is the volmetric strain (dilatation), the sm of the normal strains: e (see ook I, 4.3). 16 Kell

Connecting Transformational Geometry and Transformations of Functions

Connecting Transformational Geometry and Transformations of Functions Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.

More information

Chapter 2. ( Vasiliy Koval/Fotolia)

Chapter 2. ( Vasiliy Koval/Fotolia) hapter ( Vasili Koval/otolia) This electric transmission tower is stabilied b cables that eert forces on the tower at their points of connection. In this chapter we will show how to epress these forces

More information

Addition and Subtraction of Vectors

Addition and Subtraction of Vectors ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b

More information

Plane Stress Transformations

Plane Stress Transformations 6 Plane Stress Transformations ASEN 311 - Structures ASEN 311 Lecture 6 Slide 1 Plane Stress State ASEN 311 - Structures Recall that in a bod in plane stress, the general 3D stress state with 9 components

More information

In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)

In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1) Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and

More information

ES240 Solid Mechanics Fall 2007. Stress field and momentum balance. Imagine the three-dimensional body again. At time t, the material particle ( x, y,

ES240 Solid Mechanics Fall 2007. Stress field and momentum balance. Imagine the three-dimensional body again. At time t, the material particle ( x, y, S40 Solid Mechanics Fall 007 Stress field and momentum balance. Imagine the three-dimensional bod again. At time t, the material particle,, ) is under a state of stress ij,,, force per unit volume b b,,,.

More information

3D Stress Components. From equilibrium principles: τ xy = τ yx, τ xz = τ zx, τ zy = τ yz. Normal Stresses. Shear Stresses

3D Stress Components. From equilibrium principles: τ xy = τ yx, τ xz = τ zx, τ zy = τ yz. Normal Stresses. Shear Stresses 3D Stress Components From equilibrium principles:, z z, z z The most general state of stress at a point ma be represented b 6 components Normal Stresses Shear Stresses Normal stress () : the subscript

More information

Introduction to Plates

Introduction to Plates Chapter Introduction to Plates Plate is a flat surface having considerabl large dimensions as compared to its thickness. Common eamples of plates in civil engineering are. Slab in a building.. Base slab

More information

Affine Transformations

Affine Transformations A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates

More information

EQUILIBRIUM STRESS SYSTEMS

EQUILIBRIUM STRESS SYSTEMS EQUILIBRIUM STRESS SYSTEMS Definition of stress The general definition of stress is: Stress = Force Area where the area is the cross-sectional area on which the force is acting. Consider the rectangular

More information

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors SECTION 5. Eact First-Order Equations 09 SECTION 5. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential

More information

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures and has been around a long time! In this brief Section we discuss the basic coordinate geometr of a circle - in particular

More information

SECTION 7-4 Algebraic Vectors

SECTION 7-4 Algebraic Vectors 7-4 lgebraic Vectors 531 SECTIN 7-4 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors

More information

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures. In this brief Section we discuss the basic coordinate geometr of a circle - in particular the basic equation representing

More information

Chapter 4 One Dimensional Kinematics

Chapter 4 One Dimensional Kinematics Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj Math, Trigonometr and Vectors Geometr 33º What is the angle equal to? a) α = 7 b) α = 57 c) α = 33 d) α = 90 e) α cannot be determined α Trig Definitions Here's a familiar image. To make predictive models

More information

2D Geometrical Transformations. Foley & Van Dam, Chapter 5

2D Geometrical Transformations. Foley & Van Dam, Chapter 5 2D Geometrical Transformations Fole & Van Dam, Chapter 5 2D Geometrical Transformations Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2D Geometrical Transformations

More information

Vector Calculus: a quick review

Vector Calculus: a quick review Appendi A Vector Calculus: a quick review Selected Reading H.M. Sche,. Div, Grad, Curl and all that: An informal Tet on Vector Calculus, W.W. Norton and Co., (1973). (Good phsical introduction to the subject)

More information

STIFFNESS OF THE HUMAN ARM

STIFFNESS OF THE HUMAN ARM SIFFNESS OF HE HUMAN ARM his web resource combines the passive properties of muscles with the neural feedback sstem of the short-loop (spinal) and long-loop (transcortical) reflees and eamine how the whole

More information

Beam Deflections: Second-Order Method

Beam Deflections: Second-Order Method 10 eam Deflections: Second-Order Method 10 1 Lecture 10: EM DEFLECTIONS: SECOND-ORDER METHOD TLE OF CONTENTS Page 10.1 Introduction..................... 10 3 10.2 What is a eam?................... 10 3

More information

Teacher Page. 1. Reflect a figure with vertices across the x-axis. Find the coordinates of the new image.

Teacher Page. 1. Reflect a figure with vertices across the x-axis. Find the coordinates of the new image. Teacher Page Geometr / Da # 10 oordinate Geometr (5 min.) 9-.G.3.1 9-.G.3.2 9-.G.3.3 9-.G.3. Use rigid motions (compositions of reflections, translations and rotations) to determine whether two geometric

More information

Lines and Planes 1. x(t) = at + b y(t) = ct + d

Lines and Planes 1. x(t) = at + b y(t) = ct + d 1 Lines in the Plane Lines and Planes 1 Ever line of points L in R 2 can be epressed as the solution set for an equation of the form A + B = C. The equation is not unique for if we multipl both sides b

More information

2.1 Three Dimensional Curves and Surfaces

2.1 Three Dimensional Curves and Surfaces . Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

More information

LINEAR FUNCTIONS OF 2 VARIABLES

LINEAR FUNCTIONS OF 2 VARIABLES CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for

More information

Modeling Roughness Effects in Open Channel Flows D.T. Souders and C.W. Hirt Flow Science, Inc.

Modeling Roughness Effects in Open Channel Flows D.T. Souders and C.W. Hirt Flow Science, Inc. FSI-2-TN6 Modeling Roghness Effects in Open Channel Flows D.T. Soders and C.W. Hirt Flow Science, Inc. Overview Flows along rivers, throgh pipes and irrigation channels enconter resistance that is proportional

More information

C3: Functions. Learning objectives

C3: Functions. Learning objectives CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

More information

Every manufacturer is confronted with the problem

Every manufacturer is confronted with the problem HOW MANY PARTS TO MAKE AT ONCE FORD W. HARRIS Prodction Engineer Reprinted from Factory, The Magazine of Management, Volme 10, Nmber 2, Febrary 1913, pp. 135-136, 152 Interest on capital tied p in wages,

More information

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image. Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical

More information

Section V.2: Magnitudes, Directions, and Components of Vectors

Section V.2: Magnitudes, Directions, and Components of Vectors Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

Stress Analysis, Strain Analysis, and Shearing of Soils

Stress Analysis, Strain Analysis, and Shearing of Soils C H A P T E R 4 Stress Analysis, Strain Analysis, and Shearing of Soils Ut tensio sic vis (strains and stresses are related linearly). Robert Hooke So I think we really have to, first, make some new kind

More information

Central Angles, Arc Length, and Sector Area

Central Angles, Arc Length, and Sector Area CHAPTER 5 A Central Angles, Arc Length, and Sector Area c GOAL Identify central angles and determine arc length and sector area formed by a central angle. Yo will need a calclator a compass a protractor

More information

In this chapter we introduce the idea that force times distance. Work and Kinetic Energy. Big Ideas 1 2 3. is force times distance.

In this chapter we introduce the idea that force times distance. Work and Kinetic Energy. Big Ideas 1 2 3. is force times distance. Big Ideas 1 Work 2 Kinetic 3 Power is force times distance. energy is one-half mass times velocity sqared. is the rate at which work is done. 7 Work and Kinetic Energy The work done by this cyclist can

More information

Vectors. Chapter Outline. 3.1 Coordinate Systems 3.2 Vector and Scalar Quantities 3.3 Some Properties of Vectors

Vectors. Chapter Outline. 3.1 Coordinate Systems 3.2 Vector and Scalar Quantities 3.3 Some Properties of Vectors P U Z Z L E R When this honebee gets back to its hive, it will tell the other bees how to return to the food it has found. moving in a special, ver precisel defined pattern, the bee conves to other workers

More information

PHY2061 Enriched Physics 2 Lecture Notes Relativity 4. Relativity 4

PHY2061 Enriched Physics 2 Lecture Notes Relativity 4. Relativity 4 PHY6 Enriched Physics Lectre Notes Relativity 4 Relativity 4 Disclaimer: These lectre notes are not meant to replace the corse textbook. The content may be incomplete. Some topics may be nclear. These

More information

3 Optimizing Functions of Two Variables. Chapter 7 Section 3 Optimizing Functions of Two Variables 533

3 Optimizing Functions of Two Variables. Chapter 7 Section 3 Optimizing Functions of Two Variables 533 Chapter 7 Section 3 Optimizing Functions of Two Variables 533 (b) Read about the principle of diminishing returns in an economics tet. Then write a paragraph discussing the economic factors that might

More information

COMPONENTS OF VECTORS

COMPONENTS OF VECTORS COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two

More information

CHAPTER ONE VECTOR GEOMETRY

CHAPTER ONE VECTOR GEOMETRY CHAPTER ONE VECTOR GEOMETRY. INTRODUCTION In this chapter ectors are first introdced as geometric objects, namely as directed line segments, or arrows. The operations of addition, sbtraction, and mltiplication

More information

Section 11.4: Equations of Lines and Planes

Section 11.4: Equations of Lines and Planes Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R

More information

Click here for answers.

Click here for answers. CHALLENGE PROBLEMS: CHALLENGE PROBLEMS 1 CHAPTER A Click here for answers S Click here for solutions A 1 Find points P and Q on the parabola 1 so that the triangle ABC formed b the -ais and the tangent

More information

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN COMPLX STRSS TUTORIAL COMPLX STRSS AND STRAIN This tutorial is not part of the decel unit mechanical Principles but covers elements of the following sllabi. o Parts of the ngineering Council eam subject

More information

3. Fluid Dynamics. 3.1 Uniform Flow, Steady Flow

3. Fluid Dynamics. 3.1 Uniform Flow, Steady Flow 3. Flid Dynamics Objectives Introdce concepts necessary to analyse flids in motion Identify differences between Steady/nsteady niform/non-niform compressible/incompressible flow Demonstrate streamlines

More information

Section 5-9 Inverse Trigonometric Functions

Section 5-9 Inverse Trigonometric Functions 46 5 TRIGONOMETRIC FUNCTIONS Section 5-9 Inverse Trigonometric Functions Inverse Sine Function Inverse Cosine Function Inverse Tangent Function Summar Inverse Cotangent, Secant, and Cosecant Functions

More information

The Mathematics of Engineering Surveying (3)

The Mathematics of Engineering Surveying (3) The Mathematics of Engineering Surveing (3) Scenario s a new graduate ou have gained emploment as a graduate engineer working for a major contractor that emplos 2000 staff and has an annual turnover of

More information

Review A: Vector Analysis

Review A: Vector Analysis MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Review A: Vector Analysis A... A-0 A.1 Vectors A-2 A.1.1 Introduction A-2 A.1.2 Properties of a Vector A-2 A.1.3 Application of Vectors

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

Plane Stress Transformations

Plane Stress Transformations 6 Plane Stress Transformations 6 1 Lecture 6: PLANE STRESS TRANSFORMATIONS TABLE OF CONTENTS Page 6.1 Introduction..................... 6 3 6. Thin Plate in Plate Stress................ 6 3 6.3 D Stress

More information

CIVL 7/8117 Chapter 3a - Development of Truss Equations 1/80

CIVL 7/8117 Chapter 3a - Development of Truss Equations 1/80 CIV 7/87 Chapter 3a - Development of Truss Equations /8 Development of Truss Equations Having set forth the foundation on which the direct stiffness method is based, we will now derive the stiffness matri

More information

Higher. Polynomials and Quadratics 64

Higher. Polynomials and Quadratics 64 hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining

More information

Advanced Computer Graphics (2IV40) ~ 3D Transformations. Types (geometric) Types (algebraic) 3D Transformations. y + c 1. x = a 1.

Advanced Computer Graphics (2IV40) ~ 3D Transformations. Types (geometric) Types (algebraic) 3D Transformations. y + c 1. x = a 1. Advanced Computer Graphics (2IV40) ~ 3D Transformations Kees Huiing Huub van de Wetering Winter 2005/6 Tpes (geometric) maintain distances & orientation (LH/RH): rigid bod transforms (rotations, translations)

More information

Core Maths C3. Revision Notes

Core Maths C3. Revision Notes Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

More information

WHITE PAPER. Filter Bandwidth Definition of the WaveShaper S-series Programmable Optical Processor

WHITE PAPER. Filter Bandwidth Definition of the WaveShaper S-series Programmable Optical Processor WHITE PAPER Filter andwidth Definition of the WaveShaper S-series 1 Introdction The WaveShaper family of s allow creation of ser-cstomized filter profiles over the C- or L- band, providing a flexible tool

More information

Elastic Beams in Three Dimensions

Elastic Beams in Three Dimensions Elastic Beams in Three Dimensions Lars Andersen and Søren R.K. Nielsen ISSN 191-7286 DCE Lecture Notes No. 23 Department of Civil Engineering Aalborg Universit Department of Civil Engineering Structural

More information

Factoring bivariate polynomials with integer coefficients via Newton polygons

Factoring bivariate polynomials with integer coefficients via Newton polygons Filomat 27:2 (2013), 215 226 DOI 10.2298/FIL1302215C Published b Facult of Sciences and Mathematics, Universit of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Factoring bivariate polnomials

More information

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable

More information

M PROOF OF THE DIVERGENCE THEOREM AND STOKES THEOREM

M PROOF OF THE DIVERGENCE THEOREM AND STOKES THEOREM 68 Theor Supplement Section M M POOF OF THE DIEGENE THEOEM ND STOKES THEOEM In this section we give proofs of the Divergence Theorem Stokes Theorem using the definitions in artesian coordinates. Proof

More information

I think that starting

I think that starting . Graphs of Functions 69. GRAPHS OF FUNCTIONS One can envisage that mathematical theor will go on being elaborated and etended indefinitel. How strange that the results of just the first few centuries

More information

8. Forced Convection Heat Transfer

8. Forced Convection Heat Transfer 8. Forced Convection Heat Transfer 8.1 Introdction The general definition for convection ma be smmarized to this definition "energ transfer between the srface and flid de to temperatre difference" and

More information

GLOBAL COORDINATE METHOD FOR DETERMINING SENSITIVITY IN ASSEMBLY TOLERANCE ANALYSIS

GLOBAL COORDINATE METHOD FOR DETERMINING SENSITIVITY IN ASSEMBLY TOLERANCE ANALYSIS GOBA COORDINATE METOD FOR DETERMINING SENSITIVIT IN ASSEMB TOERANCE ANASIS Jinsong Gao ewlett-packard Corp. InkJet Business Unit San Diego, CA Kenneth W. Chase Spencer P. Magleb Mechanical Engineering

More information

On the urbanization of poverty

On the urbanization of poverty On the rbanization of poverty Martin Ravallion 1 Development Research Grop, World Bank 1818 H Street NW, Washington DC, USA Febrary 001; revised Jly 001 Abstract: Conditions are identified nder which the

More information

7.3 Parabolas. 7.3 Parabolas 505

7.3 Parabolas. 7.3 Parabolas 505 7. Parabolas 0 7. Parabolas We have alread learned that the graph of a quadratic function f() = a + b + c (a 0) is called a parabola. To our surprise and delight, we ma also define parabolas in terms of

More information

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height

More information

Effect of flow field on open channel flow properties using numerical investigation and experimental comparison

Effect of flow field on open channel flow properties using numerical investigation and experimental comparison INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT Volme 3, Isse 4, 2012 pp.617-628 Jornal homepage: www.ijee.ieefondation.org Effect of flow field on open channel flow properties sing nmerical investigation

More information

More Equations and Inequalities

More Equations and Inequalities Section. Sets of Numbers and Interval Notation 9 More Equations and Inequalities 9 9. Compound Inequalities 9. Polnomial and Rational Inequalities 9. Absolute Value Equations 9. Absolute Value Inequalities

More information

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study Functions and Graphs CHAPTER 2 INTRODUCTION The function concept is one of the most important ideas in mathematics. The stud 2-1 Functions 2-2 Elementar Functions: Graphs and Transformations 2-3 Quadratic

More information

Newton s three laws of motion, the foundation of classical. Applications of Newton s Laws. Chapter 5. 5.1 Equilibrium of a Particle

Newton s three laws of motion, the foundation of classical. Applications of Newton s Laws. Chapter 5. 5.1 Equilibrium of a Particle Chapter 5 Applications of Newton s Laws The soles of hiking shoes are designed to stick, not slip, on rocky srfaces. In this chapter we ll learn abot the interactions that give good traction. By the end

More information

2010 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

2010 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. pplication of forces to the handles of these wrenches will produce a tendenc to rotate each wrench about its end. It is important to know how to calculate this effect and, in some cases, to be able to

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

More information

4 Constrained Optimization: The Method of Lagrange Multipliers. Chapter 7 Section 4 Constrained Optimization: The Method of Lagrange Multipliers 551

4 Constrained Optimization: The Method of Lagrange Multipliers. Chapter 7 Section 4 Constrained Optimization: The Method of Lagrange Multipliers 551 Chapter 7 Section 4 Constrained Optimization: The Method of Lagrange Multipliers 551 LEVEL CURVES 2 7 2 45. f(, ) ln 46. f(, ) 6 2 12 4 16 3 47. f(, ) 2 4 4 2 (11 18) 48. Sometimes ou can classif the critical

More information

10.4 Solving Equations in Quadratic Form, Equations Reducible to Quadratics

10.4 Solving Equations in Quadratic Form, Equations Reducible to Quadratics . Solving Eqations in Qadratic Form, Eqations Redcible to Qadratics Now that we can solve all qadratic eqations we want to solve eqations that are not eactly qadratic bt can either be made to look qadratic

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

2D Geometric Transformations

2D Geometric Transformations 2D Geometric Transformations (Chapter 5 in FVD) 2D Geometric Transformations Question: How do we represent a geometric object in the plane? Answer: For now, assume that objects consist of points and lines.

More information

Polynomials. Jackie Nicholas Jacquie Hargreaves Janet Hunter

Polynomials. Jackie Nicholas Jacquie Hargreaves Janet Hunter Mathematics Learning Centre Polnomials Jackie Nicholas Jacquie Hargreaves Janet Hunter c 26 Universit of Sdne Mathematics Learning Centre, Universit of Sdne 1 1 Polnomials Man of the functions we will

More information

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 379 Chapter 9 DIFFERENTIAL EQUATIONS He who seeks f methods without having a definite problem in mind seeks f the most part in vain. D. HILBERT 9. Introduction In Class XI and in

More information

Partial Derivatives. @x f (x; y) = @ x f (x; y) @x x2 y + @ @x y2 and then we evaluate the derivative as if y is a constant.

Partial Derivatives. @x f (x; y) = @ x f (x; y) @x x2 y + @ @x y2 and then we evaluate the derivative as if y is a constant. Partial Derivatives Partial Derivatives Just as derivatives can be used to eplore the properties of functions of 1 variable, so also derivatives can be used to eplore functions of 2 variables. In this

More information

Deflections. Question: What are Structural Deflections?

Deflections. Question: What are Structural Deflections? Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the

More information

COMPUTER GRAPHICS TECHNIQUES FOR MODELING PAGE TURNING

COMPUTER GRAPHICS TECHNIQUES FOR MODELING PAGE TURNING Working Paper Series ISSN 77-777X COMPUTER GRAPHICS TECHNIQUES FOR MODELING PAGE TURNING eronica Liesaputra and Ian H. Witten Working Paper: 08/2007 October 2007 2007 eronica Liesaputra and Ian H. Witten

More information

EXPANDING THE CALCULUS HORIZON. Hurricane Modeling

EXPANDING THE CALCULUS HORIZON. Hurricane Modeling EXPANDING THE CALCULUS HORIZON Hurricane Modeling Each ear population centers throughout the world are ravaged b hurricanes, and it is the mission of the National Hurricane Center to minimize the damage

More information

SAMPLE. Polynomial functions

SAMPLE. Polynomial functions Objectives C H A P T E R 4 Polnomial functions To be able to use the technique of equating coefficients. To introduce the functions of the form f () = a( + h) n + k and to sketch graphs of this form through

More information

A CLASSROOM NOTE ON PARABOLAS USING THE MIRAGE ILLUSION

A CLASSROOM NOTE ON PARABOLAS USING THE MIRAGE ILLUSION A CLASSROOM NOTE ON PARABOLAS USING THE MIRAGE ILLUSION Abstract. The present work is intended as a classroom note on the topic of parabolas. We present several real world applications of parabolas, outline

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

More information

Straight Line. Paper 1 Section A. O xy

Straight Line. Paper 1 Section A. O xy PSf Straight Line Paper 1 Section A Each correct answer in this section is worth two marks. 1. The line with equation = a + 4 is perpendicular to the line with equation 3 + + 1 = 0. What is the value of

More information

Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

Lecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length...

Lecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length... CONTENTS i Contents Lecture Introduction. Rectangular Coordinate Sstems..................... Vectors.................................. 3 Lecture Length, Dot Product, Cross Product 5. Length...................................

More information

9 Stresses: Beams in Bending

9 Stresses: Beams in Bending 9 Stresses: Beams in Bending The organization of this chapter mimics that of the last chapter on torsion of circular shafts but the stor about stresses in beams is longer, covers more territor, and is

More information

G. GRAPHING FUNCTIONS

G. GRAPHING FUNCTIONS G. GRAPHING FUNCTIONS To get a quick insight int o how the graph of a function looks, it is very helpful to know how certain simple operations on the graph are related to the way the function epression

More information

Direct Variation. 1. Write an equation for a direct variation relationship 2. Graph the equation of a direct variation relationship

Direct Variation. 1. Write an equation for a direct variation relationship 2. Graph the equation of a direct variation relationship 6.5 Direct Variation 6.5 OBJECTIVES 1. Write an equation for a direct variation relationship 2. Graph the equation of a direct variation relationship Pedro makes $25 an hour as an electrician. If he works

More information

Polynomials Past Papers Unit 2 Outcome 1

Polynomials Past Papers Unit 2 Outcome 1 PSf Polnomials Past Papers Unit 2 utcome 1 Multiple Choice Questions Each correct answer in this section is worth two marks. 1. Given p() = 2 + 6, which of the following are true? I. ( + 3) is a factor

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

Chapter 8. Lines and Planes. By the end of this chapter, you will

Chapter 8. Lines and Planes. By the end of this chapter, you will Chapter 8 Lines and Planes In this chapter, ou will revisit our knowledge of intersecting lines in two dimensions and etend those ideas into three dimensions. You will investigate the nature of planes

More information

SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651. 1 x 2 y 2 z 2 4. 1 sx 2 y 2 z 2 2. xy-plane. It is sketched in Figure 11.

SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651. 1 x 2 y 2 z 2 4. 1 sx 2 y 2 z 2 2. xy-plane. It is sketched in Figure 11. SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651 SOLUTION The inequalities 1 2 2 2 4 can be rewritten as 2 FIGURE 11 1 0 1 s 2 2 2 2 so the represent the points,, whose distance from the origin is

More information

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,

More information

Unit 3 (Review of) Language of Stress/Strain Analysis

Unit 3 (Review of) Language of Stress/Strain Analysis Unit 3 (Review of) Language of Stress/Strain Analysis Readings: B, M, P A.2, A.3, A.6 Rivello 2.1, 2.2 T & G Ch. 1 (especially 1.7) Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering

More information

Introduction to polarization of light

Introduction to polarization of light Chapter 2 Introduction to polarization of light This Chapter treats the polarization of electromagnetic waves. In Section 2.1 the concept of light polarization is discussed and its Jones formalism is presented.

More information