Acoustics Analysis of Speaker


 Bethanie Miller
 1 years ago
 Views:
Transcription
1 Acoustics Analysis of Speaker 1
2 Introduction ANSYS 14.0 offers many enhancements in the area of acoustics. In this presentation, an example speaker analysis will be shown to highlight some of the acoustics enhancements in 14.0: Structural acoustic coupling using the symmetric fluidstructure interaction (FSI) algorithm Postprocessing velocities Far field postprocessing of acoustic field (output of pressure and SPL outside of meshed region) 2
3 Background on Acoustics Acoustics in ANSYS Mechanical involves solving the acoustic wave equation to determine the propagation of acoustic waves in a fluid medium: 2 1 p 2 a a x xc x The above includes non uniform medium and mass source terms, new in This is converted in matrix form to solve with finite elements: M p C p K p q p p p p j Q x 3
4 4 Vibroacoustic problems can be solved by coupling the acoustic and structural equations together: The symmetric form of the harmonic FSI equations shown above is introduced in 14.0 for faster solution times. The fluid structure coupling term is C fs. An unsymmetric form from prior releases is still available. The sloshing term S q exists for free surfaces. Since the equations are tightly coupled, the structural motions generate sound, and the acoustic waves can vibrate the structure. Background on Acoustics f f u q K K u q C C C C j u q M S g M q j q p q u q o u fs fs q o u q q o
5 Background on Acoustics Perfectly Matched Layers or PML is a special formulation to absorb outgoing acoustic waves in harmonic response analyses to prevent waves from reflecting back into the system. Sound Pressure Level or SPL is defined as follows: L p 20log P rms is the root mean square of the pressure, or the amplitude divided by sqrt(2) SPL is measured in decibels The reference pressure in air is typically taken as 20 Pa. p p rms ref 5
6 Geometry & Mesh of Structure The geometry of the speaker in an enclosure is shown below. Note that ¼ symmetry is used: For the speaker, forces are exerted on the voicecoil, causing it to move. The voicecoil moves the cone which is what displaces the air to produce sound. The surround and spider connect and stabilize the cone to the rigid frame. 6
7 Geometry and Mesh of Air The air surrounding the speaker enclosure is shown: The air around the speaker is meshed with acoustic fluid elements. To absorb outgoing acoustic waves, perfectly matched layers (PML) is used. This PML region is shown on the right. 7
8 Activating Acoustic Elements A Commands (APDL) object is inserted under the acoustic bodies In the example shown on the right, the et command changes the element type to be an acoustic element using the new symmetric FSI algorithm. Density and speed of sound are also defined. 8 New in 14.0!
9 Fluid Structure Interaction (FSI) In vibroacoustic problems solved in ANSYS Mechanical, the term FSI refers to coupling of the acoustic and structural equations ANSYS Mechanical can solve modal, transient, or harmonic response analyses with FSI The acoustic linear wave equations are solved with the structural equations of motion in a coupled manner (in one matrix). 9
10 Created Named Selection for PML A Named Selection of the truncated boundary is created for PML The outermost, truncated boundary should be specified through a Named Selection. This will be referenced with a Commands object, shown later 10
11 Create Named Selection for FSI A Named Selection of the FSI interface is also created The surfaces between the acoustic bodies and structural bodies should be selected and placed in a Named Selection. This will also be referenced later in a Commands object. 11
12 Define PML and FSI Regions Another Commands (APDL) object is inserted under the Harmonic Response branch The APDL commands on the right define the boundary condition on the PML region as well as apply the FSI flag to the Named Selections indicated previously. 12
13 User Defined Results for Pressure User Defined Results allow for postprocessing acoustic pressure or calculating SPL Isosurfaces of sound pressure level are shown on the right. Identifiers and expressions in User Defined Results provide flexibility to manipulate results 13
14 User Defined Results for Velocity Velocities can be plotted with a User Defined Result using PGVECTORS Standard vector plot controls such as solid vectors, uniform vector distribution, uniform vector size are available. Here, line vectors at each node designating the velocity is shown. New in 14.0! 14
15 Perform Far Field Postprocessing A Commands (APDL) object under the Solution branch allows for far field postprocessing The lines shown in the highlighted section are used for far field postprocessing. Namely, HFSYM defines symmetry planes, and PLFAR is used to plot results. New in 14.0! 15
16 Perform Far Field Postprocessing The directivity plot at 1 meter (beyond mesh domain) is shown below One can determine how focused the acoustic signal is from this plot, which can help evaluate speaker performance. New in 14.0! 16
17 Perform Frequency Sweep While a frequency sweep can be specified within a Harmonic Response analysis, one can also use Workbench Parameters to specify the sweep Note that Frequency is a Workbench Parameter. The frequency for the analysis is made as a parameter equal to this value. The benefit to this approach is that users can add frequencies to the solution after solving without having the re solve the entire frequency range 17
18 Perform Frequency Sweep with RSM By using this approach, users can also take advantage of Remote Solve Manager (RSM) to submit jobs on a cluster Instead of solving each frequency sequentially, if a user has more than one ANSYS Mechanical license, the jobs can be submitted through RSM Whether solving locally, on two machines, or on a cluster, multiple frequencies can then be solved simultaneously, thus decreasing overall solution time! 18
19 Review Frequency Sweep Results After the solution is complete, one can plot results within the Workbench Parameters page An output of SPL in front of the speaker, designated earlier, is tracked in this example. In speaker design, a constant response is sought within the frequency range of interest. This example shows that structural resonance around 800 Hz is causing undesirable behavior. 19
20 New Symmetric Option in 14.0 In the past, ANSYS Mechanical solved these two physics simultaneously with unsymmetric matrices, which required double the memory and more CPU time. In ANSYS 14.0, symmetric option is introduced to cut memory requirements in half and significantly decreasing CPU time. The table on the right compares the overall solution time speed up for 275k DOF solved on dual quadcore Intel Xeon E5530. Note that the symmetric option is about 1.5 times faster for this model on this model on this particular hardware. New in 14.0! 20 Cores Solver Option Speed up 1 Sparse Unsym Sparse Sym Sparse Unsym Sparse Sym Sparse Unsym Sparse Sym 1.50
21 Using GPU Accelerator The GPU Accelerator can also help decrease solution time for vibroacoustic problems. GPU Accelerator performs the solver computation on the graphics card cores. The table on the right compares the overall solution time speed up for 275k DOF solved on dual quadcore Intel Xeon E5530. Note that the GPU Accelerator provides noticeable speed up for this model on this model on this particular hardware. Cores Solver GPU Speed up 1 Sparse off Sparse off Sparse off Sparse on Sparse on Sparse on
22 Other New 14.0 Features in Acoustics There are a myriad of other new acoustics features not covered in this presentation: Non uniform acoustic medium, which can be a function of temperature or static pressure Acoustic scattering capability and ability to output total or scattered pressure Ability to input bulk viscosity to model viscous losses Mass sources, impedance sheet, normal velocity b.c. Near field postprocessing Ability to define external planar wave, monopole, dipole sources 22
Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor
Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Swapan Kumar Nandi Tata Consultancy Services GEDC, 185 LR, Chennai 600086, India Abstract When structures in contact with a fluid
More informationAcoustic Applications in Mechanical Engineering: StructureBorne Sound versus AirBorne Sound
Acoustic Applications in Mechanical Engineering: StructureBorne Sound versus AirBorne Sound Marold Moosrainer CADFEM GmbH 2009 July 6th Agenda Introduction into acoustics: common phrases, basic equation
More informationBest practices for efficient HPC performance with large models
Best practices for efficient HPC performance with large models Dr. Hößl Bernhard, CADFEM (Austria) GmbH PRACE Autumn School 2013  Industry Oriented HPC Simulations, September 2127, University of Ljubljana,
More informationACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH PERFORMANCE COMPUTING
ACCELERATING COMMERCIAL LINEAR DYNAMIC AND Vladimir Belsky Director of Solver Development* Luis Crivelli Director of Solver Development* Matt Dunbar Chief Architect* Mikhail Belyi Development Group Manager*
More informationMEMS Multiphysics Simulation in ANSYS Workbench David Harrar II, PhD Ozen Engineering, Inc.
MEMS Multiphysics Simulation in ANSYS Workbench David Harrar II, PhD Ozen Engineering, Inc. 1 Ozen Engineering, Inc. We are the local ANSYS Channel Partner With over 25 years of experience in FEA and CFD
More informationFluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment
Fluid Structure Interaction VI 3 Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment J. Hengstler & J. Dual Department of Mechanical and Process
More informationHigh Performance Computing: A Review of Parallel Computing with ANSYS solutions. Efficient and Smart Solutions for Large Models
High Performance Computing: A Review of Parallel Computing with ANSYS solutions Efficient and Smart Solutions for Large Models 1 Use ANSYS HPC solutions to perform efficient design variations of large
More informationDispersion diagrams of a waterloaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell
Dispersion diagrams of a waterloaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin
More informationModel Order Reduction for Linear Convective Thermal Flow
Model Order Reduction for Linear Convective Thermal Flow Christian Moosmann, Evgenii B. Rudnyi, Andreas Greiner, Jan G. Korvink IMTEK, April 24 Abstract Simulation of the heat exchange between a solid
More informationTitelmasterformat durch Klicken bearbeiten
Titelmasterformat durch Klicken bearbeiten ANSYS AIM Product simulation for every engineer Erke Wang CADFEM GmbH Georg Scheuerer ANSYS Germany GmbH Christof Gebhardt CADFEM GmbH All products involve multiple
More informationFluidStructure Acoustic Analysis with Bidirectional Coupling and Sound Transmission
VPE Swiss Workshop Acoustic Simulation 12. Sept. 2013 FluidStructure Acoustic Analysis with Bidirectional Coupling and Sound Transmission Reinhard Helfrich INTES GmbH, Stuttgart info@intes.de www.intes.de
More informationStanding Waves on a String
1 of 6 Standing Waves on a String Summer 2004 Standing Waves on a String If a string is tied between two fixed supports, pulled tightly and sharply plucked at one end, a pulse will travel from one end
More informationA C O U S T I C S of W O O D Lecture 3
Jan Tippner, Dep. of Wood Science, FFWT MU Brno jan. tippner@mendelu. cz Content of lecture 3: 1. Damping 2. Internal friction in the wood Content of lecture 3: 1. Damping 2. Internal friction in the wood
More informationCAE Finite Element Method
16.810 Engineering Design and Rapid Prototyping Lecture 3b CAE Finite Element Method Instructor(s) Prof. Olivier de Weck January 16, 2007 Numerical Methods Finite Element Method Boundary Element Method
More informationRFthermalstructuralRF coupled analysis on the travelling wave diskloaded accelerating structure
RFthermalstructuralRF coupled analysis on the travelling wave diskloaded accelerating structure PEI ShiLun( 裴 士 伦 ) 1) CHI YunLong( 池 云 龙 ) ZHANG JingRu( 张 敬 如 ) HOU Mi( 侯 汨 ) LI XiaoPing( 李 小
More informationProgramming the Finite Element Method
Programming the Finite Element Method FOURTH EDITION I. M. Smith University of Manchester, UK D. V. Griffiths Colorado School of Mines, USA John Wiley & Sons, Ltd Contents Preface Acknowledgement xv xvii
More informationCalculation of Eigenfields for the European XFEL Cavities
Calculation of Eigenfields for the European XFEL Cavities Wolfgang Ackermann, Erion Gjonaj, Wolfgang F. O. Müller, Thomas Weiland Institut Theorie Elektromagnetischer Felder, TU Darmstadt Status Meeting
More informationCalculation of Eigenmodes in Superconducting Cavities
Calculation of Eigenmodes in Superconducting Cavities W. Ackermann, C. Liu, W.F.O. Müller, T. Weiland Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt Status Meeting December
More informationHigh Performance Computing in CST STUDIO SUITE
High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver
More informationwww.integratedsoft.com Electromagnetic Sensor Design: Key Considerations when selecting CAE Software
www.integratedsoft.com Electromagnetic Sensor Design: Key Considerations when selecting CAE Software Content Executive Summary... 3 Characteristics of Electromagnetic Sensor Systems... 3 Basic Selection
More informationUsing Finite Element software post processing graphics capabilities to enhance interpretation of Finite Element analyses results
Using Finite Element software post processing graphics capabilities to enhance interpretation of Finite Element analyses results Cyrus K. Hagigat College of Engineering The University of Toledo Session
More informationIntroduction to acoustic imaging
Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3
More informationANSYS Tutorial. Modal Analysis
ANSYS Tutorial Slides to accompany lectures in VibroAcoustic Desin in Mechanical Systems 2012 by D. W. Herrin Department of Mechanical Enineerin Lexinton, KY 405060503 Tel: 8592180609 dherrin@enr.uky.edu
More informationNoise. CIH Review PDC March 2012
Noise CIH Review PDC March 2012 Learning Objectives Understand the concept of the decibel, decibel determination, decibel addition, and weighting Know the characteristics of frequency that are relevant
More informationAeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics
Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics David Corson Altair Engineering, Inc. Todd Griffith Sandia National Laboratories Tom Ashwill (Retired) Sandia National
More informationDevelopment and optimization of a hybrid passive/active liner for flow duct applications
Development and optimization of a hybrid passive/active liner for flow duct applications 1 INTRODUCTION Design of an acoustic liner effective throughout the entire frequency range inherent in aeronautic
More informationEstimating Acoustic Performance of a Cell Phone Speaker Using Abaqus
Estimating Acoustic Performance of a Cell Phone Speaker Using Abaqus C. Jackman 1, M. Zampino 1 D. Cadge 2, R. Dravida 2, V. Katiyar 2, J. Lewis 2 1 Foxconn Holdings LLC 2 DS SIMULIA Abstract: Consumers
More informationRay Optics Minicourse COMSOL Tokyo Conference 2014
Ray Optics Minicourse COMSOL Tokyo Conference 2014 What is the Ray Optics Module? Addon to COMSOL Multiphysics Can be combined with any other COMSOL Multiphysics Module Includes one physics interface,
More informationSIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES
SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES Kayahan AKGUL 1, Yasin M. FAHJAN 2, Zuhal OZDEMIR 3 and Mhamed SOULI 4 ABSTRACT Sloshing has been one of the major concerns for engineers in
More informationFinite Element Method
16.810 (16.682) Engineering Design and Rapid Prototyping Finite Element Method Instructor(s) Prof. Olivier de Weck deweck@mit.edu Dr. Il Yong Kim kiy@mit.edu January 12, 2004 Plan for Today FEM Lecture
More informationList of Problems Solved Introduction p. 1 Concept p. 1 Nodes p. 3 Elements p. 4 Direct Approach p. 5 Linear Spring p. 5 Heat Flow p.
Preface p. v List of Problems Solved p. xiii Introduction p. 1 Concept p. 1 Nodes p. 3 Elements p. 4 Direct Approach p. 5 Linear Spring p. 5 Heat Flow p. 6 Assembly of the Global System of Equations p.
More informationAccelerating CST MWS Performance with GPU and MPI Computing. CST workshop series
Accelerating CST MWS Performance with GPU and MPI Computing www.cst.com CST workshop series 2010 1 Hardware Based Acceleration Techniques  Overview  Multithreading GPU Computing Distributed Computing
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationCAE Finite Element Method
16.810 Engineering Design and Rapid Prototyping CAE Finite Element Method Instructor(s) Prof. Olivier de Weck January 11, 2005 Plan for Today Hand Calculations Aero Æ Structures FEM Lecture (ca. 45 min)
More informationOptoMechanical I/F for ANSYS
Abstract OptoMechanical I/F for ANSYS Victor Genberg, Keith Doyle, Gregory Michels Sigmadyne, Inc., 803 West Ave, Rochester, NY 14611 genberg@sigmadyne.com Thermal and structural output from ANSYS is
More informationSection 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved.
Section 5. : Horn Physics Section 5. : Horn Physics By Martin J. King, 6/29/8 Copyright 28 by Martin J. King. All Rights Reserved. Before discussing the design of a horn loaded loudspeaker system, it is
More informationCustomer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.
Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L21 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,
More informationSample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiplechoice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
More informationTutorial for Assignment #3 Heat Transfer Analysis By ANSYS (Mechanical APDL) V.13.0
Tutorial for Assignment #3 Heat Transfer Analysis By ANSYS (Mechanical APDL) V.13.0 1 Problem Description This exercise consists of an analysis of an electronics component cooling design using fins: All
More informationTurbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine
HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK
More informationSimulation of FluidStructure Interactions in Aeronautical Applications
Simulation of FluidStructure Interactions in Aeronautical Applications Martin Kuntz Jorge Carregal Ferreira ANSYS Germany D83624 Otterfing Martin.Kuntz@ansys.com December 2003 3 rd FENET Annual Industry
More informationThe simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM
1 The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM tools. The approach to this simulation is different
More informationAcoustics: the study of sound waves
Acoustics: the study of sound waves Sound is the phenomenon we experience when our ears are excited by vibrations in the gas that surrounds us. As an object vibrates, it sets the surrounding air in motion,
More informationANALYSIS AND VERIFICATION OF A PROPOSED ANTENNA DESIGN FOR AN IMPLANTABLE. RFID TAG AT 915 MHz RAHUL BAKORE
ANALYSIS AND VERIFICATION OF A PROPOSED ANTENNA DESIGN FOR AN IMPLANTABLE RFID TAG AT 915 MHz By RAHUL BAKORE Bachelor of Engineering in Electronics and Communication University Of Rajasthan Jaipur, Rajasthan,
More informationAP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.
1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the
More informationIntroduction to ANSYS
Lecture 3 Introduction to ANSYS Meshing 14. 5 Release Introduction to ANSYS Meshing 2012 ANSYS, Inc. March 27, 2014 1 Release 14.5 Introduction to ANSYS Meshing What you will learn from this presentation
More informationLoudspeaker Parameters. D. G. Meyer School of Electrical & Computer Engineering
Loudspeaker Parameters D. G. Meyer School of Electrical & Computer Engineering Outline Review of How Loudspeakers Work Small Signal Loudspeaker Parameters Effect of Loudspeaker Cable Sample Loudspeaker
More informationCFD modelling of floating body response to regular waves
CFD modelling of floating body response to regular waves Dr Yann Delauré School of Mechanical and Manufacturing Engineering Dublin City University Ocean Energy Workshop NUI Maynooth, October 21, 2010 Table
More informationThe Sonometer The Resonant String and Timbre Change after plucking
The Sonometer The Resonant String and Timbre Change after plucking EQUIPMENT Pasco sonometers (pick up 5 from teaching lab) and 5 kits to go with them BK Precision function generators and Tenma oscilloscopes
More informationSolved with COMSOL Multiphysics 4.3
Vibrating String Introduction In the following example you compute the natural frequencies of a pretensioned string using the 2D Truss interface. This is an example of stress stiffening ; in fact the
More informationSTUDY OF DAMRESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL
STUDY OF DAMRESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL Paulo Mendes, Instituto Superior de Engenharia de Lisboa, Portugal Sérgio Oliveira, Laboratório Nacional de Engenharia
More informationCCTech TM. ICEMCFD & FLUENT Software Training. Course Brochure. Simulation is The Future
. CCTech TM Simulation is The Future ICEMCFD & FLUENT Software Training Course Brochure About. CCTech Established in 2006 by alumni of IIT Bombay. Our motive is to establish a knowledge centric organization
More informationAcoustic Terms, Definitions and General Information
Acoustic Terms, Definitions and General Information Authored by: Daniel Ziobroski Acoustic Engineer Environmental and Acoustic Engineering GE Energy Charles Powers Program Manager Environmental and Acoustic
More informationWAVES AND FIELDS IN INHOMOGENEOUS MEDIA
WAVES AND FIELDS IN INHOMOGENEOUS MEDIA WENG CHO CHEW UNIVERSITY OF ILLINOIS URBANACHAMPAIGN IEEE PRESS Series on Electromagnetic Waves Donald G. Dudley, Series Editor IEEE Antennas and Propagation Society,
More informationThree Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture
White Paper Intel Xeon processor E5 v3 family Intel Xeon Phi coprocessor family Digital Design and Engineering Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture Executive
More informationOpenFOAM Optimization Tools
OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov h.rusche@wikkigmbh.de and a.jemcov@wikki.co.uk Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation
More informationCFD Based Air Flow and Contamination Modeling of Subway Stations
CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George
More informationRANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA
RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military
More informationOverview. also give you an idea of ANSYS capabilities. In this chapter, we will define Finite Element Analysis and. Topics covered: B.
2. FEA and ANSYS FEA and ANSYS Overview In this chapter, we will define Finite Element Analysis and also give you an idea of ANSYS capabilities. Topics covered: A. What is FEA? B. About ANSYS FEA and ANSYS
More informationCosmosWorks Centrifugal Loads
CosmosWorks Centrifugal Loads (Draft 4, May 28, 2006) Introduction This example will look at essentially planar objects subjected to centrifugal loads. That is, loads due to angular velocity and/or angular
More informationComputational Modeling of Wind Turbines in OpenFOAM
Computational Modeling of Wind Turbines in OpenFOAM Hamid Rahimi hamid.rahimi@unioldenburg.de ForWind  Center for Wind Energy Research Institute of Physics, University of Oldenburg, Germany Outline Computational
More informationStatistical Energy Analysis software
Statistical Energy Analysis software Development and implementation of an open source code in Matlab/Octave Master s Thesis in the Master s programme in Sound and Vibration DANIEL JOHANSSON PETER COMNELL
More informationNonlinear Analysis Using Femap with NX Nastran
Nonlinear Analysis Using Femap with NX Nastran Chip Fricke, Principal Applications Engineer, Agenda Nonlinear Analysis Using Femap with NX Nastran Who am I? Overview of Nonlinear Analysis Comparison of
More informationAPPLICATION NOTE AP050830
APPLICATION NOTE AP050830 Selection and use of Ultrasonic Ceramic Transducers ProWave Electronics Corp. Email: sales@prowave.com.tw URL: http://www.prowave.com.tw The purpose of this application note
More informationMultiphase Flow  Appendices
Discovery Laboratory Multiphase Flow  Appendices 1. Creating a Mesh 1.1. What is a geometry? The geometry used in a CFD simulation defines the problem domain and boundaries; it is the area (2D) or volume
More informationIntroduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1
Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response
More information3D WAVEGUIDE MODELING AND SIMULATION USING SBFEM
3D WAVEGUIDE MODELING AND SIMULATION USING SBFEM Fabian Krome, Hauke Gravenkamp BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany email: Fabian.Krome@BAM.de
More informationBIOMEDICAL ULTRASOUND
BIOMEDICAL ULTRASOUND Goals: To become familiar with: Ultrasound wave Wave propagation and Scattering Mechanisms of Tissue Damage Biomedical Ultrasound Transducers Biomedical Ultrasound Imaging Ultrasonic
More informationFeature Commercial codes Inhouse codes
A simple finite element solver for thermomechanical problems Keywords: Scilab, Open source software, thermoelasticity Introduction In this paper we would like to show how it is possible to develop a
More informationAPPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS
APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic
More informationDYNAMICAL ANALYSIS OF SILO SURFACE CLEANING ROBOT USING FINITE ELEMENT METHOD
International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, JanFeb 2016, pp. 190202, Article ID: IJMET_07_01_020 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1
More informationAcoustic Velocity, Impedance, Reflection, Transmission, Attenuation, and Acoustic Etalons
Acoustic Velocity, Impedance, Reflection, Transmission, Attenuation, and Acoustic Etalons Acoustic Velocity The equation of motion in a solid is (1) T = ρ 2 u t 2 (1) where T is the stress tensor, ρ is
More informationMesh Discretization Error and Criteria for Accuracy of Finite Element Solutions
Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions Chandresh Shah Cummins, Inc. Abstract Any finite element analysis performed by an engineer is subject to several types of
More information7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.
7. DYNAMIC LIGHT SCATTERING 7. First order temporal autocorrelation function. Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic situation is illustrated
More informationDifferential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
More information08/19/09 PHYSICS 223 Exam2 NAME Please write down your name also on the back side of this exam
08/19/09 PHYSICS 3 Exam NAME Please write down your name also on the back side of this exam 1. A sinusoidal wave of frequency 500 Hz has a speed of 350 m/s. 1A. How far apart (in units of cm) are two
More informationPREDICTION OF MACHINE TOOL SPINDLE S DYNAMICS BASED ON A THERMOMECHANICAL MODEL
PREDICTION OF MACHINE TOOL SPINDLE S DYNAMICS BASED ON A THERMOMECHANICAL MODEL P. Kolar, T. Holkup Research Center for Manufacturing Technology, Faculty of Mechanical Engineering, CTU in Prague, Czech
More informationGeneral model of a structureborne sound source and its application to shock vibration
General model of a structureborne sound source and its application to shock vibration Y. Bobrovnitskii and T. Tomilina Mechanical Engineering Research Institute, 4, M. Kharitonievky Str., 101990 Moscow,
More informationExpress Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013  Industry
More informationSimulation of Coupled Electromagnetic/ Thermal Systems using CAE Software
www.integratedsoft.com Simulation of Coupled Electromagnetic/ Thermal Systems using CAE Software Content Executive Summary... 3 Overview... 3 Rotationally Symmetric Models... 5 Thermal Models... 5 Model
More informationDYNAMIC RESPONSE OF CONCRETE GRAVITY DAM ON RANDOM SOIL
International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 2015, pp. 2131, Article ID: IJCIET_06_11_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11
More informationMixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms
Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms Björn Rocker Hamburg, June 17th 2010 Engineering Mathematics and Computing Lab (EMCL) KIT University of the State
More informationLecture 6  Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6  Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (20022006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
More informationResonance and the Speed of Sound
Name: Partner(s): Date: Resonance and the Speed of Sound 1. Purpose Sound is a common type of mechanical wave that can be heard but not seen. In today s lab, you will investigate the nature of sound waves
More informationAeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains
INSTITUT FÜR MECHANIK UND MECHATRONIK Messtechnik und Aktorik Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains A. Hüppe 1, M. Kaltenbacher 1, A. Reppenhagen 2,
More informationTransmission Line and Back Loaded Horn Physics
Introduction By Martin J. King, 3/29/3 Copyright 23 by Martin J. King. All Rights Reserved. In order to differentiate between a transmission line and a back loaded horn, it is really important to understand
More informationHydrOcean, your numerical hydrodynamic partner
HydrOcean, your numerical hydrodynamic partner Contact: Luke Berry, Account Manager Luke.berry@hydrocean.fr Tel: +33 (0)2 40 20 60 94 Who We Are Overview Founded in 2007 by E. Jacquin Spinoff from Ecole
More informationMesh Moving Techniques for FluidStructure Interactions With Large Displacements
K. Stein Department of Physics, Bethel College, St. Paul, MN 55112 T. Tezduyar Mechanical Engineering, Rice University, MS 321, Houston, TX 77005 R. Benney Natick Soldier Center, Natick, MA 01760 Mesh
More informationCommercial CFD Software Modelling
Commercial CFD Software Modelling Dr. Nor Azwadi bin Che Sidik Faculty of Mechanical Engineering Universiti Teknologi Malaysia INSPIRING CREATIVE AND INNOVATIVE MINDS 1 CFD Modeling CFD modeling can be
More informationParallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes
Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes Eric Petit, Loïc Thebault, Quang V. Dinh May 2014 EXA2CT Consortium 2 WPs Organization ProtoApplications
More informationManual Analysis Software AFD 1201
AFD 1200  AcoustiTube Manual Analysis Software AFD 1201 Measurement of Transmission loss acc. to Song and Bolton 1 Table of Contents Introduction  Analysis Software AFD 1201... 3 AFD 1200  AcoustiTube
More informationApplication note for Peerless XLS 10" subwoofer drive units
Application note for Peerless XLS 10" subwoofer drive units Introduction: The following is an application note of how to use the Peerless XLS family of subwoofer drive units. The application note is meant
More informationMICROPHONE SPECIFICATIONS EXPLAINED
Application Note AN1112 MICROPHONE SPECIFICATIONS EXPLAINED INTRODUCTION A MEMS microphone IC is unique among InvenSense, Inc., products in that its input is an acoustic pressure wave. For this reason,
More informationActive Vibration Isolation of an Unbalanced Machine Spindle
UCRLCONF206108 Active Vibration Isolation of an Unbalanced Machine Spindle D. J. Hopkins, P. Geraghty August 18, 2004 American Society of Precision Engineering Annual Conference Orlando, FL, United States
More informationABAQUS Tutorial. 3D Modeling
Spring 2011 01/21/11 ABAQUS Tutorial 3D Modeling This exercise intends to demonstrate the steps you would follow in creating and analyzing a simple solid model using ABAQUS CAE. Introduction A solid undergoes
More informationStanding Waves Physics Lab I
Standing Waves Physics Lab I Objective In this series of experiments, the resonance conditions for standing waves on a string will be tested experimentally. Equipment List PASCO SF9324 Variable Frequency
More informationAn Efficient Finite Element Analysis on an RF Structure Used to Evaluate the Effect of Microwave Radiation on Uveal Melanoma Cells
Excerpt from the Proceedings of the COMSOL Conference 2009 Boston An Efficient Finite Element Analysis on an RF Structure Used to Evaluate the Effect of Microwave Radiation on Uveal Melanoma Cells Andrei
More informationCFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER
International Journal of Advancements in Research & Technology, Volume 1, Issue2, July2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)
More informationFREE CONVECTION FROM OPTIMUM SINUSOIDAL SURFACE EXPOSED TO VERTICAL VIBRATIONS
International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, JanFeb 2016, pp. 214224, Article ID: IJMET_07_01_022 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1
More information