Oracle8i Spatial: Experiences with Extensible Databases

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Oracle8i Spatial: Experiences with Extensible Databases"

Transcription

1 Oracle8i Spatial: Experiences with Extensible Databases Siva Ravada and Jayant Sharma Spatial Products Division Oracle Corporation One Oracle Drive Nashua NH Introduction Conventional relational databases often do not have the technology required to handle complex data like spatial data. Unlike the traditional applications of databases, spatial applications require that databases understand complex data types like points, lines, and polygons. Typically, operations on these types are complex when compared to the operations on simple types. Hence relational database systems need to be extended in several areas to facilitate the storage and retrieval of spatial data. Several research reports have described the requirements from a database system and prioritized the research needs in this area. A broad survey of spatial database requirements and an overview of research results is provided in [3,4,6,10]. Research needed to improve the performance of spatial databases in the context of object relational databases was listed in [4]. The primary research needs identified were extensible indexing and optimizer, concurrency control techniques for spatial indexing methods, development of cost models for query processing, and the development of new spatial join algorithms. Many of the system requirements identified in [4] have since been addressed in some commercial systems [1,8,9]. In this context, we describe our experiences in implementing a spatial database on top of Oracle s extensible architecture. 1.1 Requirements of a Spatial Database System Any database system that attempts to deal with spatial applications has to provide the following features: A set of spatial data types to represent the primitive spatial data types (point, line, area), complex spatial data types (polygons with holes, collections) and operations on these data types like intersection, distance, etc. The spatial types and operations on top of them should be part of the standard query language that is used to access and manipulate non spatial data in the system. For example, SQL in case of relational database systems should be extended to be able to support spatial types and operations. R.H. Güting, D. Papadias, F. Lochovsky (Eds.): SSD 99, LNCS 1651, pp , c Springer-Verlag Berlin Heidelberg 1999

2 356 Siva Ravada and Jayant Sharma The systems should also provide performance enhancements like indexes to process spatial queries (range and join queries), parallel processing, etc. which are available for non spatial data. 2 Oracle s Spatial Oracle8i Spatial [7] provides a completely open, standards based architecture for the management of spatial data within a database management system. Users can use the same query language (industry standard SQL) to access the spatial data and all other data in the database. The functionality provided by Oracle8i Spatial is completely integrated within the Oracle database server. Users of spatial data gain access to standard Oracle8i features, such as a flexible client/server architecture, object capabilities, and robust data management utilities, ensuring data integrity, recovery, and security features that are virtually impossible to obtain with other architectures. Oracle8i Spatial enables merging GIS (Geographic Information System) and MIS (Management Information System) data stores and implementing a unified data management architecture for all data across the enterprise. The Oracle8i Spatial provides a scalable, integrated solution for managing structured and spatial data inside the Oracle server. 2.1 Spatial Data Modeling Oracle Spatial supports three primitive geometric types and geometries composed of collections of these types. The three primitive types are: (i) Point, (ii) Line String, (iii) and N-point polygon where all these primitive types are in 2- Dimensions. A 2-D point is an element composed of two ordinates, X and Y. Line strings are composed of one or more pairs of points that define line segments. Any two points in the line segment can be connected either by a straight line or a circular arc. That means line strings can be composed of straight line segments, arc segments or a mixture of both. Polygons are composed of connected line strings that form a closed ring and the interior of the polygon is implied. A geometry is the representation of a spatial feature, modeled as a set of primitive elements. A geometry can consist of a single element or a homogeneous or heterogeneous collection of primitive types. A layer is a collection of geometries which share the same attribute set. For example, one layer in a GIS might include topographical features, while another describes population density, and a third describes network of roads and bridges in an area. 2.2 Operations on the Spatial Data Types The binary topological relationships between two spatial objects A and B in the euclidean space is based on how the two objects A and B interact with respect to their interior, boundary and exterior. This is called the 9-intersection model [2] for the topological relationships between two objects. In this model, one can theoretically distinguish between 2 9 = 512 binary relationships between

3 Oracle8i Spatial: Experiences with Extensible Databases 357 A and B. In case of 2-dimensional objects, only eight relations can be realized which provide mutually exclusive and complete coverage for A and B. These relationships are contains, coveredby, covers, disjoint, equal, inside, overlap, touch. Oracle Spatial supports this 9-intersection [2] model for determining the topological relationships between two objects. In addition the system can also support other relationships derived as a combination of the above 8 relations. For example, OVERLAPBDYDISJOINT can be defined as the relation where the objects overlap but the boundaries are disjoint. Oracle Spatial also provides a within distance function where the distances are calculated in the Euclidean space. In addition, this system also provides set theoretical operations like UNION, INTERSECTION, DIFFERENCE and SYMMETRIC-DIFFERENCE. For example, given two spatial objects A and B, one can compute and return a new object C which is the UNION of A and B. 2.3 SQL Support for Spatial Data Query language is the principal interface to the data stored in a relational database system. A popular commercial language used for accessing data in a RDBMS is SQL. Traditional SQL has been extended recently to be able to support access for new data types. In case of Oracle8i Spatial, SQL is extended in two ways: SQL can be used to define and create objects of spatial types. SQL can also be used to insert, delete, update spatial types in addition to being able to query the spatial data with the help of spatial functions. For example to find out all the parks in city which overlap the rivers in the city can be found using the SQL query: SELECT A.feature FROM parks A, rivers B WHERE sdo geom.relate(a.geometry, B.geometry, OVERLAP ) = TRUE; 2.4 Spatial Indexing The introduction of spatial indexing capabilities into the Oracle database engine through Oracle Spatial is a key feature. A spatial index acts much as any other index as a mechanism to limit searches within tables (or data spaces) based on spatial criteria. An index is required to be able to efficiently process queries like find objects within a data space that overlap a query area (usually defined by a query polygon) and find pairs of objects from within two data spaces that spatially interact with one another (spatial join). A spatial index in spatial cartridge is a logical index. The entries in the index are dependent on the location of the geometries in a coordinate space, but the index values are in a different domain. Index entries take on values from a linearly ordered integer domain while coordinates for a geometries may be pairs of integer, floating, or double-precision numbers. Spatial cartridge uses a linear quadtree based indexing scheme, also known as z-ordering which maps geometric objects to a set of numbered tiles. Point data can be very well indexed by a recursive decomposition of space. Spatial object with extent, such as area

4 358 Siva Ravada and Jayant Sharma or line features create a problem for this sort of index, because they are highly likely to cross index cell partition boundaries. Alternative indexing mechanism, such as R-trees, have been proposed based on overlapping index cells (a nonhierarchical decomposition). Oracle Spatial chooses to take another approach to the problem. Each item is allowed multiple entries in the index. This allows one to index features with extent by covering them with the decomposition tiles from a hierarchical decomposition. Extensible Indexing in Oracle With Oracle s extensible indexing framework, applications can defines the structure and access methods for the application specific data. (This is called the domain index in Oracle.) The application can store the index data either inside the Oracle database (e.g. in the form tables) or outside the Oracle database (in the form of files). And the application can define routines that manage and manipulate the index to evaluate SQL queries. In effect, the application controls the structure and semantic content of the domain index. The database system interacts with the application to build, maintain, and employ the domain index. The main advantage of this extensible indexing framework is that the index is always in sync with the data. That is once the index is build, all the updates on the base table will automatically result in updates in the index data. Thus the users are not required to worry about the data integrity and correctness issues. Once the domain index is built, it is treated like a regular B-tree index. The database server knows the existence of this domain index and thus manages all the index related work using user defined functions. The extensible indexing framework also provides hooks into the optimizer to let the domain index creator educate the optimizer about the cost functions and selectivity functions associated with the domain index. The optimizer can then generate execution plans that make educated choices regarding domain indexes. Oracle Spatial built an indexing mechanism using this extensible indexing framework which is completely integrated with the database system. This also provides full concurrency control that is available to non spatial data and b-tree indexes in the database. 2.5 Query Processing Queries and data manipulation statements can involve application-specific operators, like the Overlaps operator in the spatial domain. Oracle s extensible framework lets applications/users define operators and tie the operators to a domain index. This lets the optimizer choose a domain index in evaluating a user defined operator. Oracle Spatial defined operators which are very common for many of the spatial applications. The spatial queries are evaluated using the popular two-step method: a filter step and a refinement step. A spatial index is used during the filter step and the actual geometries are used in the refinement step. This two-step process is used in both the window-query case and the spatial join case. For example, Oracle Spatial provides an SDO RELATE operator which can be used compute if two geometries overlap with each other. If we want to find

5 Oracle8i Spatial: Experiences with Extensible Databases 359 all the roads through a county where the road intersects the county boundary, the query will look like this: SELECT a.id FROM roads A, counties B WHERE B.name = MIDDLESEX AND SDO RELATE(A.geometry, B.geometry, MASK=OVERLAP ) = TRUE ; This query shows a simple example where a non spatial attribute and a spatial attribute is used in the same query. Assume that there is only one row in the counties table that satisfies the predicate on counties.name column. Then optimizer in this case will be able to choose a B-tree index on counties.name column and use the spatial index to evaluate the SDO RELATE operator as a window query on the roads table. 3 Conclusions In this paper, we described our experiences in implementing a spatial database on top of Oracle s extensible framework. We described how the query language, data modeling and query processing issues are addressed in this system. However, there is still more research required in areas like partitioning techniques to support parallel query processing and bulk loading, and spatial clustering. In addition, there is a growing need for a industry wide benchmark for measuring performance of different database systems supporting spatial databases. References 1. S. Defazio et al. Integrating IR and RDBMS Using Cooperative Indexing. Proceedings of SIGIR, Seattle, Washington, M.J. Egenhofer. What s Special About Spatial? Database requirements for Vehicle Navigation in Geographic space. Proceedings of ACM SIGMOD, R.H. Guting. An Introduction to Spatial Database Systems. VLDB, 3:357:399, W. Kim, J. Garza, and A. Keskin. Spatial data management in Database Systems. pp1-13, 3rd Intl. Symposium on Advances in Spatial Databases, OGC. The Open GIS Consortium. 6. Spatial Databases- Accomplishments and Research Needs. S. Shekhar, S. Chawla, S. Ravada, A. Fetterer, X. Liu and C.-t. Lu. IEEE Transactions on Knowledge and Data Engineering. Vol 1, Number 1, January Oracle8i Spatial User s Guide and Reference, Release 8i, M. Stonebreaker and G. Kennitz. POSTGRES Next-Generation Database Management System. Communications of the ACM, 34(10):78-92, M. Stonebreaker and D. Moore. Object Relational DBMSs: The next great wave. Morgan Kaufmann, M. F. Worboys. GIS: A computing perspective. Taylor and Francis, 1995.

10. Creating and Maintaining Geographic Databases. Learning objectives. Keywords and concepts. Overview. Definitions

10. Creating and Maintaining Geographic Databases. Learning objectives. Keywords and concepts. Overview. Definitions 10. Creating and Maintaining Geographic Databases Geographic Information Systems and Science SECOND EDITION Paul A. Longley, Michael F. Goodchild, David J. Maguire, David W. Rhind 005 John Wiley and Sons,

More information

Gov 1008 Introduction to Geographical Information Systems

Gov 1008 Introduction to Geographical Information Systems Gov 1008 Introduction to Geographical Information Systems Lecture 5: Creating Data and Maintaining Databases Sumeeta Srinivasan References include: Bolstad; Worboys; NCGIA Core Curriculum: csiss.org/learning_resources/content/giscc/giscc_contents.html;

More information

sensors ISSN 1424-8220 www.mdpi.com/journal/sensors

sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Sensors 2009, 9, 2320-2333; doi:10.3390/s90402320 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article An Integrated Photogrammetric and Spatial Database Management System for Producing

More information

Geodatabase Programming with SQL

Geodatabase Programming with SQL DevSummit DC February 11, 2015 Washington, DC Geodatabase Programming with SQL Craig Gillgrass Assumptions Basic knowledge of SQL and relational databases Basic knowledge of the Geodatabase We ll hold

More information

Computational Geometry. Lecture 1: Introduction and Convex Hulls

Computational Geometry. Lecture 1: Introduction and Convex Hulls Lecture 1: Introduction and convex hulls 1 Geometry: points, lines,... Plane (two-dimensional), R 2 Space (three-dimensional), R 3 Space (higher-dimensional), R d A point in the plane, 3-dimensional space,

More information

Weka-GDPM Integrating Classical Data Mining Toolkit to Geographic Information Systems

Weka-GDPM Integrating Classical Data Mining Toolkit to Geographic Information Systems Weka-GDPM Integrating Classical Data Mining Toolkit to Geographic Information Systems Vania Bogorny, Andrey Tietbohl Palma, Paulo Martins Engel, Luis Otavio Alvares Instituto de Informática Universidade

More information

Spatial Data Mining for Customer Segmentation

Spatial Data Mining for Customer Segmentation Spatial Data Mining for Customer Segmentation Data Mining in Practice Seminar, Dortmund, 2003 Dr. Michael May Fraunhofer Institut Autonome Intelligente Systeme Spatial Data Mining, Michael May, Fraunhofer

More information

Buffer Operations in GIS

Buffer Operations in GIS Buffer Operations in GIS Nagapramod Mandagere, Graduate Student, University of Minnesota npramod@cs.umn.edu SYNONYMS GIS Buffers, Buffering Operations DEFINITION A buffer is a region of memory used to

More information

Vector storage and access; algorithms in GIS. This is lecture 6

Vector storage and access; algorithms in GIS. This is lecture 6 Vector storage and access; algorithms in GIS This is lecture 6 Vector data storage and access Vectors are built from points, line and areas. (x,y) Surface: (x,y,z) Vector data access Access to vector

More information

An architecture for open and scalable WebGIS

An architecture for open and scalable WebGIS An architecture for open and scalable WebGIS Aleksandar Milosavljević, Leonid Stoimenov, Slobodanka Djordjević-Kajan CG&GIS Lab, Department of Computer Science Faculty of Electronic Engineering, University

More information

IMPLEMENTING SPATIAL DATA WAREHOUSE HIERARCHIES IN OBJECT-RELATIONAL DBMSs

IMPLEMENTING SPATIAL DATA WAREHOUSE HIERARCHIES IN OBJECT-RELATIONAL DBMSs IMPLEMENTING SPATIAL DATA WAREHOUSE HIERARCHIES IN OBJECT-RELATIONAL DBMSs Elzbieta Malinowski and Esteban Zimányi Computer & Decision Engineering Department, Université Libre de Bruxelles 50 av.f.d.roosevelt,

More information

Spatial data models (types) Not taught yet

Spatial data models (types) Not taught yet Spatial data models (types) Not taught yet A new data model in ArcGIS Geodatabase data model Use a relational database that stores geographic data A type of database in which the data is organized across

More information

Spatial Database for Geographic Information System (GIS) Applications

Spatial Database for Geographic Information System (GIS) Applications Spatial Database for Geographic Information System (GIS) Applications Lect.dr.eng. Alexandru Boicea Politehnica University of Bucharest, Faculty of Automation and Computer Science Splaiul Independentei

More information

Fuzzy Spatial Data Warehouse: A Multidimensional Model

Fuzzy Spatial Data Warehouse: A Multidimensional Model 4 Fuzzy Spatial Data Warehouse: A Multidimensional Model Pérez David, Somodevilla María J. and Pineda Ivo H. Facultad de Ciencias de la Computación, BUAP, Mexico 1. Introduction A data warehouse is defined

More information

ADVANCED GEOGRAPHIC INFORMATION SYSTEMS Vol. I - Spatial Query Languages - Agnès Voisard

ADVANCED GEOGRAPHIC INFORMATION SYSTEMS Vol. I - Spatial Query Languages - Agnès Voisard SPATIAL QUERY LANGUAGES Agnès Voisard Computer Science Institute, FreieUniversität Berlin, Germany Keywords: spatial database management system, geographic information system, data definition language,

More information

Fundamentals of Database Systems, 4 th Edition By Ramez Elmasri and Shamkant Navathe. Table of Contents. A. Short Table of Contents

Fundamentals of Database Systems, 4 th Edition By Ramez Elmasri and Shamkant Navathe. Table of Contents. A. Short Table of Contents Fundamentals of Database Systems, 4 th Edition By Ramez Elmasri and Shamkant Navathe Table of Contents A. Short Table of Contents (This Includes part and chapter titles only) PART 1: INTRODUCTION AND CONCEPTUAL

More information

GED 554. Topology (for geometry) Working with Data Tables, Databases (for attributes) April 12, 2013

GED 554. Topology (for geometry) Working with Data Tables, Databases (for attributes) April 12, 2013 GED 554 Topology (for geometry) Working with Data Tables, Databases (for attributes) April 12, 2013 Supported Data Types ArcGIS supports three representations of geographic data. Vector data for representing

More information

Spatial Data Preparation for Knowledge Discovery

Spatial Data Preparation for Knowledge Discovery Spatial Data Preparation for Knowledge Discovery Vania Bogorny 1, Paulo Martins Engel 1, Luis Otavio Alvares 1 1 Instituto de Informática Universidade Federal do Rio Grande do Sul (UFRGS) Caixa Postal

More information

NoSQL storage and management of geospatial data with emphasis on serving geospatial data using standard geospatial web services

NoSQL storage and management of geospatial data with emphasis on serving geospatial data using standard geospatial web services NoSQL storage and management of geospatial data with emphasis on serving geospatial data using standard geospatial web services Pouria Amirian, Adam Winstanley, Anahid Basiri Department of Computer Science,

More information

Oracle Database 10g: Building GIS Applications Using the Oracle Spatial Network Data Model. An Oracle Technical White Paper May 2005

Oracle Database 10g: Building GIS Applications Using the Oracle Spatial Network Data Model. An Oracle Technical White Paper May 2005 Oracle Database 10g: Building GIS Applications Using the Oracle Spatial Network Data Model An Oracle Technical White Paper May 2005 Building GIS Applications Using the Oracle Spatial Network Data Model

More information

Management of multiple representations in spatial DBMSs

Management of multiple representations in spatial DBMSs Management of multiple representations in spatial DBMSs S. Zlatanova, J.E. Stoter and W.Quak Section GIS technology, Delft University of Technology Delft, The Netherlands Tel.: +31 15 2784268, Fax: +31

More information

IBM Informix. Reference Documentation on Why Informix Spatial for GIS Projects

IBM Informix. Reference Documentation on Why Informix Spatial for GIS Projects IBM Informix Reference Documentation on Why Informix Spatial for GIS Projects Page 1 of 10 Contents Compliant with OGC... 3 Addressing the SQL standards... 3 Native Spatial, Intuitive Data Types... 3 Powerful

More information

GIS Data in ArcGIS. Pay Attention to Data!!!

GIS Data in ArcGIS. Pay Attention to Data!!! GIS Data in ArcGIS Pay Attention to Data!!! 1 GIS Data Models Vector Points, lines, polygons, multi-part, multi-patch Composite & secondary features Regions, dynamic segmentation (routes) Raster Grids,

More information

Making features smart

Making features smart Making features smart GEOG 419/519: Advanced GIS Dr. Lembo Qualities of features (p. 76) Features have shapes Geometry feature class Points and multipoints Polylines (line segments that may or may not

More information

2 Associating Facts with Time

2 Associating Facts with Time TEMPORAL DATABASES Richard Thomas Snodgrass A temporal database (see Temporal Database) contains time-varying data. Time is an important aspect of all real-world phenomena. Events occur at specific points

More information

Design and Implementation of Double Cube Data Model for Geographical Information System

Design and Implementation of Double Cube Data Model for Geographical Information System The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004 215 Design and Implementation of Double Cube Data Model for Geographical Information System Mohd Shafry Mohd Rahim, Daut

More information

Topology. Shapefile versus Coverage Views

Topology. Shapefile versus Coverage Views Topology Defined as the the science and mathematics of relationships used to validate the geometry of vector entities, and for operations such as network tracing and tests of polygon adjacency Longley

More information

CHAPTER-24 Mining Spatial Databases

CHAPTER-24 Mining Spatial Databases CHAPTER-24 Mining Spatial Databases 24.1 Introduction 24.2 Spatial Data Cube Construction and Spatial OLAP 24.3 Spatial Association Analysis 24.4 Spatial Clustering Methods 24.5 Spatial Classification

More information

GIS Databases With focused on ArcSDE

GIS Databases With focused on ArcSDE Linköpings universitet / IDA / Div. for human-centered systems GIS Databases With focused on ArcSDE Imad Abugessaisa g-imaab@ida.liu.se 20071004 1 GIS and SDBMS Geographical data is spatial data whose

More information

A HYBRID APPROACH FOR AUTOMATED AREA AGGREGATION

A HYBRID APPROACH FOR AUTOMATED AREA AGGREGATION A HYBRID APPROACH FOR AUTOMATED AREA AGGREGATION Zeshen Wang ESRI 380 NewYork Street Redlands CA 92373 Zwang@esri.com ABSTRACT Automated area aggregation, which is widely needed for mapping both natural

More information

High Performance Spatial Queries and Analytics for Spatial Big Data. Fusheng Wang. Department of Biomedical Informatics Emory University

High Performance Spatial Queries and Analytics for Spatial Big Data. Fusheng Wang. Department of Biomedical Informatics Emory University High Performance Spatial Queries and Analytics for Spatial Big Data Fusheng Wang Department of Biomedical Informatics Emory University Introduction Spatial Big Data Geo-crowdsourcing:OpenStreetMap Remote

More information

DATABASE MANAGEMENT FILES GIS06

DATABASE MANAGEMENT FILES GIS06 DATABASE MANAGEMENT Last day we looked at spatial data structures for both vector and raster data models. When working with large amounts of data, it is important to have good procedures for managing the

More information

Spatial Data Preparation for Knowledge Discovery

Spatial Data Preparation for Knowledge Discovery Spatial Data Preparation for Knowledge Discovery Vania Bogorny 1, Paulo Martins Engel 1, Luis Otavio Alvares 1 1 Instituto de Informática Universidade Federal do Rio Grande do Sul (UFRGS) Caixa Postal

More information

Big Data: Using ArcGIS with Apache Hadoop. Erik Hoel and Mike Park

Big Data: Using ArcGIS with Apache Hadoop. Erik Hoel and Mike Park Big Data: Using ArcGIS with Apache Hadoop Erik Hoel and Mike Park Outline Overview of Hadoop Adding GIS capabilities to Hadoop Integrating Hadoop with ArcGIS Apache Hadoop What is Hadoop? Hadoop is a scalable

More information

A Novel Cloud Computing Data Fragmentation Service Design for Distributed Systems

A Novel Cloud Computing Data Fragmentation Service Design for Distributed Systems A Novel Cloud Computing Data Fragmentation Service Design for Distributed Systems Ismail Hababeh School of Computer Engineering and Information Technology, German-Jordanian University Amman, Jordan Abstract-

More information

evaluation). notonlythemanagementoflargedata-sets,butalsonewprocessingstrategiesforspatial

evaluation). notonlythemanagementoflargedata-sets,butalsonewprocessingstrategiesforspatial SpatialDatabases:AccomplishmentsandResearchNeeds EE/CS4-192,200UnionSt.SE.,Minneapolis,MN55455 ComputerScienceDepartment,UniversityofMinnesota [shekharjchawlajsivajfettererjxliujctlu]@cs.umn.edu http://www.cs.umn.edu/research/shashi-group/

More information

Data Management Innovations for Massive Point Cloud, DEM, and 3D Vector Databases

<Insert Picture Here> Data Management Innovations for Massive Point Cloud, DEM, and 3D Vector Databases Data Management Innovations for Massive Point Cloud, DEM, and 3D Vector Databases Xavier Lopez, Director, Product Management 3D Data Management Technology Drivers: Challenges & Benefits

More information

Data Validation Online References

Data Validation Online References Data Validation Online References Submitted To: Program Manager GeoConnections Victoria, BC, Canada Submitted By: Jody Garnett Brent Owens Refractions Research Inc. Suite 400, 1207 Douglas Street Victoria,

More information

2) What is the structure of an organization? Explain how IT support at different organizational levels.

2) What is the structure of an organization? Explain how IT support at different organizational levels. (PGDIT 01) Paper - I : BASICS OF INFORMATION TECHNOLOGY 1) What is an information technology? Why you need to know about IT. 2) What is the structure of an organization? Explain how IT support at different

More information

A Multidatabase System as 4-Tiered Client-Server Distributed Heterogeneous Database System

A Multidatabase System as 4-Tiered Client-Server Distributed Heterogeneous Database System A Multidatabase System as 4-Tiered Client-Server Distributed Heterogeneous Database System Mohammad Ghulam Ali Academic Post Graduate Studies and Research Indian Institute of Technology, Kharagpur Kharagpur,

More information

ADVANCED DATA STRUCTURES FOR SURFACE STORAGE

ADVANCED DATA STRUCTURES FOR SURFACE STORAGE 1Department of Mathematics, Univerzitni Karel, Faculty 22, JANECKA1, 323 of 00, Applied Pilsen, Michal, Sciences, Czech KARA2 Republic University of West Bohemia, ADVANCED DATA STRUCTURES FOR SURFACE STORAGE

More information

Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related

Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing

More information

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Multidimensionale Indexstrukturen Ulf Leser Wissensmanagement in der Bioinformatik Content of this Lecture Multidimensional Indexing Grid-Files Kd-trees Ulf Leser: Data

More information

PartJoin: An Efficient Storage and Query Execution for Data Warehouses

PartJoin: An Efficient Storage and Query Execution for Data Warehouses PartJoin: An Efficient Storage and Query Execution for Data Warehouses Ladjel Bellatreche 1, Michel Schneider 2, Mukesh Mohania 3, and Bharat Bhargava 4 1 IMERIR, Perpignan, FRANCE ladjel@imerir.com 2

More information

Cyber Graphics. Abstract. 1. What is cyber graphics? 2. An incrementally modular abstraction hierarchy of shape invariants

Cyber Graphics. Abstract. 1. What is cyber graphics? 2. An incrementally modular abstraction hierarchy of shape invariants Preprint of the Keynote Paper: Tosiyasu L. Kunii, Cyber Graphics, Proceedings of the First International Symposium on Cyber Worlds (CW2002), November 6-8 2002 Tokyo, Japan, in press, IEEE Computer Society

More information

Introduction to PostGIS

Introduction to PostGIS Tutorial ID: IGET_WEBGIS_002 This tutorial has been developed by BVIEER as part of the IGET web portal intended to provide easy access to geospatial education. This tutorial is released under the Creative

More information

Draft Martin Doerr ICS-FORTH, Heraklion, Crete Oct 4, 2001

Draft Martin Doerr ICS-FORTH, Heraklion, Crete Oct 4, 2001 A comparison of the OpenGIS TM Abstract Specification with the CIDOC CRM 3.2 Draft Martin Doerr ICS-FORTH, Heraklion, Crete Oct 4, 2001 1 Introduction This Mapping has the purpose to identify, if the OpenGIS

More information

Keywords: Regression testing, database applications, and impact analysis. Abstract. 1 Introduction

Keywords: Regression testing, database applications, and impact analysis. Abstract. 1 Introduction Regression Testing of Database Applications Bassel Daou, Ramzi A. Haraty, Nash at Mansour Lebanese American University P.O. Box 13-5053 Beirut, Lebanon Email: rharaty, nmansour@lau.edu.lb Keywords: Regression

More information

Contents RELATIONAL DATABASES

Contents RELATIONAL DATABASES Preface xvii Chapter 1 Introduction 1.1 Database-System Applications 1 1.2 Purpose of Database Systems 3 1.3 View of Data 5 1.4 Database Languages 9 1.5 Relational Databases 11 1.6 Database Design 14 1.7

More information

An Overview of Distributed Databases

An Overview of Distributed Databases International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 4, Number 2 (2014), pp. 207-214 International Research Publications House http://www. irphouse.com /ijict.htm An Overview

More information

MultiMedia and Imaging Databases

MultiMedia and Imaging Databases MultiMedia and Imaging Databases Setrag Khoshafian A. Brad Baker Technische H FACHBEREIGM W-C^KA VK B_l_3JLJ0 T H E K Inventar-N*.: Sachgebiete: Standort: Morgan Kaufmann Publishers, Inc. San Francisco,

More information

1. Relational database accesses data in a sequential form. (Figures 7.1, 7.2)

1. Relational database accesses data in a sequential form. (Figures 7.1, 7.2) Chapter 7 Data Structures for Computer Graphics (This chapter was written for programmers - option in lecture course) Any computer model of an Object must comprise three different types of entities: 1.

More information

Introduction. Introduction. Spatial Data Mining: Definition WHAT S THE DIFFERENCE?

Introduction. Introduction. Spatial Data Mining: Definition WHAT S THE DIFFERENCE? Introduction Spatial Data Mining: Progress and Challenges Survey Paper Krzysztof Koperski, Junas Adhikary, and Jiawei Han (1996) Review by Brad Danielson CMPUT 695 01/11/2007 Authors objectives: Describe

More information

SQL SUPPORTED SPATIAL ANALYSIS FOR WEB-GIS INTRODUCTION

SQL SUPPORTED SPATIAL ANALYSIS FOR WEB-GIS INTRODUCTION SQL SUPPORTED SPATIAL ANALYSIS FOR WEB-GIS Jun Wang Jie Shan Geomatics Engineering School of Civil Engineering Purdue University 550 Stadium Mall Drive, West Lafayette, IN 47907 ABSTRACT Spatial analysis

More information

Comparing Microsoft SQL Server 2005 Replication and DataXtend Remote Edition for Mobile and Distributed Applications

Comparing Microsoft SQL Server 2005 Replication and DataXtend Remote Edition for Mobile and Distributed Applications Comparing Microsoft SQL Server 2005 Replication and DataXtend Remote Edition for Mobile and Distributed Applications White Paper Table of Contents Overview...3 Replication Types Supported...3 Set-up &

More information

PostGIS Data Integration

PostGIS Data Integration PostGIS Data Integration & Display on SIS Alex Hill GIS Manager Contents Plus Dane Group who we are PostGIS Data Integration and Display on SIS What is a Spatial Database? What is PostgreSQL/PostGIS? Why

More information

Oracle Platform GIS & Location-Based Services. Fred Louis Solution Architect Ohio Valley

Oracle Platform GIS & Location-Based Services. Fred Louis Solution Architect Ohio Valley Oracle Platform GIS & Location-Based Services Fred Louis Solution Architect Ohio Valley Overview Geospatial Technology Trends Oracle s Spatial Technologies Oracle10g Locator Spatial Oracle Application

More information

Oracle BI EE Implementation on Netezza. Prepared by SureShot Strategies, Inc.

Oracle BI EE Implementation on Netezza. Prepared by SureShot Strategies, Inc. Oracle BI EE Implementation on Netezza Prepared by SureShot Strategies, Inc. The goal of this paper is to give an insight to Netezza architecture and implementation experience to strategize Oracle BI EE

More information

SQLMutation: A tool to generate mutants of SQL database queries

SQLMutation: A tool to generate mutants of SQL database queries SQLMutation: A tool to generate mutants of SQL database queries Javier Tuya, Mª José Suárez-Cabal, Claudio de la Riva University of Oviedo (SPAIN) {tuya cabal claudio} @ uniovi.es Abstract We present a

More information

The use of Semantic Web Technologies in Spatial Decision Support Systems

The use of Semantic Web Technologies in Spatial Decision Support Systems The use of Semantic Web Technologies in Spatial Decision Support Systems Adam Iwaniak Jaromar Łukowicz Iwona Kaczmarek Marek Strzelecki The INSPIRE Conference 2013, 23-27 June Wroclaw University of Environmental

More information

Working with the Geodatabase Using SQL

Working with the Geodatabase Using SQL An ESRI Technical Paper February 2004 This technical paper is aimed primarily at GIS managers and data administrators who are responsible for the installation, design, and day-to-day management of a geodatabase.

More information

DUAL HALF EDGE DATA STRUCTURE IN DATABASE FOR BIG DATA IN GIS

DUAL HALF EDGE DATA STRUCTURE IN DATABASE FOR BIG DATA IN GIS DUAL HALF EDGE DATA STRUCTURE IN DATABASE FOR BIG DATA IN GIS M. Goudarzi a, M. Asghari a, P. Boguslawski b, A. Abdul Rahman a,c a Faculty of Geoinformation and Real Estate, University Teknologi Malaysia

More information

low-level storage structures e.g. partitions underpinning the warehouse logical table structures

low-level storage structures e.g. partitions underpinning the warehouse logical table structures DATA WAREHOUSE PHYSICAL DESIGN The physical design of a data warehouse specifies the: low-level storage structures e.g. partitions underpinning the warehouse logical table structures low-level structures

More information

TOWARDS AN AUTOMATED HEALING OF 3D URBAN MODELS

TOWARDS AN AUTOMATED HEALING OF 3D URBAN MODELS TOWARDS AN AUTOMATED HEALING OF 3D URBAN MODELS J. Bogdahn a, V. Coors b a University of Strathclyde, Dept. of Electronic and Electrical Engineering, 16 Richmond Street, Glasgow G1 1XQ UK - jurgen.bogdahn@strath.ac.uk

More information

Survey On: Nearest Neighbour Search With Keywords In Spatial Databases

Survey On: Nearest Neighbour Search With Keywords In Spatial Databases Survey On: Nearest Neighbour Search With Keywords In Spatial Databases SayaliBorse 1, Prof. P. M. Chawan 2, Prof. VishwanathChikaraddi 3, Prof. Manish Jansari 4 P.G. Student, Dept. of Computer Engineering&

More information

Information and Communications Technology Courses at a Glance

Information and Communications Technology Courses at a Glance Information and Communications Technology Courses at a Glance Level 1 Courses ICT121 Introduction to Computer Systems Architecture This is an introductory course on the architecture of modern computer

More information

An Intelligent Approach for Integrity of Heterogeneous and Distributed Databases Systems based on Mobile Agents

An Intelligent Approach for Integrity of Heterogeneous and Distributed Databases Systems based on Mobile Agents An Intelligent Approach for Integrity of Heterogeneous and Distributed Databases Systems based on Mobile Agents M. Anber and O. Badawy Department of Computer Engineering, Arab Academy for Science and Technology

More information

Microsoft SQL Server for Oracle DBAs Course 40045; 4 Days, Instructor-led

Microsoft SQL Server for Oracle DBAs Course 40045; 4 Days, Instructor-led Microsoft SQL Server for Oracle DBAs Course 40045; 4 Days, Instructor-led Course Description This four-day instructor-led course provides students with the knowledge and skills to capitalize on their skills

More information

ifp ifp 3.7 Thematic Modeling The Object-Oriented Approach Universität Stuttgart Universität Stuttgart hydrography transport

ifp ifp 3.7 Thematic Modeling The Object-Oriented Approach Universität Stuttgart Universität Stuttgart hydrography transport transport hydrography fed_hwy state_hwy cnty_hwy river stream lake primary secondary hwy_line hwy_pt hwy_area hdy_line hdy_pt hdy_area Beispiel: GIS-Produkt INTERGRAPH 3.7 Thematic Modeling The Object-Oriented

More information

Spatial Data Warehouse and Mining. Rajiv Gandhi

Spatial Data Warehouse and Mining. Rajiv Gandhi Spatial Data Warehouse and Mining Rajiv Gandhi Roll Number 05331002 Centre of Studies in Resource Engineering Indian Institute of Technology Bombay Powai, Mumbai -400076 India. As part of the first stage

More information

Index Selection Techniques in Data Warehouse Systems

Index Selection Techniques in Data Warehouse Systems Index Selection Techniques in Data Warehouse Systems Aliaksei Holubeu as a part of a Seminar Databases and Data Warehouses. Implementation and usage. Konstanz, June 3, 2005 2 Contents 1 DATA WAREHOUSES

More information

MOBILE GEOGRAPHIC INFORMATION SYSTEMS: A CASE STUDY ON MANSOURA UNIVERSITY, EGYPT

MOBILE GEOGRAPHIC INFORMATION SYSTEMS: A CASE STUDY ON MANSOURA UNIVERSITY, EGYPT MOBILE GEOGRAPHIC INFORMATION SYSTEMS: A CASE STUDY ON MANSOURA UNIVERSITY, EGYPT Asmaa Ahmed Hussein 1, Elkhedr Hassan Eibrahim 2, Aziza Asem 1 1 Faculty of Computer Sciences and information systems,

More information

INTRODUCTION TO ARCGIS SOFTWARE

INTRODUCTION TO ARCGIS SOFTWARE INTRODUCTION TO ARCGIS SOFTWARE I. History of Software Development a. Developer ESRI - Environmental Systems Research Institute, Inc., in 1969 as a privately held consulting firm that specialized in landuse

More information

Temporal Database System

Temporal Database System Temporal Database System Jaymin Patel MEng Individual Project 18 June 2003 Department of Computing, Imperial College, University of London Supervisor: Peter McBrien Second Marker: Ian Phillips Abstract

More information

Efficient Integration of Data Mining Techniques in Database Management Systems

Efficient Integration of Data Mining Techniques in Database Management Systems Efficient Integration of Data Mining Techniques in Database Management Systems Fadila Bentayeb Jérôme Darmont Cédric Udréa ERIC, University of Lyon 2 5 avenue Pierre Mendès-France 69676 Bron Cedex France

More information

May 2012 Oracle Spatial User Conference

May 2012 Oracle Spatial User Conference 1 May 2012 Oracle Spatial User Conference May 23, 2012 Ronald Reagan Building and International Trade Center Washington, DC USA Amit Ghosh Lead Architect, Nokia How Nokia Uses Oracle Spatial to Create

More information

http://www.paper.edu.cn

http://www.paper.edu.cn 5 10 15 20 25 30 35 A platform for massive railway information data storage # SHAN Xu 1, WANG Genying 1, LIU Lin 2** (1. Key Laboratory of Communication and Information Systems, Beijing Municipal Commission

More information

www.gr8ambitionz.com

www.gr8ambitionz.com Data Base Management Systems (DBMS) Study Material (Objective Type questions with Answers) Shared by Akhil Arora Powered by www. your A to Z competitive exam guide Database Objective type questions Q.1

More information

SPATIAL DATABASES AND GEOGRAPHICAL INFORMATION SYSTEMS (GIS)

SPATIAL DATABASES AND GEOGRAPHICAL INFORMATION SYSTEMS (GIS) zk SPATIAL DATABASES AND GEOGRAPHICAL INFORMATION SYSTEMS (GIS) HANAN SAMET COMPUTER SCIENCE DEPARTMENT AND CENTER FOR AUTOMATION RESEARCH AND INSTITUTE FOR ADVANCED COMPUTER STUDIES UNIVERSITY OF MARYLAND

More information

Technologies & Applications

Technologies & Applications Chapter 10 Emerging Database Technologies & Applications Truong Quynh Chi tqchi@cse.hcmut.edu.vn Spring - 2013 Contents 1 Distributed Databases & Client-Server Architectures 2 Spatial and Temporal Database

More information

Lesson 15 - Fill Cells Plugin

Lesson 15 - Fill Cells Plugin 15.1 Lesson 15 - Fill Cells Plugin This lesson presents the functionalities of the Fill Cells plugin. Fill Cells plugin allows the calculation of attribute values of tables associated with cell type layers.

More information

A Study of Web Log Analysis Using Clustering Techniques

A Study of Web Log Analysis Using Clustering Techniques A Study of Web Log Analysis Using Clustering Techniques Hemanshu Rana 1, Mayank Patel 2 Assistant Professor, Dept of CSE, M.G Institute of Technical Education, Gujarat India 1 Assistant Professor, Dept

More information

Master s Program in Information Systems

Master s Program in Information Systems The University of Jordan King Abdullah II School for Information Technology Department of Information Systems Master s Program in Information Systems 2006/2007 Study Plan Master Degree in Information Systems

More information

The process of database development. Logical model: relational DBMS. Relation

The process of database development. Logical model: relational DBMS. Relation The process of database development Reality (Universe of Discourse) Relational Databases and SQL Basic Concepts The 3rd normal form Structured Query Language (SQL) Conceptual model (e.g. Entity-Relationship

More information

DBMS / Business Intelligence, SQL Server

DBMS / Business Intelligence, SQL Server DBMS / Business Intelligence, SQL Server Orsys, with 30 years of experience, is providing high quality, independant State of the Art seminars and hands-on courses corresponding to the needs of IT professionals.

More information

CSE 233. Database System Overview

CSE 233. Database System Overview CSE 233 Database System Overview 1 Data Management An evolving, expanding field: Classical stand-alone databases (Oracle, DB2, SQL Server) Computer science is becoming data-centric: web knowledge harvesting,

More information

Query Optimization Approach in SQL to prepare Data Sets for Data Mining Analysis

Query Optimization Approach in SQL to prepare Data Sets for Data Mining Analysis Query Optimization Approach in SQL to prepare Data Sets for Data Mining Analysis Rajesh Reddy Muley 1, Sravani Achanta 2, Prof.S.V.Achutha Rao 3 1 pursuing M.Tech(CSE), Vikas College of Engineering and

More information

International Journal of Advance Research in Computer Science and Management Studies

International Journal of Advance Research in Computer Science and Management Studies Volume 3, Issue 11, November 2015 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

More information

A NEW FULLY DECENTRALIZED SCALABLE PEER-TO-PEER GIS ARCHITECTURE

A NEW FULLY DECENTRALIZED SCALABLE PEER-TO-PEER GIS ARCHITECTURE A NEW FULLY DECENTRALIZED SCALABLE PEER-TO-PEER GIS ARCHITECTURE S.H.L. Liang Department of Geomatics Engineering, University of Calgary, Calgary, Alberta, CANADA T2N 1N4 steve.liang@ucalgary.ca Commission

More information

Personalized e-learning a Goal Oriented Approach

Personalized e-learning a Goal Oriented Approach Proceedings of the 7th WSEAS International Conference on Distance Learning and Web Engineering, Beijing, China, September 15-17, 2007 304 Personalized e-learning a Goal Oriented Approach ZHIQI SHEN 1,

More information

THE ARCHITECTURE OF ARC/INFO Scott Morehouse Environmental Systems Research Institute 380 New York Street Redlands, California

THE ARCHITECTURE OF ARC/INFO Scott Morehouse Environmental Systems Research Institute 380 New York Street Redlands, California THE ARCHITECTURE OF ARC/INFO Scott Morehouse Environmental Systems Research Institute 380 New York Street Redlands, California ABSTRACT Arc/Info is a generalized system for processing geographic information.

More information

7 Architectures and Implementations of Spatio-temporal Database Management Systems

7 Architectures and Implementations of Spatio-temporal Database Management Systems 7 Architectures and Implementations of Spatio-temporal Database Management Systems Martin Breunig 1, Can Türker 2, Michael H. Böhlen 5, Stefan Dieker 4, Ralf Hartmut Güting 4, Christian S. Jensen 5, Lukas

More information

Oracle Spatial 10g. An Oracle White Paper August 2005

Oracle Spatial 10g. An Oracle White Paper August 2005 Oracle Spatial 10g An Oracle White Paper August 2005 Oracle Spatial 10g INTRODUCTION Oracle Spatial, an option for Oracle Database 10g Enterprise Edition, includes advanced spatial capabilities to support

More information

Principles of Data Mining by Hand&Mannila&Smyth

Principles of Data Mining by Hand&Mannila&Smyth Principles of Data Mining by Hand&Mannila&Smyth Slides for Textbook Ari Visa,, Institute of Signal Processing Tampere University of Technology October 4, 2010 Data Mining: Concepts and Techniques 1 Differences

More information

Geo-Mobile Queries: Sketch-Based Queries in Mobile GIS-Environments

Geo-Mobile Queries: Sketch-Based Queries in Mobile GIS-Environments Geo-Mobile Queries: -Based Queries in Mobile GIS-Environments David Caduff 1 and Max J. Egenhofer 2 1 Department of Geography, University of Zurich Irchel, Winterthurerstr. 190, CH-8057 Zurich, Switzerland

More information

Effective Complex Data Retrieval Mechanism for Mobile Applications

Effective Complex Data Retrieval Mechanism for Mobile Applications , 23-25 October, 2013, San Francisco, USA Effective Complex Data Retrieval Mechanism for Mobile Applications Haeng Kon Kim Abstract While mobile devices own limited storages and low computational resources,

More information

Seema Sundara, Timothy Chorma, Ying Hu, Jagannathan Srinivasan Oracle Corporation New England Development Center Nashua, New Hampshire

Seema Sundara, Timothy Chorma, Ying Hu, Jagannathan Srinivasan Oracle Corporation New England Development Center Nashua, New Hampshire Seema Sundara, Timothy Chorma, Ying Hu, Jagannathan Srinivasan Oracle Corporation New England Development Center Nashua, New Hampshire {Seema.Sundara, Timothy.Chorma, Ying.Hu, Jagannathan.Srinivasan}@oracle.com

More information

Dynamic Data in terms of Data Mining Streams

Dynamic Data in terms of Data Mining Streams International Journal of Computer Science and Software Engineering Volume 2, Number 1 (2015), pp. 1-6 International Research Publication House http://www.irphouse.com Dynamic Data in terms of Data Mining

More information

Generating Enterprise Applications from Models

Generating Enterprise Applications from Models Generating Enterprise Applications from Models Vinay Kulkarni, R Venkatesh, Sreedhar Reddy Tata Research Development and Design Centre, 54, Industrial estate, Hadapsar, Pune, 411 013, INDIA { vinayk, rvenky,

More information

An Instructional Aid System for Driving Schools Based on Visual Simulation

An Instructional Aid System for Driving Schools Based on Visual Simulation An Instructional Aid System for Driving Schools Based on Visual Simulation Salvador Bayarri, Rafael Garcia, Pedro Valero, Ignacio Pareja, Institute of Traffic and Road Safety (INTRAS), Marcos Fernandez

More information