OZONE LAYER PROTECTION

Size: px
Start display at page:

Download "OZONE LAYER PROTECTION"

Transcription

1 OZONE LAYER PROTECTION António Gonçalves Henriques 1 WHAT IS THE OZONE LAYER? The ozone layer or ozone shield refers to a region of Earth's stratosphere that absorbs most of the Sun's ultraviolet (UV) radiation. It contains high concentrations of ozone (O 3 ) relative to other parts of the atmosphere, although still very small relative to other gases in the stratosphere. About 90% of the ozone in our atmosphere is contained in the stratosphere. Ozone concentrations are greatest between about 20 and 40 kilometres, where they range from about 2 to 8 parts per million, though the thickness varies seasonally and geographically. While the average ozone concentration in Earth's atmosphere as a whole is only about 0.3 parts per million. If all of the ozone were compressed to the pressure of the air at sea level, it would be only 3 millimeters thick. António Gonçalves Henriques 2 António Gonçalves Henriques 1

2 HOW OZONE IS FORMED IN THE OZONE LAYER? The ozone layer was discovered in 1913 by the French physicists Charles Fabry and Henri Buisson. Its properties were explored in detail by the British meteorologist G. M. B. Dobson, who developed a simple spectrophotometer (the Dobsonmeter) that could be used to measure stratospheric ozone from the ground. Between 1928 and 1958, Dobson established a worldwide network of ozone monitoring stations, which continue to operate to this day. The photochemical mechanisms that give rise to the ozone layer were discovered by the British physicist Sydney Chapman in The production of ozone in the stratosphere results primarily from the breaking of the chemical bonds within oxygen molecules (O2) by high-energy solar photons. This process, called photodissociation, results in the release of single oxygen atoms, which later join with intact oxygen molecules to form ozone. Chemically, this can be described as: O 2 UV O O O 2 O 3 O António Gonçalves Henriques 3 HOW OZONE IS FORMED IN THE OZONE LAYER?. Ozone (O3) is a toxic gas, explosive and a powerful oxidant. It mainly concentrates in the stratosphere, 90%, as a protective veil, which filters out 99% of UV radiation reaching the top of the atmosphere. In the troposphere it is harmful to health and promotes Smog Photochemical. António Gonçalves Henriques 4 António Gonçalves Henriques 2

3 HOW OZONE IS FORMED IN THE OZONE LAYER? Rising atmospheric oxygen concentrations some two thousand million years ago allowed ozone to build up in Earth s atmosphere, a process that gradually led to the formation of the stratosphere. Scientists believe that the formation of the ozone layer played an important role in the development of life on Earth by screening out lethal levels of UV radiation and thus facilitating the migration of life-forms from the oceans to land. The thickness of the ozone layer that is, the total amount of ozone in a column overhead varies by a large factor worldwide, being in general smaller near the equator and larger towards the poles. It also varies with season, being in general thicker during the spring and thinner during the autumn. The reasons for this latitude and seasonal dependence are complicated, involving atmospheric circulation patterns as well as solar intensity. Since stratospheric ozone is produced by solar UV radiation, one might expect to find the highest ozone levels over the tropics and the lowest over polar regions. The same argument would lead one to expect the highest ozone levels in the summer and the lowest in the winter. The observed behavior is very different: most of the ozone is found in the mid-tohigh latitudes of the northern and southern hemispheres, and the highest levels are found in the spring, not summer, and the lowest in the autumn, not winter in the northern hemisphere. During winter, the ozone layer actually increases in depth. António Gonçalves Henriques 5 HOW OZONE IS FORMED IN THE OZONE LAYER? This puzzle is explained by the prevailing stratospheric wind patterns, known as the Brewer- Dobson circulation. While most of the ozone is indeed created over the tropics, the stratospheric circulation then transports it poleward and downward to the lower stratosphere of the high latitudes. The Brewer-Dobson circulation moves very slowly. The time needed to lift an air parcel by 1 km in the lower tropical stratosphere is about 2 months (18 m per day). However, horizontal poleward transport in the lower stratosphere is much faster and amounts to approximately 100 km per day in the northern hemisphere whilst it is only half as much in the southern hemisphere (~51 km per day). Even though ozone in the lower tropical stratosphere is produced at a very slow rate, the lifting circulation is so slow that ozone can build up to relatively high levels by the time it reaches 26 km. António Gonçalves Henriques 6 António Gonçalves Henriques 3

4 ABSORTION OF UV RADIATION IN THE ATMOSPHERE The concentration of the ozone in the ozone layer is vitally important to life because it absorbs biologically harmful ultraviolet (UV) radiation coming from the sun. Extremely short UV ( nm) is screened out by nitrogen. UV radiation capable of penetrating nitrogen is divided into three categories, based on its wavelength; these are referred to as UV-A ( nm), UV-B ( nm), and UV-C ( nm). UV-C, which is very harmful to all living things, is entirely screened out by a combination of dioxygen (< 200 nm) and ozone (> about 200 nm) by around 35 km altitude. UV-B radiation can be harmful to the skin and is the main cause of sunburn. The ozone layer (which absorbs from about 200 nm to 310 nm with a maximal absorption at about 250 nm) is very effective at screening out UV-B; for radiation with a wavelength of 290 nm, the intensity at the top of the atmosphere is 350 million times stronger than at the Earth's surface. Nevertheless, some UV-B, particularly at its longest wavelengths, reaches the surface, and is important for the skin's production of vitamin D. Ozone is transparent to most UV-A, so most of this longer-wavelength UV radiation reaches the surface, and it constitutes most of the UV reaching the Earth. António Gonçalves Henriques 7 DOBSON UNITS If all the ozone in a vertical prism over a given area is compressed dow n to 1 atm pressure and 0 C temperature w ould form a layer of 3 mm thickness. This corresponds to 300 Dobson units António Gonçalves Henriques 8 António Gonçalves Henriques 4

5 MONITORING THE OZONE LAYER Ground Based Measurements The Dobson Spectrophotometer measures column ozone by the technique of differential absorption of ultraviolet (UV) light with the sun (or moon) as a light source. By comparing the UV light intensity at wavelengths that are strongly absorbed and weakly absorbed by ozone, the column ozone content of the atmosphere is accurately determined. António Gonçalves Henriques 9 MONITORING THE OZONE LAYER Airborne Measurements Airborne measurements of ozone provide a direct (or in situ) method of determining ozone concentrations in the atmosphere. Balloons, rockets, and aircraft carry instruments into the atmosphere, resulting in the most accurate and detailed methods of measuring ozone. However, the measurements are made only over localized regions and cannot provide a global picture of ozone distribution. Balloons have been used almost as long as ground devices to measure ozone. They can measure the change in ozone concentration with altitude as high as 40 km and provide several days of continuous coverage. António Gonçalves Henriques 10 António Gonçalves Henriques 5

6 MONITORING THE OZONE LAYER Satellite Measurements Satellites measure ozone over the entire globe every day, providing comprehensive data. In orbit, satellites are capable of observing the atmosphere in all types of weather, and over the most remote regions on Earth. They are capable of measuring total ozone levels, ozone profiles, and elements of atmospheric chemistry. MetOp, the Meteorological Operational satellite programme is a European undertaking providing weather data services to monitor the climate and improve weather forecasts. MetOp carries a set of instruments that offer improved remote sensing capabilities to both meteorologists and climatologists. The new instruments will augment the accuracy of temperature humidity measurements, readings of wind speed and direction, and atmospheric ozone profiles. MetOp-A was launched on 19 October MetOp-B was launched on 17 September 2012 and operates in tandem with MetOp-A. MetOp-C will be launched in António Gonçalves Henriques 11 OZONE DEPLETION Chemists Mario Molina and Sherwood Rowland discovered that chemicals known as CFCs (chlorofluorocarbons), which are man-made, can reach the stratosphere and destroy ozone gas. This was a weighty discovery with worldwide implications because several products and appliances that, when manufactured or used, release CFCs into the atmosphere: Aerosol spray cans, Styrofoam, air conditioner units and refrigerators are a few items that make the list. The scientists began claiming that CFCs contribute to the formation of "holes" in the ozone. Chlorine and bromine are both substances that can destroy ozone. It turns out that some natural and man-made chemical compounds containing chlorine and bromine are able to rise up to the stratosphere where the conditions allow them to react with and destroy ozone. The earth's natural production of these substances accounts for 17 percent of the chlorine and 30 percent of the bromine in the stratosphere. Molina and Rowland explained that CFCs gradually rise up into the ozone layer, where ultraviolet light breaks the compounds apart, which releases chlorine. A chlorine atom can steal an oxygen atom from an ozone molecule, creating oxygen gas and chlorine monoxide (ClO), which effectively destroys the ozone molecule. But the chlorine atom isn't done yet; a chlorine atom can break from its oxygen atom and cause the destruction of as many as 10,000 more ozone molecules. From their findings, the chemists projected that after years of unrestrained CFC production, the ozone would deplete significantly. António Gonçalves Henriques 12 António Gonçalves Henriques 6

7 OZONE DESTRUCTION IN STRATOSPHERE UV light breaks off a chlorine atom from a CFC molecule The chlorine atom attacks an ozone molecule, breaking it apart so destroying the ozone. UV light The chlorine is free to repeat the process of destroying more ozone molecules and releases a free chlorine atom and forming an oxygen molecule A free oxygen atom attacks the chlorine monoxide, This forms a chlorine monoxide molecule (ClO) and an oxygen molecule (O2) Cl O António Gonçalves Henriques 13 3 ClO O ClO O Cl O 2 2 DESTRUIÇÃO DO OZONO NA ESTRATOSFERA António Gonçalves Henriques António Gonçalves Henriques 7

8 OZONE DESTRUCTION IN STRATOSPHERE Over the course of several decades human activities substantially altered the ozone layer. For over 50 years, chlorofluorocarbons (CFCs) were thought of as miracle substances. They are stable, nonflammable, low in toxicity, and inexpensive to produce. Over time, CFCs found uses as refrigerants, solvents, foam blowing agents, and in other applications. Other chlorine-containing compounds include methyl chloroform, a solvent, and carbon tetrachloride, an industrial chemical. Halons, extremely effective fire extinguishing agents, and methyl bromide, an effective produce and soil fumigant, contain bromine. All of these compounds have atmospheric lifetimes long enough, years and even decades, to allow them to be transported by winds into the stratosphere. Because they release chlorine or bromine when they break down, they damage the protective ozone layer. The ozone is destroyed as a result of reversible reactions catalyzed by chemical species, such as Br, Cl, C and H, even with very low concentrations of the order of 0.01 ppm. These reactions are triggered by UV radiation. The discussion of the ozone depletion process below focuses on CFCs, but the basic concepts apply to all of the ozone-depleting substances (ODS). António Gonçalves Henriques 15 OZONE DESTRUCTION IN STRATOSPHERE In the 1970s, researchers began to investigate the effects of various chemicals on the ozone layer, particularly CFCs, which contain chlorine. They also examined the potential impacts of other chlorine sources. Chlorine from swimming pools, industrial plants, sea salt, and volcanoes does not reach the stratosphere. Chlorine compounds from these sources readily combine with water and repeated measurements show that they rain out of the troposphere very quickly. In contrast, CFCs are very stable and do not dissolve in rain. Thus, there are no natural processes that remove the CFCs from the lower atmosphere. Over time, winds drive the CFCs into the stratosphere. The CFCs are so stable that only exposure to strong UV radiation breaks them down. One chlorine atom released from a CFC molecule can destroy over 100,000 ozone molecules. The net effect is to destroy ozone faster than it is naturally created. Large fires and certain types of marine life produce one stable form of chlorine that reaches the stratosphere. However, numerous experiments have shown that CFCs and other widelyused chemicals produce roughly 84% of the chlorine in the stratosphere, while natural sources contribute only 16%. António Gonçalves Henriques 16 António Gonçalves Henriques 8

9 FORMATION OF THE OZONE HOLES Ozone depletion, the global decrease in stratospheric ozone observed since the 1970s, is most pronounced in polar regions, and it is well correlated with the increase of chlorine and bromine in the stratosphere. Depletion is so extensive that so-called ozone holes (regions of severely reduced ozone coverage) form over the poles during the onset of their respective spring seasons. The largest such hole which has spanned more than 20.7 million km 2 on a consistent basis since 1992 appears annually over Antarctica between September and November. António Gonçalves Henriques 17 FORMATION OF THE OZONE HOLES While the chlorine atoms freed from CFCs do ultimately destroy ozone, the destruction doesn t happen immediately. Most of the roaming chlorine that gets separated from CFCs actually becomes part of two chemicals, hydrochloric acid (HCl), and chlorine nitrate (ClNO 3 ), that under normal atmospheric conditions are so stable that scientists consider them to be long-term reservoirs for chlorine. So how does the chlorine get out of the reservoir each spring? Under normal atmospheric conditions, the two chemicals that store most atmospheric chlorine (hydrochloric acid and chlorine nitrate) are stable. But in the long months of polar darkness over Antarctica in the winter, atmospheric conditions are unusual. An endlessly circling whirlpool of stratospheric winds called the polar vortex isolates the air in the center. Because it is completely dark, the air in the vortex gets so cold that clouds form, even though the Antarctic air is extremely thin and dry. Chemical reactions take place that could not take place anywhere else in the atmosphere. These unusual reactions can occur only on the surface of polar stratospheric cloud particles, which may be water, ice, or nitric acid, depending on the temperature. António Gonçalves Henriques 18 António Gonçalves Henriques 9

10 FORMATION OF THE OZONE HOLES The frozen crytals that make up polar stratospheric clouds provide a surface for the reactions that free chlorine atoms in the Antarctic stratosphere. These reactions convert the inactive chlorine reservoir chemicals into more active forms, especially chlorine gas (Cl 2 ). When the sunlight returns to the South Pole in October, UV light rapidly breaks the bond between the two chlorine atoms, releasing free chlorine into the stratosphere, where it takes part in reactions that destroy ozone molecules while regenerating the chlorine (known as a catalytic reaction). A catalytic reaction allows a single chlorine atom to destroy thousands of ozone molecules. Bromine is involved in a second catalytic reaction with chlorine that contributes a large fraction of ozone loss. The ozone hole grows throughout the early spring until temperatures warm and the polar vortex weakens, ending the isolation of the air in the polar vortex. As air from the surrounding latitudes mixes into the polar region, the ozonedestroying forms of chlorine disperse. The ozone layer stabilizes until the following spring. António Gonçalves Henriques 19 FORMATION OF THE OZONE HOLES Air in the upper troposphere and António Gonçalves Henriques 20 António Gonçalves Henriques 10

11 HEALTH EFFECTS OF UV RADIATION Ozone layer depletion decreases our atmosphere s natural protection from the sun s harmful ultraviolet (UV) radiation. UV exposure in humans is principally via the eyes and skin, with effects occurring as a result of the absorption of solar energy by molecules (termed chromophores) present in the tissues and cells present in these organs. The absorption of light energy leads to changes in these molecules that eventually can result in a biologic effect. The chain of events is: Biological UV absorption --> Biochemical change --> Cellular death/alteration --> Organism response Chromophores absorb light energy from the various wavelengths with differing efficiencies. This pattern of absorption is called an absorption spectrum and is characteristic of the type of the chromophores present in skin and eye tissues that are thought to be important to the biologic effects of UV-B in humans and animals. António Gonçalves Henriques 21 HEALTH EFFECTS OF UV RADIATION The health effects of UV radiation are the following: Skin cancer (melanoma and nonmelanoma) Premature aging and other skin damage Cataracts and other eye damage Immune system suppression Skin cancer Laboratory and epidemiological studies demonstrate that UVB causes nonmelanoma skin cancer and plays a major role in malignant melanoma development. Melanoma, the most serious form of skin cancer, is now one of the most common cancers among adolescents and young adults ages While melanoma accounts for about 3% of skin cancer cases, it causes more than 75% of skin cancer deaths. UV exposure and sunburns, particularly during childhood, are risk factors for the disease. However, not all melanomas are exclusively sun-related other possible influences include genetic factors and immune system deficiencies. Non-melanoma skin cancers are less deadly than melanomas. Nevertheless, they can spread if left untreated, causing disfigurement and more serious health problems. António Gonçalves Henriques 22 António Gonçalves Henriques 11

12 HEALTH EFFECTS OF UV RADIATION Premature Aging and Other Skin Damage Other UV-related skin disorders include actinic keratoses and premature aging of the skin. Actinic keratoses are skin growths that occur on body areas exposed to the sun. The face, hands, forearms, and the V of the neck are especially susceptible to this type of lesion. Although premalignant, actinic keratoses are a risk factor for squamous cell carcinoma. Chronic exposure to the sun also causes premature aging, which over time can make the skin become thick, wrinkled, and leathery. Since it occurs gradually, often manifesting itself many years after the majority of a person s sun exposure, premature aging is often regarded as an unavoidable, normal part of growing older. However, up to 90 percent of the visible skin changes commonly attributed to aging are caused by the sun. António Gonçalves Henriques 23 HEALTH EFFECTS OF UV RADIATION Cataracts and Other Eye Damage Cataracts are a form of eye damage in which a loss of transparency in the lens of the eye clouds vision. If left untreated, cataracts can lead to blindness. Research has shown that UV radiation increases the likelihood of certain cataracts. Although curable with modern eye surgery, cataracts diminish the eyesight and cost billions of dollars in medical care each year. Other kinds of eye damage include pterygium (tissue growth that can block vision), skin cancer around the eyes, and degeneration of the macula (the part of the retina where visual perception is most acute). All of these problems can be Retina Vitreous humour Iris lessened with proper eye protection. Lens Cornea António Gonçalves Henriques 24 António Gonçalves Henriques 12

13 HEALTH EFFECTS OF UV RADIATION Immune Suppression Scientists have found that overexposure to UV radiation may suppress proper functioning of the body s immune system and the skin s natural defenses. For example, the skin normally mounts a defense against foreign invaders such as cancers and infections. But overexposure to UV radiation can weaken the immune system, reducing the skin s ability to protect against these invaders. Increased levels of vitamin D Exposure to UV-B radiation increases levels of vitamin D produced in the skin by the radiation. Although higher levels of vitamin D are associated with increased mortality, the human body has mechanisms that prevent sunlight to produce excess vitamin D. In children, vitamin D deficiency may lead to rickets, a disease that results from inadequate bone mineralization during growth with consequent bone abnormalities. A serious deficiency in adults leads to osteomalacia, a condition characterized by a failure in the mineralization of organic matrix of bone, resulting in bone weak, pressure-sensitive weakness in proximal muscles and increased frequency of fractures. António Gonçalves Henriques 25 HEALTH EFFECTS OF UV RADIATION Increased levels of vitamin D Exposure to UV-B radiation increases levels of vitamin D produced in the skin by the radiation. Although higher levels of vitamin D are associated with increased mortality, the human body has mechanisms that prevent sunlight to produce excess vitamin D. In children, vitamin D deficiency may lead to rickets, a disease that results from inadequate bone mineralization during growth with consequent bone abnormalities. A serious deficiency in adults leads to osteomalacia, a condition characterized by a failure in the mineralization of organic matrix of bone, resulting in bone weak, pressure-sensitive weakness in proximal muscles and increased frequency of fractures. António Gonçalves Henriques 26 António Gonçalves Henriques 13

14 António Gonçalves Henriques 27 ADVERSE IMPACTS ON AGRICULTURE, FORESTRY AND NATURAL ECOSYSTEMS Several of the world's major crop species are particularly vulnerable to increased UV, resulting in reduced growth, photosynthesis and flowering. These species include wheat, rice, barley, oats, corn, soybeans, peas, tomatoes, cucumbers, cauliflower, broccoli and carrots. The effect of ozone depletion on the sector could be significant. Only a few commercially important trees have been tested for UV (UV-B) sensitivity, but early results suggest that plant growth, especially in seedlings, is harmed by more intense UV radiation. António Gonçalves Henriques 28 António Gonçalves Henriques 14

15 DAMAGE TO MARINE LIFE Phytoplankton form the foundation of aquatic food webs. Phytoplankton productivity is limited to the euphotic zone, the upper layer of the water column in which there is sufficient sunlight to support net productivity. The position of the organisms in the euphotic zone is influenced by the action of wind and waves. In addition, many phytoplankton are capable of active movements that enhance their productivity and, therefore, their survival. Exposure to solar UVB radiation has been shown to affect both orientation mechanisms and motility in phytoplankton, resulting in reduced survival rates for these organisms. Scientists have demonstrated a direct reduction in phytoplankton production due to ozone depletion-related increases in UVB. Decreases in plankton could disrupt the fresh and saltwater food chains, and lead to a species shift in marine waters. Solar UVB radiation has been found to cause damage to early developmental stages of fish, shrimp, crab, amphibians and other animals. The most severe effects are decreased reproductive capacity and impaired larval development. Even at current levels, solar UVB radiation is a limiting factor, and small increases in UVB exposure could result in significant reduction in the size of the population of animals that eat these smaller creatures. Loss of biodiversity in the oceans, rivers and lakes could reduce fish yields for commercial and sport fisheries. António Gonçalves Henriques 29 OTHER EFFECTS OF INCREASED UV RADIATION Effects on Biogeochemical Cycles Increases in solar UV radiation could affect terrestrial and aquatic biogeochemical cycles, thus altering both sources and sinks of greenhouse and chemically-important trace gases e.g., carbon dioxide (CO 2 ), carbon monoxide (CO), carbonyl sulfide (COS) and possibly other gases, including ozone. These potential changes would contribute to biosphereatmosphere feedbacks that attenuate or reinforce the atmospheric buildup of these gases. Effects on Materials Synthetic polymers, naturally occurring biopolymers, as well as some other materials of commercial interest are adversely affected by solar UV radiation. Today's materials are somewhat protected from UVB by special additives. Therefore, any increase in solar UVB levels will therefore accelerate their breakdown, limiting the length of time for which they are useful outdoors. António Gonçalves Henriques 30 António Gonçalves Henriques 15

JFK High School, Environmental Science, Mr. Kent Name : Period: Date: 3. Why is ozone important to us and other organisms?

JFK High School, Environmental Science, Mr. Kent Name : Period: Date: 3. Why is ozone important to us and other organisms? JFK High School, Environmental Science, Mr. Kent Name : Period: Date: AIM: How have people been destroying the ozone layer? HW: 39e 1. What chemical is ozone? 2. How does ozone form in the atmosphere?

More information

AP ENVIRONMENTAL SCIENCE 2013 SCORING GUIDELINES

AP ENVIRONMENTAL SCIENCE 2013 SCORING GUIDELINES AP ENVIRONMENTAL SCIENCE 2013 SCORING GUIDELINES Question 3 (a) Identify the type of solar radiation that is absorbed by stratospheric ozone and describe one human health benefit that results from the

More information

FACTS ABOUT CLIMATE CHANGE

FACTS ABOUT CLIMATE CHANGE FACTS ABOUT CLIMATE CHANGE 1. What is climate change? Climate change is a long-term shift in the climate of a specific location, region or planet. The shift is measured by changes in features associated

More information

The Earth's Atmosphere. Layers of the Earth's Atmosphere

The Earth's Atmosphere. Layers of the Earth's Atmosphere The Earth's Atmosphere The atmosphere surrounds Earth and protects us by blocking out dangerous rays from the sun. The atmosphere is a mixture of gases that becomes thinner until it gradually reaches space.

More information

Chapter 6: Cloud Development and Forms

Chapter 6: Cloud Development and Forms Chapter 6: Cloud Development and Forms (from The Blue Planet ) Why Clouds Form Static Stability Cloud Types Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling.

More information

The Kinetics of Atmospheric Ozone

The Kinetics of Atmospheric Ozone The Kinetics of Atmospheric Ozone Ozone is a minor component of the earth s atmosphere (0.02 0.1 parts per million based on volume (ppm v )), yet it has a significant role in sustaining life on earth.

More information

Composition of the Atmosphere. Outline Atmospheric Composition Nitrogen and Oxygen Lightning Homework

Composition of the Atmosphere. Outline Atmospheric Composition Nitrogen and Oxygen Lightning Homework Molecules of the Atmosphere The present atmosphere consists mainly of molecular nitrogen (N2) and molecular oxygen (O2) but it has dramatically changed in composition from the beginning of the solar system.

More information

The Earth s Atmosphere

The Earth s Atmosphere THE SUN-EARTH SYSTEM III The Earth s Atmosphere Composition and Distribution of the Atmosphere The composition of the atmosphere and the way its gases interact with electromagnetic radiation determine

More information

Natural Resources. Air and Water Resources

Natural Resources. Air and Water Resources Natural Resources Key Concepts Why is it important to manage air and water resources wisely? How can individuals help manage air and water resources wisely? Air and Water Resources What do you think? Read

More information

climate science A SHORT GUIDE TO This is a short summary of a detailed discussion of climate change science.

climate science A SHORT GUIDE TO This is a short summary of a detailed discussion of climate change science. A SHORT GUIDE TO climate science This is a short summary of a detailed discussion of climate change science. For more information and to view the full report, visit royalsociety.org/policy/climate-change

More information

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,

More information

Phosphorus and Sulfur

Phosphorus and Sulfur Global Change Instruction Program Phosphorus and Sulfur The Important Nutrient Phosphorus Phosphorus is a key nutrient, fueling organic productivity on land and in water. A portion of its cycle is shown

More information

The Greenhouse Effect. Lan Ma Global Warming: Problems & Solutions 17 September, 2007

The Greenhouse Effect. Lan Ma Global Warming: Problems & Solutions 17 September, 2007 The Greenhouse Effect Lan Ma Global Warming: Problems & Solutions 17 September, 2007 What to cover today: How do we calculate the Earth s surface temperature? What makes a gas a greenhouse gas and how

More information

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)

More information

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun

More information

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs Earth Sciences -- Grades 9, 10, 11, and 12 California State Science Content Standards Covered in: Hands-on science labs, demonstrations, & activities. Investigation and Experimentation. Lesson Plans. Presented

More information

History of Chlorofluorocarbons

History of Chlorofluorocarbons History of Chlorofluorocarbons 1928 : Chlorofluorocarbons () were invented. were developed as ideal gases used as refrigerants for refrigerators. Because of their special characteristics, inflammability

More information

Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links 2010-2011

Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links 2010-2011 Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links 2010-2011 HEALTH Kindergarten: Grade 1: Grade 2: Know that litter can spoil the environment. Grade 3: Grade 4:

More information

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question.

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question. Review 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When hydrogen nuclei fuse into helium nuclei a. the nuclei die. c. particles collide. b. energy

More information

CHARACTERISTICS OF THE SOLAR SYSTEM

CHARACTERISTICS OF THE SOLAR SYSTEM reflect Our solar system is made up of thousands of objects, at the center of which is a star, the Sun. The objects beyond the Sun include 8 planets, at least 5 dwarf planets, and more than 170 moons.

More information

Name Period 4 th Six Weeks Notes 2015 Weather

Name Period 4 th Six Weeks Notes 2015 Weather Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the

More information

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.

More information

ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure,

ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure, ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure, density, and composition of the atmosphere constitutes atmospheric structure. These quantities also vary with season and location

More information

CHAPTER 2 Energy and Earth

CHAPTER 2 Energy and Earth CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect

More information

Section 1 The Earth System

Section 1 The Earth System Section 1 The Earth System Key Concept Earth is a complex system made up of many smaller systems through which matter and energy are continuously cycled. What You Will Learn Energy and matter flow through

More information

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW Version B UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) Version B DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW Answer all multiple choice questions

More information

Worksheet A Environmental Problems

Worksheet A Environmental Problems Worksheet A Environmental Problems Vocabulary Can you talk about Environmental issues in English? With a partner, try to explain the terms in the diagram below. Why are the words divided into two groups

More information

The Earth System. The geosphere is the solid Earth that includes the continental and oceanic crust as well as the various layers of Earth s interior.

The Earth System. The geosphere is the solid Earth that includes the continental and oceanic crust as well as the various layers of Earth s interior. The Earth System The atmosphere is the gaseous envelope that surrounds Earth. It consists of a mixture of gases composed primarily of nitrogen, oxygen, carbon dioxide, and water vapor. The atmosphere and

More information

ATM S 111, Global Warming: Understanding the Forecast

ATM S 111, Global Warming: Understanding the Forecast ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept

More information

Case Study Depletion of ozone in the atmosphere

Case Study Depletion of ozone in the atmosphere Case Study Depletion of ozone in the atmosphere The work of G.M.B Dobson and other scientists in measuring concentrations of chloride and ozone in the atmosphere G.M.B Dobson inferred correctly that the

More information

AP* Environmental Science: Atmosphere and Air Pollution Answer Section

AP* Environmental Science: Atmosphere and Air Pollution Answer Section AP* Environmental Science: Atmosphere and Air Pollution Answer Section MULTIPLE CHOICE 1. ANS: B Stratospheric ozone, found roughly 11-16 miles above sea level keeps about 95% of the sun s harmful UV radiation

More information

Ecosystems and Food Webs

Ecosystems and Food Webs Ecosystems and Food Webs How do AIS affect our lakes? Background Information All things on the planet both living and nonliving interact. An Ecosystem is defined as the set of elements, living and nonliving,

More information

Ultraviolet (UV) Radiation Safety

Ultraviolet (UV) Radiation Safety Ultraviolet (UV) Radiation Safety April 2005 Compiled by Myung Chul Jo Environmental Health and Safety University of Nevada Reno Page 1 of 8 Table of Contents 1. UVRadiation 3 2. Common sources of UV radiation

More information

Chapter 1.9 Global Environmental Concerns

Chapter 1.9 Global Environmental Concerns Chapter 1.9 Global Environmental Concerns Part I Objective Type Questions 1. The spread of the Stratosphere above the Earth s surface is a) Below 15 km b) 10 to 50 km c) above 50 km d) above 100 km 2.

More information

What is Acid Rain and What Causes It?

What is Acid Rain and What Causes It? What is Acid Rain and What Causes It? Acid rain is a broad term used to describe several ways that acids fall out of the atmosphere. A more precise term is acid deposition, which has two parts: wet and

More information

The Solubility of Calcium Carbonate

The Solubility of Calcium Carbonate 1 The Solubility of Calcium Carbonate Lesson Plan Developed by: John Thurmond, Plainfield North High School, Plainfield, Illinois Based on Presentation June, 2011. Northwestern University, Climate Change

More information

Environmental Chemistry (Air)

Environmental Chemistry (Air) Environmental Chemistry (Air) List of Questions Prof. Dr. Dr. h.c. Reinhard Zellner University of Duisburg-Essen SS 2013 I. Structure of the atmosphere, terminologies, temperature gradient, barometric

More information

PRESENTATION 2 MAJOR ENVIRONMENTAL PROBLEMS

PRESENTATION 2 MAJOR ENVIRONMENTAL PROBLEMS UNEP GLOBAL JUDGES PROGRAMME APPLICATION OF ENVIRONMENTAL LAW BY NATIONAL COURTS AND TRIBUNALS PRESENTATION 2 MAJOR ENVIRONMENTAL PROBLEMS OUTLINE OF PRESENTATION A) Major environmental issues B) Responses

More information

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A.

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A. Earth s Cycles 1. Models are often used to explain scientific knowledge or experimental results. A model of the carbon cycle is shown below. Which of the following can be determined based on this model?

More information

The concepts developed in this standard include the following: Oceans cover about 70% of the surface of the Earth.

The concepts developed in this standard include the following: Oceans cover about 70% of the surface of the Earth. Name Date Grade 5 SOL 5.6 Review Oceans Made by SOLpass - www.solpass.org solpass100@comcast.net Reproduction is permitted for SOLpass subscribers only. The concepts developed in this standard include

More information

8.5 Comparing Canadian Climates (Lab)

8.5 Comparing Canadian Climates (Lab) These 3 climate graphs and tables of data show average temperatures and precipitation for each month in Victoria, Winnipeg and Whitehorse: Figure 1.1 Month J F M A M J J A S O N D Year Precipitation 139

More information

Absorption by atmospheric gases in the IR, visible and UV spectral regions.

Absorption by atmospheric gases in the IR, visible and UV spectral regions. Lecture 6. Absorption by atmospheric gases in the IR, visible and UV spectral regions. Objectives: 1. Gaseous absorption in thermal IR. 2. Gaseous absorption in the visible and near infrared. 3. Gaseous

More information

CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles

CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles I. Air Temperature: Five important factors influence air temperature: A. Insolation B. Latitude C. Surface types D. Coastal vs. interior

More information

Photosynthesis and Light in the Ocean Adapted from The Fluid Earth / Living Ocean Heather Spalding, UH GK-12 program

Photosynthesis and Light in the Ocean Adapted from The Fluid Earth / Living Ocean Heather Spalding, UH GK-12 program Photosynthesis and Light in the Ocean Adapted from The Fluid Earth / Living Ocean Heather Spalding, UH GK-12 program Algae, like your Halimeda, and plants live in very different environments, but they

More information

GETTING TO THE CORE: THE LINK BETWEEN TEMPERATURE AND CARBON DIOXIDE

GETTING TO THE CORE: THE LINK BETWEEN TEMPERATURE AND CARBON DIOXIDE DESCRIPTION This lesson plan gives students first-hand experience in analyzing the link between atmospheric temperatures and carbon dioxide ( ) s by looking at ice core data spanning hundreds of thousands

More information

GLOBAL CIRCULATION OF WATER

GLOBAL CIRCULATION OF WATER Global Circulation of Water MODULE - 8A 27 GLOBAL CIRCULATION OF WATER More than three-fourths of the earth s surface is covered by water. Water is an odorless, tasteless, substance than can naturally

More information

CARBON THROUGH THE SEASONS

CARBON THROUGH THE SEASONS DESCRIPTION In this lesson plan, students learn about the carbon cycle and understand how concentrations of carbon dioxide (CO 2 ) in the Earth s atmosphere vary as the seasons change. Students also learn

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display The Living World Chapter 1: The Science of Biology Specific Learning Outcomes: 1.1 List the major properties of life. 1.2 Explain how science is distinguished from other ways of seeking understanding of

More information

SKIN CANCER AND TANNING 101. Introduction. There are more than one hundred types of cancer. All the kinds of cancer begin in our cells.

SKIN CANCER AND TANNING 101. Introduction. There are more than one hundred types of cancer. All the kinds of cancer begin in our cells. Introduction There are more than one hundred types of cancer. All the kinds of cancer begin in our cells. Normal cells grow and multiply and then die. Cancer cells grow and multiply and keep growing and

More information

The Science and Ethics of Global warming. Global warming has become one of the central political and scientific issues of

The Science and Ethics of Global warming. Global warming has become one of the central political and scientific issues of The Science and Ethics of Global warming Global warming has become one of the central political and scientific issues of our time. It holds a fascination for scientists because of the tremendous complexity

More information

Clouds and the Energy Cycle

Clouds and the Energy Cycle August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and

More information

THE ECOSYSTEM - Biomes

THE ECOSYSTEM - Biomes Biomes The Ecosystem - Biomes Side 2 THE ECOSYSTEM - Biomes By the end of this topic you should be able to:- SYLLABUS STATEMENT ASSESSMENT STATEMENT CHECK NOTES 2.4 BIOMES 2.4.1 Define the term biome.

More information

CHAPTER 3 Heat and energy in the atmosphere

CHAPTER 3 Heat and energy in the atmosphere CHAPTER 3 Heat and energy in the atmosphere In Chapter 2 we examined the nature of energy and its interactions with Earth. Here we concentrate initially on the way in which energy interacts with the atmosphere

More information

Geography affects climate.

Geography affects climate. KEY CONCEPT Climate is a long-term weather pattern. BEFORE, you learned The Sun s energy heats Earth s surface unevenly The atmosphere s temperature changes with altitude Oceans affect wind flow NOW, you

More information

Tropical Horticulture: Lecture 2

Tropical Horticulture: Lecture 2 Lecture 2 Theory of the Tropics Earth & Solar Geometry, Celestial Mechanics The geometrical relationship between the earth and sun is responsible for the earth s climates. The two principal movements of

More information

EMISSIONS OF AIR POLLUTANTS IN THE UK, 1970 TO 2014

EMISSIONS OF AIR POLLUTANTS IN THE UK, 1970 TO 2014 STATISTICAL RELEASE: 17 DECEMBER 2015 EMISSIONS OF AIR POLLUTANTS IN THE UK, 1970 TO 2014 There has been a long term decrease in the emissions of all of the air pollutants covered by this statistical release

More information

Scope and Sequence Interactive Science grades 6-8

Scope and Sequence Interactive Science grades 6-8 Science and Technology Chapter 1. What Is Science? 1. Science and the Natural World 2.Thinking Like a Scientist 3. Scientific Inquiry Scope and Sequence Interactive Science grades 6-8 Chapter 2. Science,

More information

Materials Needed: Time Needed: Adaptations: 2 flyswatters (optional) Vocabulary Definitions (below) Vocabulary Scramble Sheets (below)

Materials Needed: Time Needed: Adaptations: 2 flyswatters (optional) Vocabulary Definitions (below) Vocabulary Scramble Sheets (below) Vocabulary Slap Game ( Flyswatter Game ) Directions: Project a Vocabulary Scramble sheet on a projection screen or Smart Board. Divide the class into two teams. Each team sends one person up to the screen.

More information

Birmingham City University / Students Union Aspects and Impacts Register. Waste. Impacts description

Birmingham City University / Students Union Aspects and Impacts Register. Waste. Impacts description Birmingham City University / Students Union and Impacts Register Waste Production of non - hazardous waste Production of hazardous waste Storage of non - hazardous waste Potential for waste to be disposed

More information

Jessica Blunden, Ph.D., Scientist, ERT Inc., Climate Monitoring Branch, NOAA s National Climatic Data Center

Jessica Blunden, Ph.D., Scientist, ERT Inc., Climate Monitoring Branch, NOAA s National Climatic Data Center Kathryn Sullivan, Ph.D, Acting Under Secretary of Commerce for Oceans and Atmosphere and NOAA Administrator Thomas R. Karl, L.H.D., Director,, and Chair of the Subcommittee on Global Change Research Jessica

More information

Selected Questions and Answers on Vitamin D

Selected Questions and Answers on Vitamin D Selected Questions and Answers on Vitamin D Joint FAQs to the BfR, German Nutrition Society (DGE) und Max Rubner-Institute (MRI) of 03 December 2014 1 Vitamin D promotes the intake of calcium from the

More information

Studying an Organic Reaction. How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction?

Studying an Organic Reaction. How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction? Studying an Organic Reaction How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction? Information we want to know: How much heat is generated? How fast is

More information

ENVR 30, P. Chau 2007. Chapter 10

ENVR 30, P. Chau 2007. Chapter 10 ENVR 30, P. Chau 2007 Chapter 10 Aiir polllluttiion regiionall and glloball probllems Acid precipitation and the depletion of the stratospheric ozone layer are two air pollution problems that draw regional

More information

What are the causes of air Pollution

What are the causes of air Pollution What are the causes of air Pollution Pollutant Particulate Matter (PM-PM 10 and PM 2.5 ) Description and main UK sources Particulate Matter is generally categorised on the basis of the size of the particles

More information

Vitamin D. Frequently Asked Questions

Vitamin D. Frequently Asked Questions Vitamin D Frequently Asked Questions What is vitamin D? What is a vitamin? Why do we need vitamins? Is there more than one form of vitamin D? Where do I get vitamin D? How long should I be outdoors, and

More information

INSPIRE GK12 Lesson Plan. The Chemistry of Climate Change Length of Lesson

INSPIRE GK12 Lesson Plan. The Chemistry of Climate Change Length of Lesson Lesson Title The Chemistry of Climate Change Length of Lesson 180 min Created By David Wilson Subject Physical Science / Chemistry / Organic Chemistry Grade Level 8-12 State Standards 2c, 4d / 2a, 4d /

More information

Characteristics of the. thermosphere

Characteristics of the. thermosphere Characteristics of the Atmosphere. If you were lost in the desert, you could survive for a few days without food and water. But you wouldn't last more than five minutes without the ' Objectives Describe

More information

Amherst County Public Schools. AP Environmental Science Curriculum Pacing Guide. College Board AP Environmental Science Site

Amherst County Public Schools. AP Environmental Science Curriculum Pacing Guide. College Board AP Environmental Science Site Amherst County Public Schools AP Environmental Science Curriculum Pacing Guide College Board AP Environmental Science Site REV: 8/12 1 st 9 weeks AP Objectives Energy Resources and Consumption A. Energy

More information

- 1 - Jennifer McClure. To: env.essay@physics.org. From: Jennifer McClure (j.m.mcclure@student.liverpool.ac.uk)

- 1 - Jennifer McClure. To: env.essay@physics.org. From: Jennifer McClure (j.m.mcclure@student.liverpool.ac.uk) To: env.essay@physics.org Jennifer McClure From: Jennifer McClure (j.m.mcclure@student.liverpool.ac.uk) 1 st year Physics (F300), Department of Physics, University of Liverpool. - 1 - The Northern Lights;

More information

EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION

EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION The Weather Envoy consists of two parts: the Davis Vantage Pro 2 Integrated Sensor Suite (ISS) and the

More information

Lecture 1: A Brief Survey of the Atmosphere

Lecture 1: A Brief Survey of the Atmosphere Lecture 1: A Brief Survey of the Atmosphere Origins of the atmosphere Vertical structures of the atmosphere Weather maps Thickness of the Atmosphere (from Meteorology Today) 70% The thickness of the atmosphere

More information

Solar Matters II Teacher Page

Solar Matters II Teacher Page Solar Matters II Teacher Page UV Beads With Sunscreen Student Objective will be able to explain the importance of using sunscreen will be able to explain how the amount of UV radiation varies in differing

More information

Chapter 3 Communities, Biomes, and Ecosystems

Chapter 3 Communities, Biomes, and Ecosystems Communities, Biomes, and Ecosystems Section 1: Community Ecology Section 2: Terrestrial Biomes Section 3: Aquatic Ecosystems Click on a lesson name to select. 3.1 Community Ecology Communities A biological

More information

8.2 Cells and Energy. What is photosynthesis? Photosynthesis takes place in the chloroplasts. CHAPTER 8. Solar cells and chloroplasts

8.2 Cells and Energy. What is photosynthesis? Photosynthesis takes place in the chloroplasts. CHAPTER 8. Solar cells and chloroplasts CHAPTER 8 CELL PROCESSES 8.2 Cells and Energy To stay alive, you need a constant supply of energy. You need energy to move, think, grow, and even sleep. Where does that energy come from? It all starts

More information

Understanding Basic Concepts demonstrate an awareness of air as a substance that surrounds us and takes up space, and whose movement we feel as wind

Understanding Basic Concepts demonstrate an awareness of air as a substance that surrounds us and takes up space, and whose movement we feel as wind Designation: Ontario Curriculum: Science and Technology Earth and Space Systems: Grade 2 Air and Water in the Environment Written by: Andrea Schultz-Allison, Department of Earth Sciences, The University

More information

Common Defects in Digital Printing. Paul Geldenhuys & Amir Shapira January, 2009

Common Defects in Digital Printing. Paul Geldenhuys & Amir Shapira January, 2009 Common Defects in Digital Printing Paul Geldenhuys & Amir Shapira January, 2009 Overview Ambient Influences Humidity Temperature Sunlight & UV Abrasion Chemical Resistance Common Defects in Digital Printing

More information

Chapter 3: Water and Life

Chapter 3: Water and Life Name Period Chapter 3: Water and Life Concept 3.1 Polar covalent bonds in water result in hydrogen bonding 1. Study the water molecules at the right. On the central molecule, label oxygen (O) and hydrogen

More information

Global Water Resources

Global Water Resources Global Water Resources Highlights from assessment activities over the past two decades, which are used to establish present and future water trends, reveal that: 1. Freshwater resources are unevenly distributed,

More information

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy Assessment Bank Matter and Energy in Living Things SC.8.L.18.4 1. What is energy? A. anything that takes up space B. anything that has mass C. the ability to conduct current D. the ability to do work 2.

More information

Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling

Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling Ecosystems THE REALM OF ECOLOGY Biosphere An island ecosystem A desert spring ecosystem Biosphere Ecosystem Ecology: Interactions between the species in a given habitat and their physical environment.

More information

The Properties of Water

The Properties of Water 1 Matter & Energy: Properties of Water, ph, Chemical Reactions EVPP 110 Lecture GMU Dr. Largen Fall 2003 2 The Properties of Water 3 Water - Its Properties and Its Role in the Fitness of Environment importance

More information

Biomes An Overview of Ecology Biomes Freshwater Biomes

Biomes An Overview of Ecology Biomes Freshwater Biomes Biomes An Overview of Ecology Ecology is the scientific study of the interactions between organisms and their environments. Ecology can be divided into four increasingly comprehensive levels: Organismal

More information

ENVIRONMENTAL CHANGES

ENVIRONMENTAL CHANGES reflect How do you respond to environmental changes? Maybe you wear different types of clothes in different seasons. Maybe you only ride your bike during certain times of the year. What if you moved to

More information

Communities, Biomes, and Ecosystems

Communities, Biomes, and Ecosystems Communities, Biomes, and Ecosystems Before You Read Before you read the chapter, respond to these statements. 1. Write an A if you agree with the statement. 2. Write a D if you disagree with the statement.

More information

GRADE 6 SCIENCE. Demonstrate a respect for all forms of life and a growing appreciation for the beauty and diversity of God s world.

GRADE 6 SCIENCE. Demonstrate a respect for all forms of life and a growing appreciation for the beauty and diversity of God s world. GRADE 6 SCIENCE STRAND A Value and Attitudes Catholic Schools exist so that curriculum may be taught in the light of Gospel teachings. Teachers must reinforce Gospel truths and values so that students

More information

Focused Learning Lesson Physical Science Grade Levels 9 12 PS-H-G4

Focused Learning Lesson Physical Science Grade Levels 9 12 PS-H-G4 Focused Learning Lesson Physical Science Grade Levels 9 12 PS-H-G4 Overview: This lesson provides students the opportunity to study positive and negative aspects of various types of energy through critical

More information

TO INVESTIGATE THE PROTECTION OF SUNCREAMS AGAINST UV RAYS

TO INVESTIGATE THE PROTECTION OF SUNCREAMS AGAINST UV RAYS TO INVESTIGATE THE PROTECTION OF SUNCREAMS AGAINST UV RAYS Aim: Our aim for this project is to collect data on the effectiveness of different sunscreens against UVA and UVB light, a) In natural sunlight

More information

Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity

Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure

More information

Nitrogen Cycling in Ecosystems

Nitrogen Cycling in Ecosystems Nitrogen Cycling in Ecosystems In order to have a firm understanding of how nitrogen impacts our ecosystems, it is important that students fully understand how the various forms of nitrogen cycle through

More information

The role of CO 2 in pool water

The role of CO 2 in pool water The role of CO 2 in pool water A series of e-mail articles from the research group onbalance, January 2006 The role of CO 2 in pool water #1 While some service techs go about their business taking care

More information

CHAPTER 6 THE TERRESTRIAL PLANETS

CHAPTER 6 THE TERRESTRIAL PLANETS CHAPTER 6 THE TERRESTRIAL PLANETS MULTIPLE CHOICE 1. Which of the following is NOT one of the four stages in the development of a terrestrial planet? 2. That Earth, evidence that Earth differentiated.

More information

CLIMATE, WATER & LIVING PATTERNS THINGS

CLIMATE, WATER & LIVING PATTERNS THINGS CLIMATE, WATER & LIVING PATTERNS NAME THE SIX MAJOR CLIMATE REGIONS DESCRIBE EACH CLIMATE REGION TELL THE FIVE FACTORS THAT AFFECT CLIMATE EXPLAIN HOW THOSE FACTORS AFFECT CLIMATE DESCRIBE HOW CLIMATES

More information

Climate Change Mini-Simulation: Background Guide

Climate Change Mini-Simulation: Background Guide Climate Change Mini-Simulation: Background Guide United Nations The United Nations (UN) is an international organization founded in 1945 after the Second World War by 51 countries committed to creating

More information

Climate Change and Renewable Energy A Perspective from a Measurements Viewpoint

Climate Change and Renewable Energy A Perspective from a Measurements Viewpoint Climate Change and Renewable Energy A Perspective from a Measurements Viewpoint Regional Workshop on Metrology and Technology Challenges of Climate Change and Renewable Energy Guatemala City, Guatemala

More information

Chapter 5 Student Reading

Chapter 5 Student Reading Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.

More information

The Nitrogen Cycle. What is Nitrogen? Human Alteration of the Global Nitrogen Cycle. How does the nitrogen cycle work?

The Nitrogen Cycle. What is Nitrogen? Human Alteration of the Global Nitrogen Cycle. How does the nitrogen cycle work? Human Alteration of the Global Nitrogen Cycle Heather McGraw, Mandy Williams, Suzanne Heinzel, and Cristen Whorl, Give SIUE Permission to Put Our Presentation on E-reserve at Lovejoy Library. What is Nitrogen?

More information

How To Understand The Human Body

How To Understand The Human Body Introduction to Biology and Chemistry Outline I. Introduction to biology A. Definition of biology - Biology is the study of life. B. Characteristics of Life 1. Form and size are characteristic. e.g. A

More information

The atmosphere has a number of gases, often in tiny amounts, which trap the heat given out by the Earth.

The atmosphere has a number of gases, often in tiny amounts, which trap the heat given out by the Earth. The Earth is wrapped in a blanket of air called the atmosphere, which is made up of several layers of gases. The sun is much hotter than the Earth and it gives off rays of heat (radiation) that travel

More information

Ecology Module B, Anchor 4

Ecology Module B, Anchor 4 Ecology Module B, Anchor 4 Key Concepts: - The biological influences on organisms are called biotic factors. The physical components of an ecosystem are called abiotic factors. - Primary producers are

More information

The Polar Climate Zones

The Polar Climate Zones The Polar Climate Zones How cold is it in the polar climate? Polar areas are the coldest of all the major climate zones The Sun is hardly ever high enough in the sky to cause the plentiful ice to melt,

More information