Graph/Network Visualization

Size: px
Start display at page:

Download "Graph/Network Visualization"

Transcription

1 Graph/Network Visualization Data model: graph structures (relations, knowledge) and networks. Applications: Telecommunication systems, Internet and WWW, Retailers distribution networks knowledge representation Trade Collaborations literature citations, etc. 1 What is a Graph? Vertices (nodes) Edges (links) Adjacency list : 2 2: 1, 3 3: Adjacency matrix Drawing 2 1

2 Graph Terminology Graphs can have cycles Graph edges can be directed or undirected The degree of a vertex is the number of edges connected to it In-degree and out-degree for directed graphs Graph edges can have values (weights) on them (nominal, ordinal or quantitative) 3 Trees are Different Subcase of general graph No cycles Typically directed edges Special designated root vertex Spring 2002 CS

3 Issues in Graph visualization Graph drawing Layout and positioning Scale: large scale graphs are difficult Navigation: changing focus and scale 5 Vertex Issues Shape Color Size Location Label 6 3

4 Edge Issues Color Size Label Form Polyline, straight line, orthogonal, grid, curved, planar, upward/downward,... 7 Aesthetic Considerations Crossings -- minimize number of edge crossings Total Edge Length -- minimize total length Area -- minimize towards efficiency Maximum Edge Length -- minimize longest edge Uniform Edge Lengths -- minimize variances Total Bends -- minimize orthogonal towards straight-line 8 4

5 Graph drawing optimization 3D-Graph Drawing 5

6 Graph visualization techniques Node-link approach Layered graph drawing (Sugiyama) Force-directed layout Multi-dimensional scaling (MDS) Adjacency Matrix Attribute based approach 11 Sugiyama (layered) method Suitable for directed graphs with natural hierarchies: All edges are oriented in a consistent direction and no pairs of edges cross 6

7 Sugiyama : Building Hierarchy Assign layers according to the longest path of each vertex Dummy vertices are used to avoid path across multiple layers. Vertex permutation within a layer to reduce edge crossing. Exact optimization is NP-hard need heuristics. Sugiyama : Building Hierarchy 7

8 Force directed graph layout No natural hierarchy or order Based on principles of physics The Spring Model Using springs to represent node-node relations. Minimizing energy function to reach energy equilibrium. Initial layout is important Local minimal problem 8

9 Network of character co-occurrence in Les Misérables 9

10 Multi-dimensional Scaling Dimension reduction to 2D Graph distance of two nodes are as close to 2D Euclidean distance as possible MDS is a global approach Distance between two nodes: shortest path (classical scaling). Weighted distances (,, w,,, MDS for graph layout 10

11 Other Node-Link Methods Orthogonal layout Suitable for UML graph Radial graph Often used in social networks Nested graph layout Apply graph layout hierarchically Suitable for graphs with hierarchy Arc Diagrams Arc Diagram Les Misérables character relations 11

12 Arc Diagram EU Financial Crisis: 12

13 Summary: Node-Link Pros Intuitive Good for global structure Flexible, with variations Cons Complexity >O(N 2 ) Not suitable for large graphs Adjacency Matrix matrix, for a graph with N nodes. (i, j) position represent the relationship of the ith node and jth node. 13

14 Adjacency Matrix Edge weight Directional edges Sorting: node order Path searching and path tracking? 28 14

15 Node Order Path Tracking 15

16 Adjacency matrix summary Avoid edge crossing, suitable for dense graphs Visually more scalable Visualization is not intuitive Hard to track a path MatLink 16

17 Hybrid Layout Using adjacency matrix to represent small communities Node-link for relationships between communities NodeTrix 17

18 GMap Visualizing graphs and clusters as geographic maps to represent node relations (geographic neighbors) Topological graph simplification Reducing amount of data Reducing nodes: clustering Reducing edges: minimal spanning tree Edge bundling Problems: Loss of data 18

19 Clustering Edge Bundling 19

20 Force Directed Edge Bundling Edges are modeled as flexible springs that are able to attract each other. Geometry Based Edge Bundling Edges clusters are found based on a geometric control mesh. 20

21 Multilevel Agglomerative Edge Bundling Bottom-up merging approach, similar to hierarchical clustering Minimize amount of ink used to render a graph. Skeleton-based Edge Bundling Skeletons: medial axes of edges which are similar in terms of positions information. Iteratively attracting edges towards the skeletons. 21

22 Comparison Interaction Viewing Pan, Zoom, Rotate Interacting with graph nodes and edges Pick, highlight, delete, move Structural interaction Local re-order and re-layout Focus+Context Roll-up & Drill-down 22

23 Fisheye Focus+Context; Overviews + details-on-demand Distortion to magnify areas of interest: zoom factors of 3-5 Multi-scale spaces: Zoom in/out & Pan left/right Interaction with Social Networks Need to consider the social factors and behaviors related to nodes and edges 23

24 Graph Visualization Tools Prefuse (Java) UCINET / NetDraw Sentinel Visualizer JUNG (Java Universal Network/Graph framework) Graphviz Gephi TouchGraph Flare: ActionScript Library 24

25 Pajek 25

26 Sentinel Visualizer Link Analysis, Data Visualization, Geospatial Mapping, and Social Network Analysis (SNA) UCINET / NetDraw Analysis and visualization of networks and graphs Example: trade 52 26

27 Example: traffic 53 Example: Subway map 54 27

28 Web page connections 55 Communication Networks 28

29 Hypergraphs Definition A hypergraph is a generalization of a graph, where an edge can connect any number of vertices. A hypergraph H is a pair H = (V,E)whereV is a set of nodes/vertices, and E is a set of non-empty subsets of V called hyperedges/links. 29

30 The Hypergraph H = (V,E) where V = (1,2,3,4,5) and E = {(1,2) (2,3,5) (1,3), (5,4) (2,3)} Applications Data Mining Biological Interactions Social Networks Circuit Diagrams 30

31 Graph Representations Edge Nodes: Representative Graph 31

Network Metrics, Planar Graphs, and Software Tools. Based on materials by Lala Adamic, UMichigan

Network Metrics, Planar Graphs, and Software Tools. Based on materials by Lala Adamic, UMichigan Network Metrics, Planar Graphs, and Software Tools Based on materials by Lala Adamic, UMichigan Network Metrics: Bowtie Model of the Web n The Web is a directed graph: n webpages link to other webpages

More information

Graph and Tree Layout

Graph and Tree Layout stanford / cs448b Graph and Tree Layout Jeffrey Heer assistant: Jason Chuang Assignment 3: Visualization Software Create an interactive visualization application. Choose a data domain and select an appropriate

More information

A comparative study of social network analysis tools

A comparative study of social network analysis tools Membre de Membre de A comparative study of social network analysis tools David Combe, Christine Largeron, Előd Egyed-Zsigmond and Mathias Géry International Workshop on Web Intelligence and Virtual Enterprises

More information

By LaBRI INRIA Information Visualization Team

By LaBRI INRIA Information Visualization Team By LaBRI INRIA Information Visualization Team Tulip 2011 version 3.5.0 Tulip is an information visualization framework dedicated to the analysis and visualization of data. Tulip aims to provide the developer

More information

Social Media Mining. Graph Essentials

Social Media Mining. Graph Essentials Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

More information

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005 V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer

More information

Hierarchical Data Visualization

Hierarchical Data Visualization Hierarchical Data Visualization 1 Hierarchical Data Hierarchical data emphasize the subordinate or membership relations between data items. Organizational Chart Classifications / Taxonomies (Species and

More information

Animated Exploring of Huge Software Systems

Animated Exploring of Huge Software Systems Animated Exploring of Huge Software Systems Liqun Wang Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of Master of Science

More information

Graphs and Network Flows IE411 Lecture 1

Graphs and Network Flows IE411 Lecture 1 Graphs and Network Flows IE411 Lecture 1 Dr. Ted Ralphs IE411 Lecture 1 1 References for Today s Lecture Required reading Sections 17.1, 19.1 References AMO Chapter 1 and Section 2.1 and 2.2 IE411 Lecture

More information

Network VisualizationS

Network VisualizationS Network VisualizationS When do they make sense? Where to start? Clement Levallois, Assist. Prof. EMLYON Business School v. 1.1, January 2014 Bio notes Education in economics, management, history of science

More information

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti

More information

9. Text & Documents. Visualizing and Searching Documents. Dr. Thorsten Büring, 20. Dezember 2007, Vorlesung Wintersemester 2007/08

9. Text & Documents. Visualizing and Searching Documents. Dr. Thorsten Büring, 20. Dezember 2007, Vorlesung Wintersemester 2007/08 9. Text & Documents Visualizing and Searching Documents Dr. Thorsten Büring, 20. Dezember 2007, Vorlesung Wintersemester 2007/08 Slide 1 / 37 Outline Characteristics of text data Detecting patterns SeeSoft

More information

Graph. Consider a graph, G in Fig Then the vertex V and edge E can be represented as:

Graph. Consider a graph, G in Fig Then the vertex V and edge E can be represented as: Graph A graph G consist of 1. Set of vertices V (called nodes), (V = {v1, v2, v3, v4...}) and 2. Set of edges E (i.e., E {e1, e2, e3...cm} A graph can be represents as G = (V, E), where V is a finite and

More information

An Open Framework for Reverse Engineering Graph Data Visualization. Alexandru C. Telea Eindhoven University of Technology The Netherlands.

An Open Framework for Reverse Engineering Graph Data Visualization. Alexandru C. Telea Eindhoven University of Technology The Netherlands. An Open Framework for Reverse Engineering Graph Data Visualization Alexandru C. Telea Eindhoven University of Technology The Netherlands Overview Reverse engineering (RE) overview Limitations of current

More information

Introduction of Information Visualization and Visual Analytics. Chapter 7. Trees and Graphs Visualization

Introduction of Information Visualization and Visual Analytics. Chapter 7. Trees and Graphs Visualization Introduction of Information Visualization and Visual Analytics Chapter 7 Trees and Graphs Visualization Overview! Motivation! Trees Visualization! Graphs Visualization 1 Motivation! Often datasets contain

More information

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

More information

CMSC 451: Graph Properties, DFS, BFS, etc.

CMSC 451: Graph Properties, DFS, BFS, etc. CMSC 451: Graph Properties, DFS, BFS, etc. Slides By: Carl Kingsford Department of Computer Science University of Maryland, College Park Based on Chapter 3 of Algorithm Design by Kleinberg & Tardos. Graphs

More information

Layout Based Visualization Techniques for Multi Dimensional Data

Layout Based Visualization Techniques for Multi Dimensional Data Layout Based Visualization Techniques for Multi Dimensional Data Wim de Leeuw Robert van Liere Center for Mathematics and Computer Science, CWI Amsterdam, the Netherlands wimc,robertl @cwi.nl October 27,

More information

VISUALIZING HIERARCHICAL DATA. Graham Wills SPSS Inc., http://willsfamily.org/gwills

VISUALIZING HIERARCHICAL DATA. Graham Wills SPSS Inc., http://willsfamily.org/gwills VISUALIZING HIERARCHICAL DATA Graham Wills SPSS Inc., http://willsfamily.org/gwills SYNONYMS Hierarchical Graph Layout, Visualizing Trees, Tree Drawing, Information Visualization on Hierarchies; Hierarchical

More information

NakeDB: Database Schema Visualization

NakeDB: Database Schema Visualization NAKEDB: DATABASE SCHEMA VISUALIZATION, APRIL 2008 1 NakeDB: Database Schema Visualization Luis Miguel Cortés-Peña, Yi Han, Neil Pradhan, Romain Rigaux Abstract Current database schema visualization tools

More information

Lecture Notes on Spanning Trees

Lecture Notes on Spanning Trees Lecture Notes on Spanning Trees 15-122: Principles of Imperative Computation Frank Pfenning Lecture 26 April 26, 2011 1 Introduction In this lecture we introduce graphs. Graphs provide a uniform model

More information

Integration of Cluster Analysis and Visualization Techniques for Visual Data Analysis

Integration of Cluster Analysis and Visualization Techniques for Visual Data Analysis Integration of Cluster Analysis and Visualization Techniques for Visual Data Analysis M. Kreuseler, T. Nocke, H. Schumann, Institute of Computer Graphics University of Rostock, D-18059 Rostock, Germany

More information

An overview of Software Applications for Social Network Analysis

An overview of Software Applications for Social Network Analysis IRSR INTERNATIONAL REVIEW of SOCIAL RESEARCH Volume 3, Issue 3, October 2013, 71-77 International Review of Social Research An overview of Software Applications for Social Network Analysis Ioana-Alexandra

More information

Course on Social Network Analysis Graphs and Networks

Course on Social Network Analysis Graphs and Networks Course on Social Network Analysis Graphs and Networks Vladimir Batagelj University of Ljubljana Slovenia V. Batagelj: Social Network Analysis / Graphs and Networks 1 Outline 1 Graph...............................

More information

Extending the Sugiyama Algorithm for Drawing. UML Class Diagrams: Towards Automatic. Layout of Object-Oriented Software Diagrams.

Extending the Sugiyama Algorithm for Drawing. UML Class Diagrams: Towards Automatic. Layout of Object-Oriented Software Diagrams. Extending the Sugiyama Algorithm for Drawing UML Class Diagrams: Towards Automatic Layout of Object-Oriented Software Diagrams Jochen Seemann Institut fur Informatik, Am Hubland, 97074 Wurzburg, seemann@informatik.uni-wuerzburg.de

More information

USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS

USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA natarajan.meghanathan@jsums.edu ABSTRACT This

More information

Data Structures in Java. Session 16 Instructor: Bert Huang

Data Structures in Java. Session 16 Instructor: Bert Huang Data Structures in Java Session 16 Instructor: Bert Huang http://www.cs.columbia.edu/~bert/courses/3134 Announcements Homework 4 due next class Remaining grades: hw4, hw5, hw6 25% Final exam 30% Midterm

More information

Graph Algorithms using Map-Reduce

Graph Algorithms using Map-Reduce Graph Algorithms using Map-Reduce Graphs are ubiquitous in modern society. Some examples: The hyperlink structure of the web 1/7 Graph Algorithms using Map-Reduce Graphs are ubiquitous in modern society.

More information

Information Visualization of Attributed Relational Data

Information Visualization of Attributed Relational Data Information Visualization of Attributed Relational Data Mao Lin Huang Department of Computer Systems Faculty of Information Technology University of Technology, Sydney PO Box 123 Broadway, NSW 2007 Australia

More information

Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path.

Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path. Chapter 3 Trees Section 3. Fundamental Properties of Trees Suppose your city is planning to construct a rapid rail system. They want to construct the most economical system possible that will meet the

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spanning Trees Algorithms and 18.304 Presentation Outline 1 Graph Terminology Minimum Spanning Trees 2 3 Outline Graph Terminology Minimum Spanning Trees 1 Graph Terminology Minimum Spanning Trees

More information

Editing Common Polygon Boundary in ArcGIS Desktop 9.x

Editing Common Polygon Boundary in ArcGIS Desktop 9.x Editing Common Polygon Boundary in ArcGIS Desktop 9.x Article ID : 100018 Software : ArcGIS ArcView 9.3, ArcGIS ArcEditor 9.3, ArcGIS ArcInfo 9.3 (or higher versions) Platform : Windows XP, Windows Vista

More information

Trees and Graphs Pat Hanrahan Tree Drawing

Trees and Graphs Pat Hanrahan Tree Drawing Page 1 Trees and Graphs Pat Hanrahan Tree Drawing Page 2 Why Trees? Hierarchies File systems and web sites Organization charts Categorical classifications Similiarity and clustering Branching processes

More information

Off-Screen Visualization Techniques for Class Diagrams

Off-Screen Visualization Techniques for Class Diagrams Off-Screen Visualization Techniques for Class Diagrams Mathias Frisch, Raimund Dachselt User Interface & Software Engineering Group Otto-von-Guericke University Magdeburg, Germany [mfrisch, dachselt]@isg.cs.uni-magdeburg.de

More information

Distance Degree Sequences for Network Analysis

Distance Degree Sequences for Network Analysis Universität Konstanz Computer & Information Science Algorithmics Group 15 Mar 2005 based on Palmer, Gibbons, and Faloutsos: ANF A Fast and Scalable Tool for Data Mining in Massive Graphs, SIGKDD 02. Motivation

More information

Graph Visualization Tools: A Comparative Analysis

Graph Visualization Tools: A Comparative Analysis Graph Visualization Tools: A Comparative Analysis Fariha Majeed 1, Dr. Saif-ur-Rahman 2 1,2 Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST) Karachi, Pakistan 1 majeed.fariha@gmail.com

More information

COT5405 Analysis of Algorithms Homework 3 Solutions

COT5405 Analysis of Algorithms Homework 3 Solutions COT0 Analysis of Algorithms Homework 3 Solutions. Prove or give a counter example: (a) In the textbook, we have two routines for graph traversal - DFS(G) and BFS(G,s) - where G is a graph and s is any

More information

Hierarchy and Tree Visualization

Hierarchy and Tree Visualization Hierarchy and Tree Visualization Definition Hierarchies An ordering of groups in which larger groups encompass sets of smaller groups. Data repository in which cases are related to subcases Hierarchical

More information

Part 2: Community Detection

Part 2: Community Detection Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection - Social networks -

More information

Distributed Dynamic Load Balancing for Iterative-Stencil Applications

Distributed Dynamic Load Balancing for Iterative-Stencil Applications Distributed Dynamic Load Balancing for Iterative-Stencil Applications G. Dethier 1, P. Marchot 2 and P.A. de Marneffe 1 1 EECS Department, University of Liege, Belgium 2 Chemical Engineering Department,

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

Load balancing in a heterogeneous computer system by self-organizing Kohonen network

Load balancing in a heterogeneous computer system by self-organizing Kohonen network Bull. Nov. Comp. Center, Comp. Science, 25 (2006), 69 74 c 2006 NCC Publisher Load balancing in a heterogeneous computer system by self-organizing Kohonen network Mikhail S. Tarkov, Yakov S. Bezrukov Abstract.

More information

Clustering & Visualization

Clustering & Visualization Chapter 5 Clustering & Visualization Clustering in high-dimensional databases is an important problem and there are a number of different clustering paradigms which are applicable to high-dimensional data.

More information

Data Mining. Cluster Analysis: Advanced Concepts and Algorithms

Data Mining. Cluster Analysis: Advanced Concepts and Algorithms Data Mining Cluster Analysis: Advanced Concepts and Algorithms Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 More Clustering Methods Prototype-based clustering Density-based clustering Graph-based

More information

Tutorial: Biped Character in 3D Studio Max 7, Easy Animation

Tutorial: Biped Character in 3D Studio Max 7, Easy Animation Tutorial: Biped Character in 3D Studio Max 7, Easy Animation Written by: Ricardo Tangali 1. Introduction:... 3 2. Basic control in 3D Studio Max... 3 2.1. Navigating a scene:... 3 2.2. Hide and Unhide

More information

Visualization Techniques in Data Mining

Visualization Techniques in Data Mining Tecniche di Apprendimento Automatico per Applicazioni di Data Mining Visualization Techniques in Data Mining Prof. Pier Luca Lanzi Laurea in Ingegneria Informatica Politecnico di Milano Polo di Milano

More information

Network-Based Tools for the Visualization and Analysis of Domain Models

Network-Based Tools for the Visualization and Analysis of Domain Models Network-Based Tools for the Visualization and Analysis of Domain Models Paper presented as the annual meeting of the American Educational Research Association, Philadelphia, PA Hua Wei April 2014 Visualizing

More information

Java Software Structures

Java Software Structures INTERNATIONAL EDITION Java Software Structures Designing and Using Data Structures FOURTH EDITION John Lewis Joseph Chase This page is intentionally left blank. Java Software Structures,International Edition

More information

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.0, steen@cs.vu.nl Chapter 06: Network analysis Version: April 8, 04 / 3 Contents Chapter

More information

Jing Yang Spring 2010

Jing Yang Spring 2010 Information Visualization Jing Yang Spring 2010 1 InfoVis Programming 2 1 Outline Look at increasing higher-level tools 2D graphics API Graphicial User Interface (GUI) toolkits Visualization framework

More information

1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT

1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT DECISION 1 Revision Notes 1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT Make sure you show comparisons clearly and label each pass First Pass 8 4 3 6 1 4 8 3 6 1 4 3 8 6 1 4 3 6 8 1

More information

Lesson 3. Algebraic graph theory. Sergio Barbarossa. Rome - February 2010

Lesson 3. Algebraic graph theory. Sergio Barbarossa. Rome - February 2010 Lesson 3 Algebraic graph theory Sergio Barbarossa Basic notions Definition: A directed graph (or digraph) composed by a set of vertices and a set of edges We adopt the convention that the information flows

More information

TEXT-FILLED STACKED AREA GRAPHS Martin Kraus

TEXT-FILLED STACKED AREA GRAPHS Martin Kraus Martin Kraus Text can add a significant amount of detail and value to an information visualization. In particular, it can integrate more of the data that a visualization is based on, and it can also integrate

More information

Information Visualization Multivariate Data Visualization Krešimir Matković

Information Visualization Multivariate Data Visualization Krešimir Matković Information Visualization Multivariate Data Visualization Krešimir Matković Vienna University of Technology, VRVis Research Center, Vienna Multivariable >3D Data Tables have so many variables that orthogonal

More information

Oracle Database 10g: Building GIS Applications Using the Oracle Spatial Network Data Model. An Oracle Technical White Paper May 2005

Oracle Database 10g: Building GIS Applications Using the Oracle Spatial Network Data Model. An Oracle Technical White Paper May 2005 Oracle Database 10g: Building GIS Applications Using the Oracle Spatial Network Data Model An Oracle Technical White Paper May 2005 Building GIS Applications Using the Oracle Spatial Network Data Model

More information

Hierarchical Aggregation for Information Visualization: Overview, Techniques and Design Guidelines

Hierarchical Aggregation for Information Visualization: Overview, Techniques and Design Guidelines Hierarchical Aggregation for Information Visualization: Overview, Techniques and Design Guidelines Niklas Elmqvist, Member, IEEE, and Jean-Daniel Fekete, Member, IEEE Abstract We present a model for building,

More information

Clustering and Data Mining in R

Clustering and Data Mining in R Clustering and Data Mining in R Workshop Supplement Thomas Girke December 10, 2011 Introduction Data Preprocessing Data Transformations Distance Methods Cluster Linkage Hierarchical Clustering Approaches

More information

in R Binbin Lu, Martin Charlton National Centre for Geocomputation National University of Ireland Maynooth The R User Conference 2011

in R Binbin Lu, Martin Charlton National Centre for Geocomputation National University of Ireland Maynooth The R User Conference 2011 Converting a spatial network to a graph in R Binbin Lu, Martin Charlton National Centre for Geocomputation National University of Ireland Maynooth Maynooth, Co.Kildare, Ireland The R User Conference 2011

More information

Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics

Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics Zhao Wenbin 1, Zhao Zhengxu 2 1 School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu

More information

Graph Theory for Articulated Bodies

Graph Theory for Articulated Bodies Graph Theory for Articulated Bodies Alba Perez-Gracia Department of Mechanical Engineering, Idaho State University Articulated Bodies A set of rigid bodies (links) joined by joints that allow relative

More information

Social Media Mining. Network Measures

Social Media Mining. Network Measures Klout Measures and Metrics 22 Why Do We Need Measures? Who are the central figures (influential individuals) in the network? What interaction patterns are common in friends? Who are the like-minded users

More information

The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. Ben Shneiderman, 1996

The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. Ben Shneiderman, 1996 The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations Ben Shneiderman, 1996 Background the growth of computing + graphic user interface 1987 scientific visualization 1989 information

More information

A Survey on Graph Visualization

A Survey on Graph Visualization A Survey on Graph Visualization By Weiwei Cui Supervisor Huamin Qu Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong Table of Contents Table of Contents Abstract ii iv

More information

How to Draw a Sequence Diagram

How to Draw a Sequence Diagram How to Draw a Sequence Diagram Timo Poranen, Erkki Mäkinen, and Jyrki Nummenmaa Department of Computer and Information Sciences Kanslerinrinne 1 FIN-33014 University of Tampere Finland {tp,em,jyrki}@cs.uta.fi

More information

Protein Protein Interaction Networks

Protein Protein Interaction Networks Functional Pattern Mining from Genome Scale Protein Protein Interaction Networks Young-Rae Cho, Ph.D. Assistant Professor Department of Computer Science Baylor University it My Definition of Bioinformatics

More information

Tools and Techniques for Social Network Analysis

Tools and Techniques for Social Network Analysis Tools and Techniques for Social Network Analysis Pajek Program for Analysis and Visualization of Large Networks Pajek: What is it Pajek is a program, for Windows and Linux (via Wine) Developers: Vladimir

More information

Social Network Analysis: Visualization Tools

Social Network Analysis: Visualization Tools Social Network Analysis: Visualization Tools Dr. oec. Ines Mergel The Program on Networked Governance Kennedy School of Government Harvard University ines_mergel@harvard.edu Content Assembling network

More information

Clustering Hierarchical clustering and k-mean clustering

Clustering Hierarchical clustering and k-mean clustering Clustering Hierarchical clustering and k-mean clustering Genome 373 Genomic Informatics Elhanan Borenstein The clustering problem: A quick review partition genes into distinct sets with high homogeneity

More information

NETWORK VISUALIZAITON WITH GEPHI

NETWORK VISUALIZAITON WITH GEPHI NETWORK VISUALIZAITON WITH GEPHI TABLE OF CONTENTS Table of Contents... Gephi resources... 2 Initial Setup... 2 Data formats... 3 Gephi Interface: Major sections... 5 Gephi Interface: the Overview Tab...

More information

Visualization of Graphs with Associated Timeseries Data

Visualization of Graphs with Associated Timeseries Data Visualization of Graphs with Associated Timeseries Data Purvi Saraiya, Peter Lee, Chris North Department of Computer Science Virginia Polytechnic Institute and State University Blacksburg, VA 24061 USA

More information

CMPSCI611: Approximating MAX-CUT Lecture 20

CMPSCI611: Approximating MAX-CUT Lecture 20 CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to

More information

Gephi advanced functions Filters, metrics and plugins. Clément Levallois Gephi Support Team and Assist. Business School

Gephi advanced functions Filters, metrics and plugins. Clément Levallois Gephi Support Team and Assist. Business School Gephi advanced functions Filters, metrics and plugins Clément Levallois Gephi Support Team and Assist. Prof @EMLyon Business School V 1.1 Jan. 2014 1 Bio notes Education in economics, management, history

More information

Visualizing Large Graphs with Compound-Fisheye Views and Treemaps

Visualizing Large Graphs with Compound-Fisheye Views and Treemaps Visualizing Large Graphs with Compound-Fisheye Views and Treemaps James Abello 1, Stephen G. Kobourov 2, and Roman Yusufov 2 1 DIMACS Center Rutgers University {abello}@dimacs.rutgers.edu 2 Department

More information

3D Interactive Information Visualization: Guidelines from experience and analysis of applications

3D Interactive Information Visualization: Guidelines from experience and analysis of applications 3D Interactive Information Visualization: Guidelines from experience and analysis of applications Richard Brath Visible Decisions Inc., 200 Front St. W. #2203, Toronto, Canada, rbrath@vdi.com 1. EXPERT

More information

The Tulip 3 Framework: A Scalable Software Library for Information Visualization Applications Based on Relational Data

The Tulip 3 Framework: A Scalable Software Library for Information Visualization Applications Based on Relational Data The Tulip 3 Framework: A Scalable Software Library for Information Visualization Applications Based on Relational Data David Auber, Daniel Archambault, Romain Bourqui, Antoine Lambert, Morgan Mathiaut,

More information

The Puzzle Layout Problem

The Puzzle Layout Problem The Puzzle Layout Problem Kozo Sugiyama 1, Seok-Hee Hong 2, and Atsuhiko Maeda 3 1 School of Knowledge Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Tatsunokuchi, Nomi, Ishikawa,

More information

Practical Graph Mining with R. 5. Link Analysis

Practical Graph Mining with R. 5. Link Analysis Practical Graph Mining with R 5. Link Analysis Outline Link Analysis Concepts Metrics for Analyzing Networks PageRank HITS Link Prediction 2 Link Analysis Concepts Link A relationship between two entities

More information

System Interconnect Architectures. Goals and Analysis. Network Properties and Routing. Terminology - 2. Terminology - 1

System Interconnect Architectures. Goals and Analysis. Network Properties and Routing. Terminology - 2. Terminology - 1 System Interconnect Architectures CSCI 8150 Advanced Computer Architecture Hwang, Chapter 2 Program and Network Properties 2.4 System Interconnect Architectures Direct networks for static connections Indirect

More information

Recent Large Graph Visualization Tools : A Review

Recent Large Graph Visualization Tools : A Review 159 Recent Large Graph Visualization Tools : A Review Sorn Jarukasemratana Tsuyoshi Murata Large graph visualization tools are important instruments for researchers to understand large graph data sets.

More information

AI: A Modern Approach, Chpts. 3-4 Russell and Norvig

AI: A Modern Approach, Chpts. 3-4 Russell and Norvig AI: A Modern Approach, Chpts. 3-4 Russell and Norvig Sequential Decision Making in Robotics CS 599 Geoffrey Hollinger and Gaurav Sukhatme (Some slide content from Stuart Russell and HweeTou Ng) Spring,

More information

Information Visualization. Ronald Peikert SciVis 2007 - Information Visualization 10-1

Information Visualization. Ronald Peikert SciVis 2007 - Information Visualization 10-1 Information Visualization Ronald Peikert SciVis 2007 - Information Visualization 10-1 Overview Techniques for high-dimensional data scatter plots, PCA parallel coordinates link + brush pixel-oriented techniques

More information

2.3 Scheduling jobs on identical parallel machines

2.3 Scheduling jobs on identical parallel machines 2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed

More information

Introduction to SolidWorks Software

Introduction to SolidWorks Software Introduction to SolidWorks Software Marine Advanced Technology Education Design Tools What is SolidWorks? SolidWorks is design automation software. In SolidWorks, you sketch ideas and experiment with different

More information

Data Structure [Question Bank]

Data Structure [Question Bank] Unit I (Analysis of Algorithms) 1. What are algorithms and how they are useful? 2. Describe the factor on best algorithms depends on? 3. Differentiate: Correct & Incorrect Algorithms? 4. Write short note:

More information

Map-like Wikipedia Visualization. Pang Cheong Iao. Master of Science in Software Engineering

Map-like Wikipedia Visualization. Pang Cheong Iao. Master of Science in Software Engineering Map-like Wikipedia Visualization by Pang Cheong Iao Master of Science in Software Engineering 2011 Faculty of Science and Technology University of Macau Map-like Wikipedia Visualization by Pang Cheong

More information

Flow and Activity Analysis

Flow and Activity Analysis Facility Location, Layout, and Flow and Activity Analysis Primary activity relationships Organizational relationships» Span of control and reporting hierarchy Flow relationships» Flow of materials, people,

More information

Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers

Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers Traffic Engineering for Multiple Spanning Tree Protocol in Large Data Centers Ho Trong Viet, Yves Deville, Olivier Bonaventure, Pierre François ICTEAM, Université catholique de Louvain (UCL), Belgium.

More information

Interactive Visualization of Large Graphs

Interactive Visualization of Large Graphs Interactive Visualization of Large Graphs PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor

More information

Unit 4: Layout Compaction

Unit 4: Layout Compaction Unit 4: Layout Compaction Course contents Design rules Symbolic layout Constraint-graph compaction Readings: Chapter 6 Unit 4 1 Design rules: restrictions on the mask patterns to increase the probability

More information

What is Visualization? Information Visualization An Overview. Information Visualization. Definitions

What is Visualization? Information Visualization An Overview. Information Visualization. Definitions What is Visualization? Information Visualization An Overview Jonathan I. Maletic, Ph.D. Computer Science Kent State University Visualize/Visualization: To form a mental image or vision of [some

More information

COLORED GRAPHS AND THEIR PROPERTIES

COLORED GRAPHS AND THEIR PROPERTIES COLORED GRAPHS AND THEIR PROPERTIES BEN STEVENS 1. Introduction This paper is concerned with the upper bound on the chromatic number for graphs of maximum vertex degree under three different sets of coloring

More information

Development simulator of wireless sensor network Lateef Abdzaid Qudr

Development simulator of wireless sensor network Lateef Abdzaid Qudr Development simulator of wireless sensor network Lateef Abdzaid Qudr The latest wireless technology and progress in chip manufacturing in the past few years allowed to move to the practical development

More information

GRAPH THEORY and APPLICATIONS. Trees

GRAPH THEORY and APPLICATIONS. Trees GRAPH THEORY and APPLICATIONS Trees Properties Tree: a connected graph with no cycle (acyclic) Forest: a graph with no cycle Paths are trees. Star: A tree consisting of one vertex adjacent to all the others.

More information

TIBCO Spotfire Business Author Essentials Quick Reference Guide. Table of contents:

TIBCO Spotfire Business Author Essentials Quick Reference Guide. Table of contents: Table of contents: Access Data for Analysis Data file types Format assumptions Data from Excel Information links Add multiple data tables Create & Interpret Visualizations Table Pie Chart Cross Table Treemap

More information

Medical Information Management & Mining. You Chen Jan,15, 2013 You.chen@vanderbilt.edu

Medical Information Management & Mining. You Chen Jan,15, 2013 You.chen@vanderbilt.edu Medical Information Management & Mining You Chen Jan,15, 2013 You.chen@vanderbilt.edu 1 Trees Building Materials Trees cannot be used to build a house directly. How can we transform trees to building materials?

More information

Data visualization and clustering. Genomics is to no small extend a data science

Data visualization and clustering. Genomics is to no small extend a data science Data visualization and clustering Genomics is to no small extend a data science [www.data2discovery.org] Data visualization and clustering Genomics is to no small extend a data science [Andersson et al.,

More information

Data Mining Cluster Analysis: Advanced Concepts and Algorithms. Lecture Notes for Chapter 9. Introduction to Data Mining

Data Mining Cluster Analysis: Advanced Concepts and Algorithms. Lecture Notes for Chapter 9. Introduction to Data Mining Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 9 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004

More information

DXF Import and Export for EASE 4.0

DXF Import and Export for EASE 4.0 DXF Import and Export for EASE 4.0 Page 1 of 9 DXF Import and Export for EASE 4.0 Bruce C. Olson, Dr. Waldemar Richert ADA Copyright 2002 Acoustic Design Ahnert EASE 4.0 allows both the import and export

More information

Information Visualization

Information Visualization Information Visualization Related to but, in many ways, distinct from interaction design is the area of information visualization the study of how data can be presented for maximum comprehension and clarity

More information

Homework 15 Solutions

Homework 15 Solutions PROBLEM ONE (Trees) Homework 15 Solutions 1. Recall the definition of a tree: a tree is a connected, undirected graph which has no cycles. Which of the following definitions are equivalent to this definition

More information