Hypothesis Testing. Lecture 10

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Hypothesis Testing. Lecture 10"

Transcription

1 Lecture 10 Hypothesis Testing A hypothesis is a conjecture about the distribution of some random variables. For example, a claim about the value of a parameter of the statistical model. There are two types of hypotheses: The null hypothesis, The alternative hypothesis, want to show., is the current belief., is your belief; it is what you Examples: Each of the following situations requires a significance test about a population mean. State the appropriate null hypothesis and alternative hypothesis in each case. (a) The mean area of the several thousand apartments in a new development is advertised to be 1250 square feet. A tenant group thinks that the apartments are smaller than advertised. They hire an engineer to measure a sample of apartments to test their suspicion.

2 (b) Larry's car consume on average 32 miles per gallon on the highway. He now switches to a new motor oil that is advertised as increasing gas mileage. After driving 3000 highway miles with the new oil, he wants to determine if his gas mileage actually has increased. (c) The diameter of a spindle in a small motor is supposed to be 5 millimeters. If the spindle is either too small or too large, the motor will not perform properly. The manufacturer measures the diameter in a sample of motors to determine whether the mean diameter has moved away from the target.

3 Guidelines for Hypothesis testing Hypothesis testing is a proof by contradiction. The testing process has four steps: Step 1: Assume is true. Step 2: Use statistical theory to make a statistic (function of the data) that includes. This statistic is called the test statistic. Step 3: Find the probability that the test statistic would take a value as extreme or more extreme than that actually observed. Think of this as: probability of getting our sample assuming is true. Step 4: If the probability we calculated in step 3 is high it means that the sample is likely under and so we have no evidence against. If the probability is low, there are two possibilities: - we observed a very unusual event, or - our assumption is wrong

4 Test Statistic The test is based on a statistic that estimates the parameter that appears in the hypotheses. Usually this is the same estimate we would use in a confidence interval for the parameter. When is true, we expect the estimate to take a value near the parameter value specified in. Values of the estimate far from the parameter value specified by give evidence against. The alternative hypothesis determines which directions count against. A test statistic measures compatibility between the null hypothesis and the data. To assess how far the estimate is from the parameter, standardize the estimate. In many common situations the test statistics has the form

5 Example: An air freight company wishes to test whether or not the mean weight of parcels shipped on a particular root exceeds 10 pounds. A random sample of 49 shipping orders was examined and found to have average weight of 11 pounds. Assume that the standard deviation of the weights is 2.8 pounds. Solution:

6 Graphical Representation Suppose we want to test a set of hypotheses concerning a parameter based on a random sample. vs is the estimate of our parameter. Rejection Region (RR) is the specified values of the test statistics for which we reject. The probability that defines the critical region is called the size of the test or level of the significance of the test and is denoted by α.

7 Example: The hourly wages in a particular industry are normally distributed with mean $13.20 and standard deviation $2.50. A company employs 40 workers paying them an average of $12.20 per hour. Can this company be accused of paying substandard wages? Use. Solution:

8 Decision Errors When we perform a statistical test we hope that our decision will be correct, but sometimes it will be wrong. There are two possible errors that can be made in hypothesis test. Definition: The error made by rejecting the null hypothesis when in fact is true is called a type I error. The error made by failing to reject the null hypothesis when in fact is false is called a type II error. Note: The level of significance of the test is also the probability of type I error, denoted by, i.e. The probability of a type II error is denoted by. Example: An experimenter has prepared a drug dosage level that she claims will induce sleep for 80% of people suffering from insomnia. In an attempt to disprove her claim, we administer her prescribed dosage to 20 insomniacs and observe X, the number of people for whom the drug dose induces sleep. We wish to test vs. Assume.

9 P-value Definition: The probability, assuming is true, that the test statistic would take a value as extreme or more extreme than that actually observed is called the P-value of the test. The smaller the P-value, the stronger the evidence against provided by the data. Guideline for how small is small : P-value > 0.1 provides no evidence against < P-value < 0.1 provides weak evidence against < P-value < 0.05 provides moderated evidence against. P-value < 0.01 provides strong evidence against. We can compare the P-value we calculate with a fixed value that we regard as decisive. The decisive value of P is called the significance level (this is our ). Most common values for are 0.1, 0.05, If the P-value is as small or smaller than, we say that the data are statistically significant at level. In other words, the P-value is the smallest level of significance for which the null hypothesis should be rejected.

10 Example: 85% of the general public is right-handed. A survey of 300 chief executive officers of large corporations found that 95% were right-handed. Is this difference in percentages statistically significant? Use. Find the P-value for the test. Solution:

11 Tests for a Population Mean ( is known) where is the specified value of.

12

13 Example: In 1999, it was reported that the mean serum cholesterol level for female undergraduates was 168 mg/dl with a standard deviation of 27 mg/dl. A recent study at Baylor University investigated the lipid levels in a cohort of sedentary university students. The mean total cholesterol level among n = 71 females was. Is this evidence that cholesterol levels of sedentary students differ from the previously reported average? Solution:

14 Tests for a Population Mean ( is unknown)

15 Recall: (one-sample t CI) Example: Founded in 1998, Telephia provides a wide variety of information on cellular phone use. In 2006, Telaphia reported that, on average, United Kingdom (U.K.) subscribers with thirdgeneration technology (3G) phones spent an average of 8.3 hours per month listening to full-track music on their cell phones. Suppose we want to determine a 95% CI for the U.S. average and draw the following random sample of size 8 from the U.S. population of 3G subscribers: The sample mean is and the standard deviation s = 3.63 with degrees of freedom n - 1 = 7.

16

17 Example: Suppose that, for the U.S. data in example before we want to test whether the U.S. average is different from the reported U.K. average.

18 Power The ability of a test to detect that is false is measured by the probability that the test will reject when an alternative is true. The higher this probability is, the more sensitive the test is. Definition: The probability that a fixed size when is false is called the power of the test. test will reject A powerful test has a large probability of rejecting false. when it is Example: Can a 6-month exercise program increase the total body bone mineral content (TBBMC) of young women? A team of researchers is planning a study to examine this question. Based on the results of a previous study, they are willing to assume that for the percent change in TBBMC over the 6-month period. A change in TBBMC of 1% would be considered important, and the researchers would like to have a reasonable chance of detecting a change this large or larger. Is 25 subjects a large enough sample for this project? Three steps to find the power of the test: 1. State,, the particular alternative we want to detect, and the significance level. 2. Find the values of (or other estimates) that will lead to reject. 3. Calculate the probability of observing these values of when the alternative is true.

19

20 How to increase the power?

21 Back to Error Probabilities Example: The mean outer diameter of a skateboard bearing is supposed to be millimeters (mm). The outer diameters vary Normally with standard deviation mm. When a lot of bearings arrives, the skateboard manufacturer takes an SRS of 5 bearings from the lot and measures their outer diameters. The manufacturer rejects the bearings if the sample mean diameter is significantly different from 22 at the 5% significance level. Suppose the producer and the manufacturer agree that a lot of bearings with mean mm away from 22 should be rejected.

22 Significance and Type I error: The significance level of any fixed level test is the probability of a Type I error. That is, is the probability that the test will reject when is in fact true. Power and Type II error: The power of a fixed level test to detect a particular alternative is 1 minus the probability of a Type II error for that alternative.

23 Comparing Two Means Assume we have two populations of interest, each with unknown mean. Choose an SRS of size from one normal population having mean and standard deviation and an independent SRS of size from another normal population having mean and standard deviation. The estimate of the difference in the population means is where and are sample means. Distribution of :

24 Example: A fourth-grade class has 12 girls and 8 boys. The children s heights are recorded on their 10 th birthdays. Based on information from the National Health and Nutrition Examination Survey, the heights (in inches) of 10-year-old girls are distributed Normally with mean 56.8 and standard deviation 2.7 and the heights (in inches) of 10-year-old boys are distributed Normally with mean 55.7 and standard deviation 3.8. Assume that the heights of the students in the class are random samples from the populations. What is the probability that the girls average height is greater than the boys average height? Solution:

25 Here we know and, which is quite rare. So in general, there are two ways to compare the means of two normal populations. This is due to the fact that there are two distinct possibilities: 1. and are unknown and equal. 2. and are unknown and unequal.

26 Comparing Two Mean: Variances Unequal Assume and are unknown. We estimate them by and.

27 Example: An educator believes that new directed reading activities in the classroom will help elementary school pupils improve some aspects of their reading ability. She arranges for a third-grade class of 21 students to take part in these activities for an eight-week period. A control classroom of 23 third-graders follows the same curriculum without the activities. At the end of the eight weeks, all students are given a Degree of Reading Power (DRP) test, which measures the aspects of reading ability that the treatment is designed to improve. The data appear in the table below:

28

29 Two-Sample t CI: Choose an SRS of size from a Normal population with unknown mean and an independent SRS of size from another Normal population with unknown mean. A ( ) CI for is given by ( ) where is the value for density curve with area between and. The value of the degrees of freedom k is approximated by software or we use the smaller of and. Example: How much improvement?

30 Comparing Two Means: Variances Equal (Pooled Test) Suppose we have two Normal populations with the same variances:, is unknown.

31 The pooled two-sample t procedures: Choose an SRS of size from a Normal population with unknown mean and an independent SRS of size from another Normal population with unknown mean. A ( ) CI for is given by ( ) where is the value for density curve with area between and., compute the pooled two- To test the hypothesis sample t statistic In terms of a random variable T having the the P-value for a test of against distribution,

32 Example: Does increasing the amount of calcium in our diet reduce blood pressure? Examination of a large sample of people revealed a relationship between calcium intake and blood pressure, but such observational studies do not establish causation. A randomized comparative experiment gave one group of 10 people a calcium supplement for 12 weeks. The control group of 11 people received a placebo that appeared identical. Table below gives the seated systolic blood pressure for all subjects at the beginning and end of 12-week period, in millimeters of mercury. The table also shows the decrease of each subject. An increase appears as a negative entry.

33 Does increase calcium reduce blood pressure?

34 How different are the calcium and placebo groups?

Hypothesis Testing Introduction

Hypothesis Testing Introduction Hypothesis Testing Introduction Hypothesis: A conjecture about the distribution of some random variables. For example, a claim about the value of a parameter of the statistical model. A hypothesis can

More information

Hypothesis Testing Introduction

Hypothesis Testing Introduction Hypothesis Testing Introduction Hypothesis: A conjecture about the distribution of some random variables. A hypothesis can be simple or composite. A simple hypothesis completely specifies the distribution.

More information

Hypothesis testing for µ:

Hypothesis testing for µ: University of California, Los Angeles Department of Statistics Statistics 13 Elements of a hypothesis test: Hypothesis testing Instructor: Nicolas Christou 1. Null hypothesis, H 0 (always =). 2. Alternative

More information

Two-sample hypothesis testing, I 9.07 3/09/2004

Two-sample hypothesis testing, I 9.07 3/09/2004 Two-sample hypothesis testing, I 9.07 3/09/2004 But first, from last time More on the tradeoff between Type I and Type II errors The null and the alternative: Sampling distribution of the mean, m, given

More information

AP Statistics Hypothesis Testing Chapter 9. Intro to Significance Tests

AP Statistics Hypothesis Testing Chapter 9. Intro to Significance Tests Intro to Significance Tests Name Hr For the following pairs, indicate whether they are legitimate hypotheses and why. 1. 2. 3. 4. For each situation, state the null and alternate hypothesis. (Define your

More information

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete

More information

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as... HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

More information

Module 5 Hypotheses Tests: Comparing Two Groups

Module 5 Hypotheses Tests: Comparing Two Groups Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this

More information

Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 9 Introduction to Hypothesis Testing

Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 9 Introduction to Hypothesis Testing Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 9 Introduction to Hypothesis Testing 1) Hypothesis testing and confidence interval estimation are essentially two totally different statistical procedures

More information

Sample Exam #1 Elementary Statistics

Sample Exam #1 Elementary Statistics Sample Exam #1 Elementary Statistics Instructions. No books, notes, or calculators are allowed. 1. Some variables that were recorded while studying diets of sharks are given below. Which of the variables

More information

CHAPTER 14 NONPARAMETRIC TESTS

CHAPTER 14 NONPARAMETRIC TESTS CHAPTER 14 NONPARAMETRIC TESTS Everything that we have done up until now in statistics has relied heavily on one major fact: that our data is normally distributed. We have been able to make inferences

More information

Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck!

Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck! Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck! Name: 1. The basic idea behind hypothesis testing: A. is important only if you want to compare two populations. B. depends on

More information

CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING

CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING MULTIPLE CHOICE 56. In testing the hypotheses H 0 : µ = 50 vs. H 1 : µ 50, the following information is known: n = 64, = 53.5, and σ = 10. The standardized

More information

Inferences About Differences Between Means Edpsy 580

Inferences About Differences Between Means Edpsy 580 Inferences About Differences Between Means Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at Urbana-Champaign Inferences About Differences Between Means Slide

More information

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

More information

Name: Date: Use the following to answer questions 3-4:

Name: Date: Use the following to answer questions 3-4: Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. STATISTICS/GRACEY EXAM 3 PRACTICE/CH. 8-9 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the P-value for the indicated hypothesis test. 1) A

More information

Chapter 11-12 1 Review

Chapter 11-12 1 Review Chapter 11-12 Review Name 1. In formulating hypotheses for a statistical test of significance, the null hypothesis is often a statement of no effect or no difference. the probability of observing the data

More information

Two-sample inference: Continuous data

Two-sample inference: Continuous data Two-sample inference: Continuous data Patrick Breheny April 5 Patrick Breheny STA 580: Biostatistics I 1/32 Introduction Our next two lectures will deal with two-sample inference for continuous data As

More information

Notes 8: Hypothesis Testing

Notes 8: Hypothesis Testing Notes 8: Hypothesis Testing Julio Garín Department of Economics Statistics for Economics Spring 2012 (Stats for Econ) Hypothesis Testing Spring 2012 1 / 44 Introduction Why we conduct surveys? We want

More information

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

More information

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as... HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

More information

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

More information

Hypothesis testing. Power of a test. Alternative is greater than Null. Probability

Hypothesis testing. Power of a test. Alternative is greater than Null. Probability Probability February 14, 2013 Debdeep Pati Hypothesis testing Power of a test 1. Assuming standard deviation is known. Calculate power based on one-sample z test. A new drug is proposed for people with

More information

9.1 (a) The standard deviation of the four sample differences is given as.68. The standard error is SE (ȳ1 - ȳ 2 ) = SE d - = s d n d

9.1 (a) The standard deviation of the four sample differences is given as.68. The standard error is SE (ȳ1 - ȳ 2 ) = SE d - = s d n d CHAPTER 9 Comparison of Paired Samples 9.1 (a) The standard deviation of the four sample differences is given as.68. The standard error is SE (ȳ1 - ȳ 2 ) = SE d - = s d n d =.68 4 =.34. (b) H 0 : The mean

More information

Measuring the Power of a Test

Measuring the Power of a Test Textbook Reference: Chapter 9.5 Measuring the Power of a Test An economic problem motivates the statement of a null and alternative hypothesis. For a numeric data set, a decision rule can lead to the rejection

More information

C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.

C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters. Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample

More information

HypoTesting. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

HypoTesting. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: HypoTesting Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A Type II error is committed if we make: a. a correct decision when the

More information

Mind on Statistics. Chapter 12

Mind on Statistics. Chapter 12 Mind on Statistics Chapter 12 Sections 12.1 Questions 1 to 6: For each statement, determine if the statement is a typical null hypothesis (H 0 ) or alternative hypothesis (H a ). 1. There is no difference

More information

An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS

An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10- TWO-SAMPLE TESTS Practice

More information

Hypothesis Testing Exercises-Printable Page 1 of 7

Hypothesis Testing Exercises-Printable Page 1 of 7 Hypothesis Testing Exercises-Printable Page 1 of 7 BioEpi 540 Home > Topics > Hypothesis Testing > Exercises Topics Hypothesis Testing Exercises (to print: pdf 35k 7 pages) HT1. [Solution pdf 101k 4 pages

More information

Unit 26 Estimation with Confidence Intervals

Unit 26 Estimation with Confidence Intervals Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

More information

Hypothesis Testing (unknown σ)

Hypothesis Testing (unknown σ) Hypothesis Testing (unknown σ) Business Statistics Recall: Plan for Today Null and Alternative Hypotheses Types of errors: type I, type II Types of correct decisions: type A, type B Level of Significance

More information

Statistical Inference and t-tests

Statistical Inference and t-tests 1 Statistical Inference and t-tests Objectives Evaluate the difference between a sample mean and a target value using a one-sample t-test. Evaluate the difference between a sample mean and a target value

More information

Chapter 2. Hypothesis testing in one population

Chapter 2. Hypothesis testing in one population Chapter 2. Hypothesis testing in one population Contents Introduction, the null and alternative hypotheses Hypothesis testing process Type I and Type II errors, power Test statistic, level of significance

More information

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name: Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours

More information

MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample

MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of

More information

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1) Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

More information

University of Chicago Graduate School of Business. Business 41000: Business Statistics

University of Chicago Graduate School of Business. Business 41000: Business Statistics Name: University of Chicago Graduate School of Business Business 41000: Business Statistics Special Notes: 1. This is a closed-book exam. You may use an 8 11 piece of paper for the formulas. 2. Throughout

More information

Construct a scatterplot for the given data. 2) x Answer:

Construct a scatterplot for the given data. 2) x Answer: Review for Test 5 STA 2023 spr 2014 Name Given the linear correlation coefficient r and the sample size n, determine the critical values of r and use your finding to state whether or not the given r represents

More information

STAT 350 Practice Final Exam Solution (Spring 2015)

STAT 350 Practice Final Exam Solution (Spring 2015) PART 1: Multiple Choice Questions: 1) A study was conducted to compare five different training programs for improving endurance. Forty subjects were randomly divided into five groups of eight subjects

More information

3.4 Statistical inference for 2 populations based on two samples

3.4 Statistical inference for 2 populations based on two samples 3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted

More information

Unit 25: Tests of Significance

Unit 25: Tests of Significance Unit 25: Tests of Significance Summary of Video Sometimes, when you look at the outcome of a particular study, it can be hard to tell just how noteworthy the results are. For example, if the severe injury

More information

8 6 X 2 Test for a Variance or Standard Deviation

8 6 X 2 Test for a Variance or Standard Deviation Section 8 6 x 2 Test for a Variance or Standard Deviation 437 This test uses the P-value method. Therefore, it is not necessary to enter a significance level. 1. Select MegaStat>Hypothesis Tests>Proportion

More information

Sections 4.5-4.7: Two-Sample Problems. Paired t-test (Section 4.6)

Sections 4.5-4.7: Two-Sample Problems. Paired t-test (Section 4.6) Sections 4.5-4.7: Two-Sample Problems Paired t-test (Section 4.6) Examples of Paired Differences studies: Similar subjects are paired off and one of two treatments is given to each subject in the pair.

More information

Chapter 7. Section Introduction to Hypothesis Testing

Chapter 7. Section Introduction to Hypothesis Testing Section 7.1 - Introduction to Hypothesis Testing Chapter 7 Objectives: State a null hypothesis and an alternative hypothesis Identify type I and type II errors and interpret the level of significance Determine

More information

Lecture Notes Module 1

Lecture Notes Module 1 Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific

More information

3. There are three senior citizens in a room, ages 68, 70, and 72. If a seventy-year-old person enters the room, the

3. There are three senior citizens in a room, ages 68, 70, and 72. If a seventy-year-old person enters the room, the TMTA Statistics Exam 2011 1. Last month, the mean and standard deviation of the paychecks of 10 employees of a small company were $1250 and $150, respectively. This month, each one of the 10 employees

More information

PRACTICE PROBLEMS FOR BIOSTATISTICS

PRACTICE PROBLEMS FOR BIOSTATISTICS PRACTICE PROBLEMS FOR BIOSTATISTICS BIOSTATISTICS DESCRIBING DATA, THE NORMAL DISTRIBUTION 1. The duration of time from first exposure to HIV infection to AIDS diagnosis is called the incubation period.

More information

Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing

Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters

More information

Chapter 8 Introduction to Hypothesis Testing

Chapter 8 Introduction to Hypothesis Testing Chapter 8 Student Lecture Notes 8-1 Chapter 8 Introduction to Hypothesis Testing Fall 26 Fundamentals of Business Statistics 1 Chapter Goals After completing this chapter, you should be able to: Formulate

More information

Lecture 8 Hypothesis Testing

Lecture 8 Hypothesis Testing Lecture 8 Hypothesis Testing Fall 2013 Prof. Yao Xie, yao.xie@isye.gatech.edu H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech Midterm 1 Score 46 students Highest score: 98 Lowest

More information

Hypothesis Testing. Bluman Chapter 8

Hypothesis Testing. Bluman Chapter 8 CHAPTER 8 Learning Objectives C H A P T E R E I G H T Hypothesis Testing 1 Outline 8-1 Steps in Traditional Method 8-2 z Test for a Mean 8-3 t Test for a Mean 8-4 z Test for a Proportion 8-5 2 Test for

More information

Null Hypothesis Significance Testing Signifcance Level, Power, t-tests Spring 2014 Jeremy Orloff and Jonathan Bloom

Null Hypothesis Significance Testing Signifcance Level, Power, t-tests Spring 2014 Jeremy Orloff and Jonathan Bloom Null Hypothesis Significance Testing Signifcance Level, Power, t-tests 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom Simple and composite hypotheses Simple hypothesis: the sampling distribution is

More information

Chapter 8. Hypothesis Testing

Chapter 8. Hypothesis Testing Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing

More information

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

More information

Single sample hypothesis testing, II 9.07 3/02/2004

Single sample hypothesis testing, II 9.07 3/02/2004 Single sample hypothesis testing, II 9.07 3/02/2004 Outline Very brief review One-tailed vs. two-tailed tests Small sample testing Significance & multiple tests II: Data snooping What do our results mean?

More information

Hypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam

Hypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests

More information

AP Statistics 2002 Scoring Guidelines

AP Statistics 2002 Scoring Guidelines AP Statistics 2002 Scoring Guidelines The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought

More information

Paired vs. 2 sample comparisons. Comparing means. Paired comparisons allow us to account for a lot of extraneous variation.

Paired vs. 2 sample comparisons. Comparing means. Paired comparisons allow us to account for a lot of extraneous variation. Comparing means! Tests with one categorical and one numerical variable Paired vs. sample comparisons! Goal: to compare the mean of a numerical variable for different groups. Paired comparisons allow us

More information

Mind on Statistics. Chapter 13

Mind on Statistics. Chapter 13 Mind on Statistics Chapter 13 Sections 13.1-13.2 1. Which statement is not true about hypothesis tests? A. Hypothesis tests are only valid when the sample is representative of the population for the question

More information

9.1 Basic Principles of Hypothesis Testing

9.1 Basic Principles of Hypothesis Testing 9. Basic Principles of Hypothesis Testing Basic Idea Through an Example: On the very first day of class I gave the example of tossing a coin times, and what you might conclude about the fairness of the

More information

Prob & Stats. Chapter 9 Review

Prob & Stats. Chapter 9 Review Chapter 9 Review Construct the indicated confidence interval for the difference between the two population means. Assume that the two samples are independent simple random samples selected from normally

More information

Two-sample hypothesis testing, II 9.07 3/16/2004

Two-sample hypothesis testing, II 9.07 3/16/2004 Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,

More information

[Chapter 10. Hypothesis Testing]

[Chapter 10. Hypothesis Testing] [Chapter 10. Hypothesis Testing] 10.1 Introduction 10.2 Elements of a Statistical Test 10.3 Common Large-Sample Tests 10.4 Calculating Type II Error Probabilities and Finding the Sample Size for Z Tests

More information

Outline of Topics. Statistical Methods I. Types of Data. Descriptive Statistics

Outline of Topics. Statistical Methods I. Types of Data. Descriptive Statistics Statistical Methods I Tamekia L. Jones, Ph.D. (tjones@cog.ufl.edu) Research Assistant Professor Children s Oncology Group Statistics & Data Center Department of Biostatistics Colleges of Medicine and Public

More information

7 Hypothesis testing - one sample tests

7 Hypothesis testing - one sample tests 7 Hypothesis testing - one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X

More information

Psyc 250 Statistics & Experimental Design. Single & Paired Samples t-tests

Psyc 250 Statistics & Experimental Design. Single & Paired Samples t-tests Psyc 250 Statistics & Experimental Design Single & Paired Samples t-tests Part 1 Data Entry For any statistical analysis with any computer program, it is always important that data are entered correctly

More information

Homework 5 Solutions

Homework 5 Solutions Math 130 Assignment Chapter 18: 6, 10, 38 Chapter 19: 4, 6, 8, 10, 14, 16, 40 Chapter 20: 2, 4, 9 Chapter 18 Homework 5 Solutions 18.6] M&M s. The candy company claims that 10% of the M&M s it produces

More information

Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples

Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples Comparing Two Groups Chapter 7 describes two ways to compare two populations on the basis of independent samples: a confidence interval for the difference in population means and a hypothesis test. The

More information

Chapter 7 Part 2. Hypothesis testing Power

Chapter 7 Part 2. Hypothesis testing Power Chapter 7 Part 2 Hypothesis testing Power November 6, 2008 All of the normal curves in this handout are sampling distributions Goal: To understand the process of hypothesis testing and the relationship

More information

c. Construct a boxplot for the data. Write a one sentence interpretation of your graph.

c. Construct a boxplot for the data. Write a one sentence interpretation of your graph. MBA/MIB 5315 Sample Test Problems Page 1 of 1 1. An English survey of 3000 medical records showed that smokers are more inclined to get depressed than non-smokers. Does this imply that smoking causes depression?

More information

Analysis of Variance ANOVA

Analysis of Variance ANOVA Analysis of Variance ANOVA Overview We ve used the t -test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations.

More information

Hypothesis testing S2

Hypothesis testing S2 Basic medical statistics for clinical and experimental research Hypothesis testing S2 Katarzyna Jóźwiak k.jozwiak@nki.nl 2nd November 2015 1/43 Introduction Point estimation: use a sample statistic to

More information

Chapter 10 - Practice Problems 1

Chapter 10 - Practice Problems 1 Chapter 10 - Practice Problems 1 1. A researcher is interested in determining if one could predict the score on a statistics exam from the amount of time spent studying for the exam. In this study, the

More information

Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables 2

Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables 2 Lesson 4 Part 1 Relationships between two numerical variables 1 Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables

More information

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test

More information

ANOVA - Analysis of Variance

ANOVA - Analysis of Variance ANOVA - Analysis of Variance ANOVA - Analysis of Variance Extends independent-samples t test Compares the means of groups of independent observations Don t be fooled by the name. ANOVA does not compare

More information

Stats for Strategy Exam 1 In-Class Practice Questions DIRECTIONS

Stats for Strategy Exam 1 In-Class Practice Questions DIRECTIONS Stats for Strategy Exam 1 In-Class Practice Questions DIRECTIONS Choose the single best answer for each question. Discuss questions with classmates, TAs and Professor Whitten. Raise your hand to check

More information

AP Statistics 2011 Scoring Guidelines

AP Statistics 2011 Scoring Guidelines AP Statistics 2011 Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in

More information

Inferential Statistics

Inferential Statistics Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

More information

Chapter 8: Hypothesis Testing for One Population Mean, Variance, and Proportion

Chapter 8: Hypothesis Testing for One Population Mean, Variance, and Proportion Chapter 8: Hypothesis Testing for One Population Mean, Variance, and Proportion Learning Objectives Upon successful completion of Chapter 8, you will be able to: Understand terms. State the null and alternative

More information

Chapter 8: Introduction to Hypothesis Testing

Chapter 8: Introduction to Hypothesis Testing Chapter 8: Introduction to Hypothesis Testing We re now at the point where we can discuss the logic of hypothesis testing. This procedure will underlie the statistical analyses that we ll use for the remainder

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information

Module 7: Hypothesis Testing I Statistics (OA3102)

Module 7: Hypothesis Testing I Statistics (OA3102) Module 7: Hypothesis Testing I Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 10.1-10.5 Revision: 2-12 1 Goals for this Module

More information

Analysis of numerical data S4

Analysis of numerical data S4 Basic medical statistics for clinical and experimental research Analysis of numerical data S4 Katarzyna Jóźwiak k.jozwiak@nki.nl 3rd November 2015 1/42 Hypothesis tests: numerical and ordinal data 1 group:

More information

STATISTICS 8, FINAL EXAM. Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4

STATISTICS 8, FINAL EXAM. Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4 STATISTICS 8, FINAL EXAM NAME: KEY Seat Number: Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4 Make sure you have 8 pages. You will be provided with a table as well, as a separate

More information

Quantitative Biology Lecture 5 (Hypothesis Testing)

Quantitative Biology Lecture 5 (Hypothesis Testing) 15 th Oct 2015 Quantitative Biology Lecture 5 (Hypothesis Testing) Gurinder Singh Mickey Atwal Center for Quantitative Biology Summary Classification Errors Statistical significance T-tests Q-values (Traditional)

More information

Statistical Significance and Bivariate Tests

Statistical Significance and Bivariate Tests Statistical Significance and Bivariate Tests BUS 735: Business Decision Making and Research 1 1.1 Goals Goals Specific goals: Re-familiarize ourselves with basic statistics ideas: sampling distributions,

More information

Power and Sample Size Determination

Power and Sample Size Determination Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 Power 1 / 31 Experimental Design To this point in the semester,

More information

Suppose we want to compare the average effectiveness of two treatments in a completely randomized experiment. In this case, the parameters µ 1

Suppose we want to compare the average effectiveness of two treatments in a completely randomized experiment. In this case, the parameters µ 1 AP Statistics: 10.2: Comparing Two Means Name: Suppose we want to compare the average effectiveness of two treatments in a completely randomized experiment. In this case, the parameters µ 1 and µ 2 are

More information

General Procedure for Hypothesis Test. Five types of statistical analysis. 1. Formulate H 1 and H 0. General Procedure for Hypothesis Test

General Procedure for Hypothesis Test. Five types of statistical analysis. 1. Formulate H 1 and H 0. General Procedure for Hypothesis Test Five types of statistical analysis General Procedure for Hypothesis Test Descriptive Inferential Differences Associative Predictive What are the characteristics of the respondents? What are the characteristics

More information

Hypothesis Testing --- One Mean

Hypothesis Testing --- One Mean Hypothesis Testing --- One Mean A hypothesis is simply a statement that something is true. Typically, there are two hypotheses in a hypothesis test: the null, and the alternative. Null Hypothesis The hypothesis

More information

Statistics 2014 Scoring Guidelines

Statistics 2014 Scoring Guidelines AP Statistics 2014 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. STT315 Practice Ch 5-7 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) The length of time a traffic signal stays green (nicknamed

More information

AP STATISTICS 2009 SCORING GUIDELINES (Form B)

AP STATISTICS 2009 SCORING GUIDELINES (Form B) AP STATISTICS 2009 SCORING GUIDELINES (Form B) Question 5 Intent of Question The primary goals of this question were to assess students ability to (1) state the appropriate hypotheses, (2) identify and

More information

A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING CHAPTER 5. A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 5.1 Concepts When a number of animals or plots are exposed to a certain treatment, we usually estimate the effect of the treatment

More information

MATH 214 (NOTES) Math 214 Al Nosedal. Department of Mathematics Indiana University of Pennsylvania. MATH 214 (NOTES) p. 1/6

MATH 214 (NOTES) Math 214 Al Nosedal. Department of Mathematics Indiana University of Pennsylvania. MATH 214 (NOTES) p. 1/6 MATH 214 (NOTES) Math 214 Al Nosedal Department of Mathematics Indiana University of Pennsylvania MATH 214 (NOTES) p. 1/6 "Pepsi" problem A market research consultant hired by the Pepsi-Cola Co. is interested

More information

FINAL EXAM REVIEW - Fa 13

FINAL EXAM REVIEW - Fa 13 FINAL EXAM REVIEW - Fa 13 Determine which of the four levels of measurement (nominal, ordinal, interval, ratio) is most appropriate. 1) The temperatures of eight different plastic spheres. 2) The sample

More information

Confidence intervals, t tests, P values

Confidence intervals, t tests, P values Confidence intervals, t tests, P values Joe Felsenstein Department of Genome Sciences and Department of Biology Confidence intervals, t tests, P values p.1/31 Normality Everybody believes in the normal

More information