Continuity lines in the axial system


 Horace Wells
 2 years ago
 Views:
Transcription
1 Continuity lines in the axial system Lucas Figueiredo and Luiz Amorim Universidade Federal de Pernambuco, Brazil Abstract This paper presents a linear representation of the built environment called continuity line. A continuity line is the aggregation of several axial lines to represent an urban path in its longest extension, respecting a maximum sinuosity previously defined. It is based on two main arguments: first, that the notion of continuity is already embedded in the axial system; and second, that the continuity lines reinforce the relationship between configurational properties and the hidden geometry of the axial maps. 1. Introduction The aim of this paper is to discuss the axial representation of spatial configuration. We start by examining the limitations of the axial model, to propose a new linear representation of the built environment, called continuity line. Its aim is to minimise the impact of representing long lines of movement as single axial lines, and curved and sinuous paths as a series of fragmented lines of sight. This is possible through the aggregation of axial lines to represent an urban path in its maximum extension. The interest of this study is, therefore, to improve the axial system, without challenging its fundaments. Finally, we propose a new taxonomy for urban grids, fundamentally based on the geometrical nature of the grid itself, which emerges from the process of axial aggregation. Space syntax has emerged from the field of morphological studies with a particular rapport: social attributes are deeply embedded in spatial configuration, which, in turn, through its own laws, interfere in the mechanisms of social reproduction (Hillier and Hanson, 1984). Space syntax makes use of techniques to describe the spatial configuration in order to understand to what extent and in which conditions the social and spatial attributes are related. One of its main descriptive tools derives from bidimensional plans, the axial representation of the continuous lines of movement and sight that covers an entire spatial system. The axial representation, and the measures derived from it, has been proven to be successful to study the social and cultural roles of space, particularly for the evaluation of the impact of spatial configuration on pedestrian and vehicular movement patterns, levels of copresence and coawareness, which have also proven to be relevant for the analysis of urban sites and buildings, and the evaluation of design proposals. Indeed, many designers of today take all the knowledge and expertise of space syntax community to the drawing board as an important tool for design decisionmaking. Recent studies, however, have revealed some limitations of the axial representation (Peponis et al, 1997; Turner, 2001; Asami et al, 2003; Dalton, 2001; Thomson, 2003), even though acknowledging its robustness, mostly in its association to the analysis of movement patterns and the probabilistic correlation between configuration and the pattern
2 162 Lucas Figueiredo and Luiz Amorim Figure 64: Three axial representations of the same curved path of encounters. The most relevant critiques that came up to support the central argument of this paper, however, refer to the inadequacy of the axial model to best represent curved and sinuous paths and, at the opposite direction, long axial lines. Despite being presented as an objective procedure, the construction of an axial map is widely open to individual interpretation, particularly when representing curved and sinuous paths (Figueiredo, 2004; Figueiredo and Amorim, 2004). In this sensitive case, the number of axial lines that covers the entire subsystem may vary according to the researcher s interpretation (Figure 64), leading to mistakes, even committed by experienced scholars. As the standard syntactic measures are topological, any variation in the map changes the pattern of spacetospace relationship, therefore compromising the result of the analysis. There are recent attempts to derive axial maps automatically from bidimensional drawings (Batty and Rana, 2002), but they have high computational costs and are still at a preliminary stage. The axial representation of continuous curved and sinuous paths offers another difficulty. The common sense tells us that these paths are often recognised as a continuous line of movement, despite being formed by a sequence of lines of sight. The standard axial representation breaks these continuous lines into a set of short sequential axial lines, misrepresenting important inherent global properties of the spatial system. The Manhattan Paradox is a classic example of this misrepresentation that is often referred to in the literature (Dalton, 2001). Indeed, the standard axial representation is not able to recognise the importance of Broadway within the configuration of the regular grid of the Isle of Manhattan, New York, unless if Broadway is described as a single axial line. This straightening procedure has been used lately to represent axial components of a super grid, such as freeways, and curved and sinuous paths, but without a theoretical framework to support when and how the simplification of the axial map can or should be done. The last important limitation of the axial system to be brought to debate is the generation of long lines. It is common to find in large and complex urban systems long and straight avenues with kilometres of extension that cross large portions of the grid. Because of their length, these long axial lines tend to be highly connected and integrated. These straight paths are lines of movement but are not exactly lines of sight, because you can never see completely down its length at any point (Dalton, 2001, p.3). When these long axial lines are compared to long curved and long sinuous paths that offer similar conditions for long journeys within the grid, an important distortion of the axial model becomes evident: nonstraight paths are broken into a sequence of short lines, therefore their importance is misled and further minimised by the presence of long and highly connected straight lines.
3 Continuity lines in the axial system Recent advances Substantial contributions have been made to refine the axial system and to overcome its limitations. Turner (2001) and Dalton (2001), for example, take the act of navigation in and the perception of the built environment as a key argument to calibrate the axial model. They suggest that when people navigate in spatial systems, slight changes of direction are not necessarily perceived; hence, the angle of intersection between axial lines should be taken into account to adjust the model. The angular analysis, then, measures the topological relation between two lines as a fractional value, proportional to the angle of intersection between them. This procedure does not modify the axial map, but tries to minimise the differences between straight and curved and sinuous paths by modifying the calculation of some syntactic variables. Thomson (2003), on the other hand, suggests the use of the generalisation principle used in cartography, which takes objects that share certain properties, such as width or direction, and generalise or group them to form single entities. This principle describes the tendency for smoothly connected elements to be naturally grouped and perceived as single objects (...) these objects were termed strokes, prompted by the notion of a curve segment drawn in one smooth movement (Thomson, 2003, p.3). Therefore, he proposed the idea of replacing axial lines with linear strokes as a basic spatial representation. Within this framework, curved or sinuous paths are represented as a single linear stroke. In another direction, several studies try to improve the axial system by adding new variables, such as metric distances (Salheen, 2003) or the third dimension (Asami et al, 2003). Asami and colleagues argue that the topography of the site should be taken into account in the axial model, because axial lines are often projections of undulating paths. Therefore, such lines should be broken when the lines of sight are broken. This simple evidence has a fundamental implication to the core of our argument: the standard axial model already represents undulating paths at the vertical planes as single lines of movement. Hence, why not represent curved and sinuous paths at the horizontal plane as single and continuous lines, too? 2. The continuity lines If space syntax descriptions are derived from representations of how an observer perceives the built environment, then curved and sinuous paths could be described as continuous lines of movement if, and only if, they were recognised as a single spatial unit. Our experience in navigating urban systems tells us that there are several situations in which these paths are immediately recognised as single lines of movement, such as costal or riverside streets; paths rounding an obstacle, such as a hill; or curved and sinuous paths that cross open spaces, such as a park lawn. These quasilinear paths are perceived by an observer as a continuous line of movement, as no other choice of movement is offered. These kind of paths can be called firstorder continuity lines (Figueiredo, 2004, Figueiredo and Amorim, 2004). Within dense urban environments, however, lines of sight are frequently obstructed and other choices for roaming around or reaching a destination are at hand. For this reason, these quasilinear paths become less evident. This is why the notion of change of direction is a strong fundament in the axial representation. In these situations, secondorder continuity lines may emerge from a more abstract knowledge of the built environment constructed through movement, or from a concrete knowledge constructed by experiencing
4 164 Lucas Figueiredo and Luiz Amorim Figure 65: LEFT: Angle of continuity. RIGHT: Approximation margin it through time. Hillier has already suggested that at the most elementary level, people move in lines, and tend to approximate lines in more complex routes (Hillier, 1996, p. 153). If this is the case, the notion of lines of movement seems to be more relevant to the exploration of the urban grid, than the notion of lines of sight. While in movement, an observer may miss details of the environment while trying to concentrate on his own path, as Turner (2001) and Dalton (2001) suggest, and may not perceive slight changes of direction as changes of spatial units  axial lines. The standard axial representation already accepts this approach at least in two cases: (a) long axial lines are markedly lines of movement, more than lines of sight; and (b) axial lines representing undulating paths are lines of movement, but are not always lines of sight. If such descriptions are accepted as valid representations of lines of movement, the axial system should accept other types of long paths to be constructed through movement. It seems that there are two ways for overcoming these distortions of the axial model. The first one is to create rules to break axial lines into short segments, concentrating the model on the local properties of the system (Asami et al, 2003), and then improving the methodology to understand how such segments may work together. The second possible description is by aggregating the axial lines to represent curved and sinuous paths, reproducing with more accuracy our experience while immersed in spatial systems. These continuity lines (Figueiredo, 2004, Figueiredo and Amorim, 2004), emerge from the generalisation of the axial map reinforcing the global properties of the system. This process of aggregation, as proposed here, takes several axial lines to represent an urban path in its maximum extension, respecting a maximum sinuosity previously defined, ignoring certain changes of direction, as demonstrated below Rules to create continuity lines The implementation of the aggregation process is based on the angle between the linear continuation of an axial line and the real continuation provided by another axial line closer to one of its extremities. This angle of intersection is called angle of continuity (Figure 65 left). If an axial line has more than one intersecting line close to one of its extremities, the line that has the smallest angle of continuity is chosen as the best continuation for aggregation. However, standard axial maps are freely drawn and intersecting lines do not always share the same intersecting point, creating several trivial
5 Continuity lines in the axial system 165 Figure 66: Approximation margin rings (Hillier and Hanson, 1984, p. 102). As a result, the aggregation procedure has to implement an approximation margin that ignores small distances between intersections to correctly choose the best continuation (Figure 65 right). This margin can be defined by measuring some trivial rings of the map. This procedure works recursively for both extremities, starting from the longest to the shortest lines, with the interest to create the longest, but also the straightest paths available. The aggregation procedure was implemented as a module for Mindwalk (Figueiredo, 2005), a computer program that works with both axial and continuity maps, and tested on a significant set of 22 axial maps, diverse in size and configurational properties (Figueiredo, 2004, p. 74). The map set included several types of urban grids, from several cities from Brazil, Europe and EUA. Each axial map was gradually processed by changing the angle of continuity from 5 to 60 degrees, with an increment of 5 degrees per time, generating 12 different continuity maps. All syntactic variables were calculated for all maps to observe the changes of the configurational properties during the aggregation process (Figure 66). Preliminary tests reveal that the most adequate angle of continuity is a function of the geometry of the grid itself and how the axial maps were originally drawn. Axial maps which were drawn to represent curved and sinuous paths as few axial lines, required wider angles because the changes of direction were slightly abrupt. On the other hand, detailed maps, which represented such paths as many axial lines, required narrower angles and the continuity lines emerged naturally from the maps. In fact, a standard value may not be necessary since the aggregation procedure can be customised to achieve, empirically, the angle of continuity that best represents the most important quasilinear paths of each system. Nevertheless, for comparative studies, a standard value must be used. At the current stage of the research, the preliminary results suggest the angle of 35 degrees (Figueiredo, 2004, p. 56) as a maximum angle of continuity, based on the fact that wider angles may characterise changes of directions and that, within the set, the most relevant sinuous and curved paths emerged within the limit of 35 degrees. Despite this current limitation, the aggregation procedure implemented in Mindwalk (Figueiredo, 2005) has a linear computational time; reduces the number of spatial entities (lines), simplifying the axial maps; and eliminates the distinction between long lines and
6 166 Lucas Figueiredo and Luiz Amorim curved or sinuous paths, as demonstrated below. The software was designed to read any existent axial map (if exported as a drawing exchange file  DXF), but it can also be adapted to create continuity maps from GIS databases that generate roadcentrelines, as the angular analysis proposed by Dalton et al (2003). 3. The emergence of curved and sinuous paths When axial maps are gradually aggregated, continuity lines emerge from their grids revealing long curved and sinuous paths (Figure 66), which seem to assume similar position in the configuration as the preexisting long axial lines. As a result, a clearer hierarchy based on line length become apparent, mainly within organic grids, but also within regular grids. Such effects lead to the investigation of the relationship between metric (length) and topological (configurational) properties The hidden geometry of the axial and continuity maps Hillier (2001) studied the axial maps of 58 cities from four different parts of the world and found clear geometric and syntactic differences between them, such as the length of the axial lines, the angle of incidence of their intersections and significant configurational properties. However, despite these differences, there were powerful invariants, which seem to go across cultures and even across scales of settlements (Hillier, 2001, p. 6). The most surprising of all was the distribution of lengths of the axial lines. Indeed, axial maps of cities contain a large number of short lines and a small number of very long lines, forming approximately a logarithmic distribution (Figure 67). Therefore, although the axial system is topological and relational, it also captures a metric dimension that is expressed as a hierarchy of line lengths. This kind of distribution of a property, or an event, is found in a wide range of phenomena and frequently obeys scale laws (Capra, 1996). In urban morphology, this distribution have also been studied through fractal geometry (Sobreira, 2001; Salingaros, 2003), revealing that there is always a large number of common properties and events that rapidly become a small number of rare ones. Long lines are special because they are the top of an invariant hierarchy that can be found in any axial map. Is such hierarchy of lengths reflected in the configurational properties? To answer this question, the correlation between length and syntactic variables of the analysed sample was calculated (Table 68), first, for the standard axial maps, and second, after they being grouped at an angle of aggregation of 35 degrees, for the continuity maps. Table 68 shows the correlation between line lengths and three syntactic measures, representing three distinct scales: connectivity, integration radiusradius and global integration (Rn). The mean connectivity presents a better correlation with line length than integration, both radiusradius and Rn, because integration is also a measure of centrality and high values become concentrated into a central core, which may contain lines of several lengths. The centrality effect also resulted in very low correlations for medium and large maps, as the maps presented in Figure 67. However, the mean of the entire set (Table 68) shows that the metric dimension has a considerable influence over the syntactic analysis, since long lines are often highly connected. Therefore, when a curved and sinuous path is broken, its place in the metric hierarchy is lost and a rare event (a long path) becomes a set of common and unimportant events (short lines).
7 Continuity lines in the axial system Figure 67: Four axial maps and its distributions of lengths 167
8 168 Lucas Figueiredo and Luiz Amorim Figure 68: Correlation between line length and syntactic variables (Source: Figueiredo, 2004, p. 76)
9 Continuity lines in the axial system 169 Long paths are, indeed, rare events that emerge within complex urban systems. They are at the top of an invariant hierarchy found in any urban grid, connecting entire subsets of connected short paths. The continuity line captures correctly the place of the curved or sinuous paths in this hierarchy, also minimising the centrality effect over the measure of integration. As a result, the continuity maps built with a maximum angle of 35 degrees show a different picture (Table 68), where the mean correlation between the length and syntactic variables has a slight, but a noteworthy increase. The effects were significant for organic maps, such as Arapiraca, Brazil and Samsun, Turkey, but practically unnoticeable for more regular grids, such as Brasília, for which some correlations have even decreased in few cases. 4. A new taxonomy of urban grids The gradual aggregation of axial lines with the implementation of different angles of continuity revealed that different types of urban grids respond differently to the aggregation process, following a simple general rule: the more regular the grid is, less affected it will be. However, it was observed that on a scale from highly deformed to highly ordered grids, there is a variety of arrangements that are differently affected by the aggregation process. Grids that are mostly composed of small axial lines intersected at obtuse angles, respond differently to those that have sinuous paths that connect extreme sectors of cities. It seemed natural to explore these properties to generate a new taxonomy of urban grids; an instrument that could be able to describe more precisely the nature of the urban grid and to give objective descriptions to expressions like organic or regular. To achieve this objective, a set of measures was proposed to characterise continuity maps, which are not exactly syntactic measures, as they have a geometrical basis. The first developed measure, called sinuosity (Figueiredo, 2004, p. 65), consists of the sum of all continuity angles for a continuity line, measured in radians or degrees, or zero for an axial line. It describes the degree of bending of a single continuity line (Thomson, 2003, p. 8). As a mean sinuosity value could not characterise the whole system, because continuity maps have a large number of axial lines and such mean would not be consistent, the percentage of continuity lines within the map was proposed to measure the effect of the aggregation procedure on the whole map. This measure is achieved by dividing the number of continuity lines by the total number of lines (axial and continuity) in the map. Continuity lines, however, are formed by a different number of segments, which means that not only the number of continuity lines in the map is important, but also the number of aggregated axial lines. Therefore, a better measure called aggregation degree was proposed to characterise continuity maps (Figueiredo, 2004, p. 66). The aggregation degree is the number of aggregated axial lines (segments of continuity lines) divided by the number of segments in the continuity map (axial lines and aggregated axial lines), i.e. the percentage of axial lines that were aggregated. The aggregation degree is a useful measure to describe the geometrical nature of the grid, as it is a function of the angle of incidence between the axial lines that compose the system. Therefore, depending on the continuity angle used to generate the continuity map, the aggregation degree will vary accordingly. Highly irregular grids will tend to present high aggregation degrees with narrow angles of continuity, whereas regular grids will only present high values with wider angles. These differences between urban grids become clear when a wide angle of continuity, such as 60 degrees, is used. The axial maps of organic
10 170 Lucas Figueiredo and Luiz Amorim Figure 69: A new taxonomy of urban grids(source: Figueiredo, 2004, p )
11 Continuity lines in the axial system 171 grids or grids with many curved or sinuous paths have nearly 50% of their axial lines aggregated. On the other hand, highly regular grids have an aggregation degree of less than 5%. Table 69 presents the classification of the analysed sample according to the aggregation degree for a maximum continuity angle of 60 degrees. The set is classified in four different levels (highly regular, regular, irregular and highly irregular grids) according to the pattern of distribution of the aggregation degree within the sample. What becomes evident is the effectiveness of the measure to identify different types of grid composition. For example, Guará is a planned town, part of the urban system that form the Brazilian Federal District, which was designed as a simple hierarchical repetition of geometric enclosed elements  the housing districts. This curious orthogonal urban patchwork is only broken by a sinuous central circulation system, which group the only nonorthogonal set of lines. Ann Arbor, a university city in Michigan, USA, on the other hand, has a regular grid at its centre that, by a historical process of extension, deformation and consolidation (Adhya and Amorim, 2005), presents today a complex and deformed urban fabric at its periphery. The high levels of aggregation degree are a function of these curved paths that form the recent residential developments, which constitute a large percentage of the axial lines of the system. In these extreme cases, the degree of aggregation is able to distinguish the very nature of their grids, but further development is needed to establish a standard classification process, which will be only possible with the study of a larger sample of urban grids. 5. Final remarks This paper aimed at introducing a new technique for the linear representation of urban grids. The continuity line is part of a new generation of descriptive techniques that consolidates the efforts to refine the axial representation. Its contribution resides on establishing a theoretical and technical framework for the adequate representation of curved and sinuous paths. We may conclude by saying that continuity maps are indeed significantly different from axial maps. They present a more dispersed integration core, which is excessively concentrated in axial maps, expressing more clearly the distributiveness character of accessibility within the grid, particularly in highly deformed grids, and highlighting the importance of curved and sinuous paths as alternative routes for long journeys within city grids. Such findings have significant implication on the study of vehicular movement patterns, which are associated to journeys that make use of long or extended paths (Figueiredo and Amorim, 2004). We may also add that the aggregation degree of a continuity map also provides a useful and interesting taxonomy for the classification of urban grids (Figueiredo, 2004, p. 66), which is yet to be fully explored. The preliminary results presented here point out the effectiveness of the continuity model to describe the geometrical nature of urban grids. It may also throw light on how an invariant hierarchy, like the length of the axial lines, emerges from a complex urban system, creating a sort of a fractal logic of space. Acknowledgements This research was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico  CNPq
12 172 Lucas Figueiredo and Luiz Amorim Figure 70: A new taxonomy of urban grids
13 Continuity lines in the axial system 173 The authors would like to thank Edja Trigueiro and Edmilza Borges (Universidade Federal do Rio Grande do Norte), Frederico de Holanda (Universidade de Brasília), Guilherme Varela (Universidade Federal de Pernambuco), Anirban Adhya and Fusun Erkul (University of Michigan) among many others, who have kindly granted access to their researches on urban morphology. Continuity lines can also be identified through angular analysis. In this case, if the angle of continuity is smaller than the maximum angle adopted, the topological distance between the two lines is zero, or one, otherwise. This procedure differs from aggregation because it does not create new spatial unities and, depending on the implementation, it may identify many continuations for the same line. Literature Adhya, A., Amorim, L. (2005) From Annarbour to A2: a morphological genesis of the City of Ann Arbor, USA, in: Proceedings of the Fifth Space Syntax International Symposium, Delft, Delft University of Technology. Asami, Y. et al (2003) Introducing the third dimension on Space Syntax: application on the historical Istanbul, in: Hanson, J. (ed.) Proceedings of the Space Syntax Fourth International Symposium, 2,London, University College, p London. Batty, M., Rana; S. (2002) Reformulating space syntax: the automatic definition and generation of axial lines and axial maps, Centre for Advanced Spatial Analysis, Working Paper Series, p. 58. Capra, F. (1996) The web of life: a new scientific understanding of living systems, New York, Anchor Books. Dalton, N. (2001) Fractional configuration analysis and a solution to the Manhattan problem, in: Peponis, J., Wineman, J., Bafna, S. (eds.), Proceedings of the Space Syntax Third International Symposium, Atlanta, Georgia Institute of Technology, p Dalton, N.; Peponis, J.; Conroy, R. (2003) To tame a TIGER one has to know its nature: extending weighted angular integration analysis to the description of GIS roadcenterline data for large scale urban analysis, in: Hanson, J. (ed.), Proceedings of the Space Syntax Fourth International Symposium, London,University College London, 2, p Figueiredo, L. (2004) Linhas de Continuidade no Sistema Axial, Unpublished MSc Dissertation, Recife, Universidade Federal de Pernambuco. Figueiredo, L. (2005) Mindwalk: a Java based software for spatial analysis, Proceedings of the F ifth Space Syntax International Symposium, Delft, Delft University of Technology. Figueiredo, L., Amorim, L. (2004) Continuity lines: aggregating axial lines to predict vehicular movement patterns, Proceedings of the Third Great Asian Streets Symposium, Singapore, National University of Singapore (forthcoming). Hillier, B., Hanson J. (1984) The Social Logic of Space,Cambridge, Cambridge University Press. Hillier, B. (1999) The common language of space: a way of looking at the social, economic and environmental functioning of cities on a common basis, Journal of Environmental Science, 11(3), p
14 174 Lucas Figueiredo and Luiz Amorim Hillier, B., (1996) Space is the Machine, Cambridge: Cambridge University Press. Hillier, B., (2001) A theory of the city as object: or how spatial laws mediate the social construction of urban space, in: Peponis, J., Wineman, J., Bafna, S. (eds.), Proceedings of the Space Syntax Third International Symposium, Atlanta, Georgia Institute of Technology, p Peponis, J. et al, (1997) On the generation of linear representation of spatial configuration, Major, M., Amorim, L., Dufaux, F. (eds.), Proceedings of the Space Syntax First International Symposium, London, University College London, 3, p Salingaros, N. A. (2003) Connecting the fractal city, available at: http : //www.math.utsa.edu/sphere/salingar/connecting.html. Sobreira, F., Gomes, M. (2001) Urban Fragmentation: Spatial scaling laws in spontaneous settlements, in: Peponis, J., Wineman, J., Bafna, S. (eds.), Proceedings of the Space Syntax Third International Symposium, Atlanta, Georgia Institute of Technology, p Salheen, M. A. (2003) An application of universal distance using Space Syntax analysis, in: Hanson, J. (ed.), Proceedings of the Space Syntax Fourth International Symposium, London, University College London, Vol. 1, p Steadman, P. (1983) Architectural Morphology, Cambrige, Cambridge University Press. Thomson, R. C. (2003) Bending the axial line: smoothly continuous road centreline segments as a basis for road network analysis, in Hanson, J. (ed.), Proceedings of the Space Syntax Fourth International Symposium, London, University College London, Vol. 2, p Turner, A. (2001) Angular analysis, in: Peponis, J., Wineman, J., Bafna, S. (eds.), Proceedings of the Space Syntax Third International Symposium, Atlanta, Georgia Institute of Technology, p
Plans and Lines of Movement 57.1. A studio experiment
Plans and Lines of Movement A studio experiment 57 Douglas Vieira de Aguiar Federal University of Rio Grande do Sul, Brazil Abstract This work is based on a studio experience carried out with 1st year
More informationTHE REASONING ART: or, The Need for an Analytical Theory of Architecture
P ROCEEDINGS VOLUME I SPACE SYNTAX TODAY THE REASONING ART: or, The Need for an Analytical Theory of Architecture Professor Bill Hillier and Dr Julienne Hanson University College London, London, England
More informationKey words: Settlement form, space syntax, configuration, integration, functional performance
XXXIII IAHS World Congress on Housing Transforming Housing Environments through Design September 2730, 2005, Pretoria, South Africa A syntactical analysis of settlement form an investigation of Sociospatial
More informationMEASURES OF THE FIT BETWEEN STREET NETWORK, URBAN BLOCKS AND BUILDING FOOTPRINTS
PAPER REF # 8101 Proceedings: Eighth International Space Syntax Symposium Edited by M. Greene, J. Reyes and A. Castro. MEASURES OF THE FIT BETWEEN STREET NETWORK, URBAN BLOCKS AND BUILDING FOOTPRINTS AUTHOR:
More informationCarroll County Public Schools Elementary Mathematics Instructional Guide (5 th Grade) AugustSeptember (12 days) Unit #1 : Geometry
Carroll County Public Schools Elementary Mathematics Instructional Guide (5 th Grade) Common Core and Research from the CCSS Progression Documents Geometry Students learn to analyze and relate categories
More informationVisualising the structure of architectural open spaces based on shape analysis 1
Visualising the structure of architectural open spaces based on shape analysis 1 Sanjay Rana (corresponding author) and Mike Batty Centre for Advanced Spatial Analysis University College London 119 Torrington
More informationRepresenting Geography
3 Representing Geography OVERVIEW This chapter introduces the concept of representation, or the construction of a digital model of some aspect of the Earth s surface. The geographic world is extremely
More informationMiddle Grades Mathematics 5 9
Middle Grades Mathematics 5 9 Section 25 1 Knowledge of mathematics through problem solving 1. Identify appropriate mathematical problems from realworld situations. 2. Apply problemsolving strategies
More informationSTUDENTS STRUCTURING OF RECTANGULAR ARRAYS
STUDENTS STRUCTURING OF RECTANGULAR ARRAYS Lynne Outhred and Michael Mitchelmore Macquarie University, Australia This paper presents the results of a study of the structural development of young students
More informationA CONFIGURATIONAL STUDY OF PEDESTRIAN FLOWS IN MULTI LEVEL COMMERCIAL SPACE. Case study Shanghai
PAPER REF # 8044 Proceedings: Eighth International Space Syntax Symposium Edited by M. Greene, J. Reyes and A. Castro. A CONFIGURATIONAL STUDY OF PEDESTRIAN FLOWS IN MULTI LEVEL COMMERCIAL SPACE. Case
More informationChapter 5: Working with contours
Introduction Contoured topographic maps contain a vast amount of information about the threedimensional geometry of the land surface and the purpose of this chapter is to consider some of the ways in
More informationCurrent Standard: Mathematical Concepts and Applications Shape, Space, and Measurement Primary
Shape, Space, and Measurement Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two and threedimensional shapes by demonstrating an understanding of:
More informationNEW MEXICO Grade 6 MATHEMATICS STANDARDS
PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical
More informationUseful Spatial Systems for Office Activities
Useful Spatial Systems for Office Activities Royal Institute of Technology School of Architecture Stockholm, Sweden Work Space Design Jesper Steen, Professor Magnus Blombergsson, M Arch, Ph D student Johanna
More informationCENTRALITY IN BEYAZIT SQUARE, ISTANBUL
Proceedings of the Ninth International Space Syntax Symposium Edited by Y O Kim, H T Park and K W Seo, Seoul: Sejong University, 2013 CENTRALITY IN BEYAZIT SQUARE, ISTANBUL 103 Ayse Sema Kubat Istanbul
More informationStephanie Dawn Haynie Georgia Institute of Technology, College of Architecture, Atlanta, United States dhaynie_ddesign@earthlink.
Atlanta: A Morphological History Ref 087 Stephanie Dawn Haynie Georgia Institute of Technology, College of Architecture, Atlanta, United States dhaynie_ddesign@earthlink.net John Peponis Georgia Institute
More informationMaths Area Approximate Learning objectives. Additive Reasoning 3 weeks Addition and subtraction. Number Sense 2 weeks Multiplication and division
Maths Area Approximate Learning objectives weeks Additive Reasoning 3 weeks Addition and subtraction add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar
More informationIntelligibility in Large Spatial Systems The Case of Porto Alegre Metropolitan Region
Intelligibility in Large Spatial Systems The Case of Porto Alegre Metropolitan Region Ref 119 Claudio Ugalde UFRGS, PROPURFaculty of Architecture, Porto Alegre, Brazil claudiougalde@yahoo.com.br Décio
More informationSolving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
More informationFrom flood risk to indirect flood impact: evaluation of street network performance for effective management, response and repair
Flood Recovery, Innovation and Response I 335 From flood risk to indirect flood impact: evaluation of street network performance for effective management, response and repair J. Gil & P. Steinbach Space
More informationComputational Geometry. Lecture 1: Introduction and Convex Hulls
Lecture 1: Introduction and convex hulls 1 Geometry: points, lines,... Plane (twodimensional), R 2 Space (threedimensional), R 3 Space (higherdimensional), R d A point in the plane, 3dimensional space,
More informationThe Map Grid of Australia 1994 A Simplified Computational Manual
The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual 'What's the good of Mercator's North Poles and Equators, Tropics, Zones
More information1 Example of Time Series Analysis by SSA 1
1 Example of Time Series Analysis by SSA 1 Let us illustrate the 'Caterpillar'SSA technique [1] by the example of time series analysis. Consider the time series FORT (monthly volumes of fortied wine sales
More informationSpace Configuration and Movement Pattern of Chinese Traditional Settlement A case study of Wangkou, Wuyuan County
Space Configuration and Movement Pattern of Chinese Traditional Settlement A case study of Wangkou, Wuyuan County Ref 126 Haofeng Wang Shenzhen University, Department of architecture, Shenzhen University,
More informationFEAWEB ASP Issue: 1.0 Stakeholder Needs Issue Date: 03/29/2000. 04/07/2000 1.0 Initial Description Marco Bittencourt
)($:(%$63 6WDNHKROGHU1HHGV,VVXH 5HYLVLRQ+LVWRU\ 'DWH,VVXH 'HVFULSWLRQ $XWKRU 04/07/2000 1.0 Initial Description Marco Bittencourt &RQILGHQWLDO DPMFEMUNICAMP, 2000 Page 2 7DEOHRI&RQWHQWV 1. Objectives
More informationCharlesworth School Year Group Maths Targets
Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve
More informationMaths Targets Year 1 Addition and Subtraction Measures. N / A in year 1.
Number and place value Maths Targets Year 1 Addition and Subtraction Count to and across 100, forwards and backwards beginning with 0 or 1 or from any given number. Count, read and write numbers to 100
More informationExistence of Simple Tours of Imprecise Points
Existence of Simple Tours of Imprecise Points Maarten Löffler Department of Information and Computing Sciences, Utrecht University Technical Report UUCS00700 www.cs.uu.nl ISSN: 097 Existence of Simple
More informationMathematics Common Core Georgia Performance Standards
Mathematics K12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by using manipulatives and a variety
More informationPath Tracking for a Miniature Robot
Path Tracking for a Miniature Robot By Martin Lundgren Excerpt from Master s thesis 003 Supervisor: Thomas Hellström Department of Computing Science Umeå University Sweden 1 Path Tracking Path tracking
More informationTowards Spatially Explicit Agentbased Model for Simulation of Informal Transport Infrastructure Indirect Growth Dynamic in Informal Settlements
Towards Spatially Explicit Agentbased Model for Simulation of Transport Infrastructure Indirect Growth Dynamic in s H.Vahidi a, b *, W.Yan a, c a Graduate School of Media and Governance, Shonan Fujisawa
More informationNumber and Numeracy SE/TE: 43, 49, 140145, 367369, 457, 459, 479
Ohio Proficiency Test for Mathematics, New Graduation Test, (Grade 10) Mathematics Competencies Competency in mathematics includes understanding of mathematical concepts, facility with mathematical skills,
More informationNumber & Place Value. Addition & Subtraction. Digit Value: determine the value of each digit. determine the value of each digit
Number & Place Value Addition & Subtraction UKS2 The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value
More informationANALYSIS OF PLANNING AND MANAGEMENT PRACTICES IN THE CONSTRUCTION INDUSTRY
ANALYSIS OF PLANNING AND MANAGEMENT PRACTICES IN THE CONSTRUCTION INDUSTRY Andrey Pimentel (UFF) andreypaf@gmail.com OSVALDO LUIZ GONCALVES QUELHAS (UFF) quelhas@latec.uff.br LUIS PEREZ ZOTES (UFF) lpzotes@gmail.com
More informationA DAY IN A SHADOW OF HIGHRISE 3D PARAMETERIZATION AND USE OF PUBLIC SPACE AROUND PŻM / HOTEL RADISSON BUILDING COMPLEX IN CENTER OF SZCZECIN
A DAY IN A SHADOW OF HIGHRISE 3D PARAMETERIZATION AND USE OF PUBLIC SPACE AROUND PŻM / HOTEL RADISSON BUILDING COMPLEX IN CENTER OF SZCZECIN Adam Zwoliński West Pomeranian University of Technology, the
More informationNatural Neighbour Interpolation
Natural Neighbour Interpolation DThe Natural Neighbour method is a geometric estimation technique that uses natural neighbourhood regions generated around each point in the data set. The method is particularly
More informationIn mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.
MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target
More informationSoftware Engineering Prof. N.L. Sarda Computer Science & Engineering Indian Institute of Technology, Bombay Lecture4 Overview of Phases (Part  II)
Software Engineering Prof. N.L. Sarda Computer Science & Engineering Indian Institute of Technology, Bombay Lecture4 Overview of Phases (Part  II) We studied the problem definition phase, with which
More informationCurriculum overview for Year 1 Mathematics
Curriculum overview for Year 1 Counting forward and back from any number to 100 in ones, twos, fives and tens identifying one more and less using objects and pictures (inc number lines) using the language
More informationFCAT Math Vocabulary
FCAT Math Vocabulary The terms defined in this glossary pertain to the Sunshine State Standards in mathematics for grades 3 5 and the content assessed on FCAT in mathematics. acute angle an angle that
More informationRIT scores between 191 and 200
Measures of Academic Progress for Mathematics RIT scores between 191 and 200 Number Sense and Operations Whole Numbers Solve simple addition word problems Find and extend patterns Demonstrate the associative,
More informationPosition Sensors MicroSense, LLC
Understanding Capacitive Position Sensors 2011 MicroSense, LLC Table of Contents 1. Introduction to Capacitive Sensors... 3 1.1 Characteristics of Capacitive Sensors... 3 1.1.1 Non Contact... 3 1.1.2 High
More informationWentzville School District Curriculum Development Template Stage 1 Desired Results
Wentzville School District Curriculum Development Template Stage 1 Desired Results Integrated Math 8 Unit Four Geometry Unit Title: Geometry Course: Integrated Math 8 Brief Summary of Unit: In this unit
More information[Refer Slide Time: 05:10]
Principles of Programming Languages Prof: S. Arun Kumar Department of Computer Science and Engineering Indian Institute of Technology Delhi Lecture no 7 Lecture Title: Syntactic Classes Welcome to lecture
More informationInteger Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions
Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.
More informationSPATIAL ANALYSIS IN GEOGRAPHICAL INFORMATION SYSTEMS. A DATA MODEL ORffiNTED APPROACH
POSTER SESSIONS 247 SPATIAL ANALYSIS IN GEOGRAPHICAL INFORMATION SYSTEMS. A DATA MODEL ORffiNTED APPROACH Kirsi Artimo Helsinki University of Technology Department of Surveying Otakaari 1.02150 Espoo,
More informationAesthetic Experience and the Importance of Visual Composition in Information Design
Aesthetic Experience and the Importance of Visual Composition in Information Design By Tim Greenzweig When considering the design of information and information structures, the focus tends to gravitate
More informationFROM THE AXIAL LINE TO THE WALKED LINE: evaluating the utility of commercial and user generated street network datasets in space syntax analysis
PAPER REF # 8211 Proceedings: Eighth International Space Syntax Symposium Edited by M. Greene, J. Reyes and A. Castro. FROM THE AXIAL LINE TO THE WALKED LINE: evaluating the utility of commercial and user
More informationRef 113 Finding Ways around the Campus A Study to Support a New Signage System for a University Campus in Natal, Brazil
Short Paper Ref 113 Finding Ways around the Campus A Study to Support a New Signage System for a University Campus in Natal, Brazil Edja Trigueiro UFRN, Departamento de Arquitetura, Natal, Brazil edja_trigueiro@ct.ufrn.br
More informationSchemas Supporting Physical Data Storage
s Supporting Data Storage 21 st January 2014 (30 th March 2001) s Supporting Physical Data Storage Introduction A RAQUEL DB is made up of a DB, which itself consists of a set of schemas. These schemas
More informationOracle Database 10g: Building GIS Applications Using the Oracle Spatial Network Data Model. An Oracle Technical White Paper May 2005
Oracle Database 10g: Building GIS Applications Using the Oracle Spatial Network Data Model An Oracle Technical White Paper May 2005 Building GIS Applications Using the Oracle Spatial Network Data Model
More informationSPACE SYNTAX IN ARCHITECTURAL DESIGN
SPACE SYNTAX IN ARCHITECTURAL DESIGN 056 Pelin Dursun Faculty of Architecture, Istanbul Technical University Keywords: Architecture Design Space syntax Pelin Dursun Faculty of Architecture, Istanbul Technical
More informationChapter 6: The Information Function 129. CHAPTER 7 Test Calibration
Chapter 6: The Information Function 129 CHAPTER 7 Test Calibration 130 Chapter 7: Test Calibration CHAPTER 7 Test Calibration For didactic purposes, all of the preceding chapters have assumed that the
More informationWithin each area, these outcomes are broken down into more detailed stepbystep learning stages for each of the three terms.
MATHEMATICS PROGRAMME OF STUDY COVERAGE all topics are revisited several times during each academic year. Existing learning is consolidated and then built upon and extended. Listed below are the end of
More informationOverview of Math Standards
Algebra 2 Welcome to math curriculum design maps for Manhattan Ogden USD 383, striving to produce learners who are: Effective Communicators who clearly express ideas and effectively communicate with diverse
More informationREGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc])
244 REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]) (See also General Regulations) Any publication based on work approved for a higher degree should contain a reference
More informationDraft Martin Doerr ICSFORTH, Heraklion, Crete Oct 4, 2001
A comparison of the OpenGIS TM Abstract Specification with the CIDOC CRM 3.2 Draft Martin Doerr ICSFORTH, Heraklion, Crete Oct 4, 2001 1 Introduction This Mapping has the purpose to identify, if the OpenGIS
More informationNumeracy and mathematics Experiences and outcomes
Numeracy and mathematics Experiences and outcomes My learning in mathematics enables me to: develop a secure understanding of the concepts, principles and processes of mathematics and apply these in different
More informationSupport Materials for Core Content for Assessment. Mathematics
Support Materials for Core Content for Assessment Version 4.1 Mathematics August 2007 Kentucky Department of Education Introduction to Depth of Knowledge (DOK)  Based on Norman Webb s Model (Karin Hess,
More informationCourse: Math 7. engage in problem solving, communicating, reasoning, connecting, and representing
Course: Math 7 Decimals and Integers 11 Estimation Strategies. Estimate by rounding, frontend estimation, and compatible numbers. Prentice Hall Textbook  Course 2 7.M.0 ~ Measurement Strand ~ Students
More informationPerformance Level Descriptors Grade 6 Mathematics
Performance Level Descriptors Grade 6 Mathematics Multiplying and Dividing with Fractions 6.NS.12 Grade 6 Math : SubClaim A The student solves problems involving the Major Content for grade/course with
More informationSouth Carolina College and CareerReady (SCCCR) Probability and Statistics
South Carolina College and CareerReady (SCCCR) Probability and Statistics South Carolina College and CareerReady Mathematical Process Standards The South Carolina College and CareerReady (SCCCR)
More informationELEMENTARY PROBABILITY
ELEMENTARY PROBABILITY Events and event sets. Consider tossing a die. There are six possible outcomes, which we shall denote by elements of the set {A i ; i =1, 2,...,6}. A numerical value is assigned
More informationGeometrical Approaches for Artificial Neural Networks
Geometrical Approaches for Artificial Neural Networks Centre for Computational Intelligence De Montfort University Leicester, UK email:elizondo@dmu.ac.uk http://www.cci.dmu.ac.uk/ Workshop on Principal
More informationAn Evaluation of Social Interactive Spaces in a University Building 46.1
An Evaluation of Social Interactive Spaces in a University Building 46 Alper Unlu Ozan O. Ozener Tolga Ozden Erincik Edgu Istanbul Technical University, Turkey 0 Abstract This article concentrates on social
More informationBernice E. Rogowitz and Holly E. Rushmeier IBM TJ Watson Research Center, P.O. Box 704, Yorktown Heights, NY USA
Are Image Quality Metrics Adequate to Evaluate the Quality of Geometric Objects? Bernice E. Rogowitz and Holly E. Rushmeier IBM TJ Watson Research Center, P.O. Box 704, Yorktown Heights, NY USA ABSTRACT
More information2013 Texas Education Agency. All Rights Reserved 2013 Introduction to the Revised Mathematics TEKS: Vertical Alignment Chart Kindergarten Algebra I 1
2013 Texas Education Agency. All Rights Reserved 2013 Introduction to the Revised Mathematics TEKS: Vertical Alignment Chart Kindergarten Algebra I 1 The materials are copyrighted (c) and trademarked (tm)
More informationUnit 6 Geometry: Constructing Triangles and Scale Drawings
Unit 6 Geometry: Constructing Triangles and Scale Drawings Introduction In this unit, students will construct triangles from three measures of sides and/or angles, and will decide whether given conditions
More informationChapter Three. What s In A Freehand Drawing that the Modeling Tool Should Recognize
30 Chapter Three What s In A Freehand Drawing that the Modeling Tool Should Recognize This chapter discusses what features of a 2D freehand drawing that a 3D computer modeling tool should recognize and
More informationCalifornia Common Core State Standards Comparison FOURTH GRADE
1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others 4. Model with mathematics. Standards
More informationPROBLEM SOLVING, REASONING, FLUENCY. Year 6 Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Number and Place Value. Measurement Four operations
PROBLEM SOLVING, REASONING, FLUENCY Year 6 Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Number and Place Value Addition and subtraction Large numbers Fractions & decimals Mental and written Word problems,
More informationGEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION
GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION GIS Syllabus  Version 1.2 January 2007 Copyright AICACEPIS 2009 1 Version 1 January 2007 GIS Certification Programme 1. Target The GIS certification is aimed
More informationResearch Philosophies Importance and Relevance
Research Philosophies Importance and Relevance 0. INTRODUCTION When undertaking research of this nature, it is important to consider different research paradigms and matters of ontology and epistemology.
More informationInequality, Mobility and Income Distribution Comparisons
Fiscal Studies (1997) vol. 18, no. 3, pp. 93 30 Inequality, Mobility and Income Distribution Comparisons JOHN CREEDY * Abstract his paper examines the relationship between the crosssectional and lifetime
More informationGraph/Network Visualization
Graph/Network Visualization Data model: graph structures (relations, knowledge) and networks. Applications: Telecommunication systems, Internet and WWW, Retailers distribution networks knowledge representation
More informationVISUALIZATION OF GEOMETRICAL AND NONGEOMETRICAL DATA
VISUALIZATION OF GEOMETRICAL AND NONGEOMETRICAL DATA Maria Beatriz Carmo 1, João Duarte Cunha 2, Ana Paula Cláudio 1 (*) 1 FCULDI, Bloco C5, Piso 1, Campo Grande 1700 Lisboa, Portugal email: bc@di.fc.ul.pt,
More informationDimensioning and Tolerancing
Dimensioning and Tolerancing Dimensioning Before an object can be built, complete information about both the size and shape of the object must be available. The exact shape of an object is communicated
More informationTheorem 5. The composition of any two symmetries in a point is a translation. More precisely, S B S A = T 2
Isometries. Congruence mappings as isometries. The notion of isometry is a general notion commonly accepted in mathematics. It means a mapping which preserves distances. The word metric is a synonym to
More informationObjectives After completing this section, you should be able to:
Chapter 5 Section 1 Lesson Angle Measure Objectives After completing this section, you should be able to: Use the most common conventions to position and measure angles on the plane. Demonstrate an understanding
More informationTHREEDIMENSIONAL CARTOGRAPHIC REPRESENTATION AND VISUALIZATION FOR SOCIAL NETWORK SPATIAL ANALYSIS
CO205 THREEDIMENSIONAL CARTOGRAPHIC REPRESENTATION AND VISUALIZATION FOR SOCIAL NETWORK SPATIAL ANALYSIS SLUTER C.R.(1), IESCHECK A.L.(2), DELAZARI L.S.(1), BRANDALIZE M.C.B.(1) (1) Universidade Federal
More informationSuch As Statements, Kindergarten Grade 8
Such As Statements, Kindergarten Grade 8 This document contains the such as statements that were included in the review committees final recommendations for revisions to the mathematics Texas Essential
More informationAnnotated work sample portfolios are provided to support implementation of the Foundation Year 10 Australian Curriculum.
Work sample portfolio summary WORK SAMPLE PORTFOLIO Annotated work sample portfolios are provided to support implementation of the Foundation Year 10 Australian Curriculum. Each portfolio is an example
More informationEfficient Recognition of Mousebased Gestures
Key words: mouse gestures recognition knearest Neighbours Pawe l HOFMAN 1 Maciej PIASECKI 1 Efficient Recognition of Mousebased Gestures The notion of a mouse gesture is defined in the paper as a simplified
More informationSenior Secondary Australian Curriculum
Senior Secondary Australian Curriculum Mathematical Methods Glossary Unit 1 Functions and graphs Asymptote A line is an asymptote to a curve if the distance between the line and the curve approaches zero
More informationCOMBINING THE METHODS OF FORECASTING AND DECISIONMAKING TO OPTIMISE THE FINANCIAL PERFORMANCE OF SMALL ENTERPRISES
COMBINING THE METHODS OF FORECASTING AND DECISIONMAKING TO OPTIMISE THE FINANCIAL PERFORMANCE OF SMALL ENTERPRISES JULIA IGOREVNA LARIONOVA 1 ANNA NIKOLAEVNA TIKHOMIROVA 2 1, 2 The National Nuclear Research
More informationIndustrial Insulation PHASE 2 Module 2 Geometry & Pattern Development UNIT: 8 Triangulation
TRADE OF Industrial Insulation PHASE 2 Module 2 Geometry & Pattern Development UNIT: 8 Produced by In cooperation with subject matter expert: Michael Kelly SOLAS 2014 Table of Contents Unit Objective...
More informationDRAFT. Further mathematics. GCE AS and A level subject content
Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed
More informationFinding Parallelogram Vertices
About Illustrations: Illustrations of the Standards for Mathematical Practice (SMP) consist of several pieces, including a mathematics task, student dialogue, mathematical overview, teacher reflection
More informationVector storage and access; algorithms in GIS. This is lecture 6
Vector storage and access; algorithms in GIS This is lecture 6 Vector data storage and access Vectors are built from points, line and areas. (x,y) Surface: (x,y,z) Vector data access Access to vector
More informationMathematics on the Soccer Field
Mathematics on the Soccer Field Katie Purdy Abstract: This paper takes the everyday activity of soccer and uncovers the mathematics that can be used to help optimize goal scoring. The four situations that
More informationIT governance in Brazil:
Article IT governance in Brazil: does it matter? Authors Prof. Dr. Guilherme Lerch Lunardi, Universidade Federal do Rio Grande (FURG), Brazil. IT governance in Brazil Prof. Dr. Joâo Luiz Becker, Universidade
More informationComponent visualization methods for large legacy software in C/C++
Annales Mathematicae et Informaticae 44 (2015) pp. 23 33 http://ami.ektf.hu Component visualization methods for large legacy software in C/C++ Máté Cserép a, Dániel Krupp b a Eötvös Loránd University mcserep@caesar.elte.hu
More informationYear 3 End of year expectations
Number and Place Value Count in 4s, 8s, 50s and 100s from any number Read and write numbers up to 1000 in numbers and words Compare and order numbers up to 1000 Recognise the place value of each digit
More informationGrade 4  Module 4: Angle Measure and Plane Figures
Grade 4  Module 4: Angle Measure and Plane Figures Acute angle (angle with a measure of less than 90 degrees) Angle (union of two different rays sharing a common vertex) Complementary angles (two angles
More informationMANUFACTURING FEATURES IN CUTTING SHAPES AND PUNCHING HOLES IN SHEET METAL
MANUFACTURING FEATURES IN CUTTING SHAPES AND PUNCHING HOLES IN SHEET METAL M.Lohtander, J. Varis. Department of mechanical engineering, Lappeenranta University of Technology, P.O.Box 20 53851, Lappeenranta,
More informationAdvanced Algebra 2. I. Equations and Inequalities
Advanced Algebra 2 I. Equations and Inequalities A. Real Numbers and Number Operations 6.A.5, 6.B.5, 7.C.5 1) Graph numbers on a number line 2) Order real numbers 3) Identify properties of real numbers
More information"SEO vs. PPC The Final Round"
"SEO vs. PPC The Final Round" A Research Study by Engine Ready, Inc. Examining The Role Traffic Source Plays in Visitor Purchase Behavior January 2008 Table of Contents Introduction 3 Definitions 4 Methodology
More informationMarketing Mix Modelling and Big Data P. M Cain
1) Introduction Marketing Mix Modelling and Big Data P. M Cain Big data is generally defined in terms of the volume and variety of structured and unstructured information. Whereas structured data is stored
More informationFast Sequential Summation Algorithms Using Augmented Data Structures
Fast Sequential Summation Algorithms Using Augmented Data Structures Vadim Stadnik vadim.stadnik@gmail.com Abstract This paper provides an introduction to the design of augmented data structures that offer
More informationRead and write numbers to at least 1000 in numerals and in words.
Year 1 Year 2 Year 3 Number, place value, rounding, approximation and estimation Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number. Count, read and write
More information