# PHY 212 LAB Magnetic Field As a Function of Current

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 PHY 212 LAB Magnetic Field As a Function of Current Apparatus DC Power Supply two D batteries one round bulb and socket a long wire 10-Ω resistor set of alligator clilps coil Scotch tape function generator and coax-to-alligator-clip cable cup speaker headphone cable with split wires ipod or iphone two sets of 4 neodymium magnets a compass Goal In this lab, your goals are: 1. to determine the N and S poles of a magnetic dipole 2. to determine the N and S poles of an electromagnet (i.e. current-carrying coil) 3. to investigate how a speaker works, with a coil, cup, and magnet 4. to learn how to use a compass to measure magnetic field 5. to measure the magnetic field as a function of current in a long, straight wire 6. to measure the magnetic field as a function of distance for a long, straight wire PhET: Magnet and Compass. Determine the N and S poles of a magnetic dipole. Observation: A compass needle points in the direction of the net magnetic field (due to other sources) at the location of the compass needle. Explanation: If the compass needle points in a different direction than the magnetic field at its location, then there is a torque on the compass needle that causes the needle to rotate until the N end of the compass needle points in the direction of the net magnetic field. If there is sufficient frictional forces (i.e. damping), the needle will eventually stop oscillating and will be in static equilibrium, aligned with the magnetic field. Thus, a compass needle is an indicator of the direction of magnetic field. 1. Run the PhET simulation: Magnet and Compass. 2. The magnetic field is created by a dipole magnet. There are tiny compass arrows shown throughout space that show you the direction of magnetic field at various points in space around the dipole magnet. The brightness of each needle is used to indicate how strong the magnetic field is at that location. 3. Move the compass around the magnet. 1

2 Did you notice that the compass needle oscillates after you stop moving the compass? Why does the compass needle eventually stop oscillating and come to rest, in static equilibrium? Feel free to investigate a real compass to figure out the answer. 4. After investigating the direction of magnetic field around the dipole magnet, sketch the magnetic field at the locations on the picture below. Figure 1: Dipole magnet. Write a general rule: The magnetic field due to a dipole magnet at a point along the axis of the magnet points the N pole and the S pole. At a point along the perpendicular bisector of the magnet, the magnetic field points At a point on the equator of Earth, the compass needle points toward geographic N. Sketch Earth as a circle and draw the compass needle at the equator at the left side of the circle. At this point, what direction is the magnetic field? 2

3 You can model Earth as a dipole magnet that is nearly aligned with its axis. Sketch a dipole magnet through Earth such that the magnet s axis is aligned with Earth s axis. Label the N and S poles of the magnet. 5. In the PhET simulation, check the box that says Show planet Earth. Compare it to the sketch that you drew. Resolve any differences. 6. The compass that you place on a desktop only measures the component of magnetic field that is parallel to Earth s surface. However, the actual magnetic field due to Earth at a point on its surface points downward. For example, look at the direction of the magnetic field near the N geographic pole. The angle that a needle would put toward Earth is called the dip angle and is measured with a compass needle that can rotate in the vertical plane. PhET: Magnets and Electromagnets. Determine the N and S poles of a currentcarrying coil. 1. Run the PhET simulation: Magnetics and Electromagnets. 2. Click the tab for Electromagnet. 3. Change the number of loops to 1. You ll notice charge moving through the wire. Do the spheres represent electrons or positive charge (i.e. conventional current)? 4. Uncheck the box Show Electrons. 5. Wrap your fingers around the loop in the direction of conventional current and note the direction of your thumb. How does the direction your thumb compare to the direction of the magnetic field indicated by the compass needles along the axis of the loop? This use of the right-hand rule is used to figure out the direction of magnetic field along the axis of a current-carrying loop. 6. Move the compass around. 3

4 Sketch a side view of the loop below and sketch the direction of conventional current at the top and bottom. If you model the loop as a dipole magnet, which side (on the left or on the right) is the N pole? Label the N and S poles of your loop. Force of a magnetic dipole on another magnetic dipole You ve observed in your everyday life that magnets attract or repel. Let s investigate. 1. Obtain a set of four neodymium magnets. We ll treat this is a single magnetic dipole. 2. Use your compass to determine the N and S poles of your magnet. Place a large piece of Scotch tape on the N side of your magnet. (Note: I want no tape residue left on the magnets, so use a big piece that can easily be pulled off. Do NOT write on the magnets.) 3. Obtain a second set of four neodymium magnets to use as a magnetic dipole. Determine the N and S poles of this dipole and indicate the N end with a piece of tape. 4. Now, observe which poles attract and which poles repel for your magnets. Record your observations below. Same poles. Opposite poles. 5. Connect a power supply, large wire coil, and an ammeter in series. Set the power supply at 1 V. Measure the current flowing through the coil. Increase the voltage until a current of 1 A flows through the coil. Note that a current limiter on the power supply will limit high currents. You have to turn up the limiter to allow a 1 A current. 6. The coil is called an electromagnet and acts as a magnetic dipole. Use your compass to determine the N side and S side of the electromagnet. Use a piece of Scotch tape to indicate the N pole of the electromagnet. Use your right-hand rule to determine which direction current is flowing in your coil based on what you know to be the direction of the magnetic field along the axis of the coil. Record the direction of the current by sketching a picture of the coil and indicating whether the current flows clockwise or counterclockwise around the coil if you are facing the coil. 4

5 7. Observe whether the set of four neodymium magnets (a magnetic dipole) will be attracted or repelled by the coil, in accordance with the same rules you observed above for two interacting magnetic dipoles. Record your observations below. 8. Switch the leads on the coil in order to reverse the current. Observe the interaction of your coil with the magnetic dipole. Describe how changing the direction of the current affected the poles of the electromagnet and the direction of the magnetic field created by the electromagnet. 9. Connect a function generator. to the coil. Press the square wave button on the function generator. Press the 10 button to set the frequency meter to the 10 scale. Adjust the frequency until it is about 5 Hz. 10. Hold the magnetic dipole (set of four neodymium magnets) at the center of the coil. Record your observations. 11. Adjust the frequency as you are holding the magnets. 12. To help you visualize what the function generator is doing, run the PhET simulation: Magnetics and Electromagnets. Click the Electromagnet tab and click the AC current source. Describe the motion of the charge in the wire and describe how this affects the magnetic field along the axis of the loop. It helps if you place the large compass along the axis of the loop. 5

6 Now, explain in detail using words and diagrams why it is that you feel an alternating force, which alternates between pushing and pulling on the magnets. Show the direction of the current in the coil if it attracts the magnet. Show a separate picture for the current in the coil if it repels the magnet. Exploring a speaker A speaker has a wire coil that is connected to the output of an amplifier. The sound produces an alternating current in the wire that oscillates in both magnitude and direction (that is, it alternates" and is thus not constant). As a result, it creates an alternating magnetic field along the axis of the coil that oscillates (or alternates) in strength and direction. 1. Hold a magnetic dipole close to the wire coil. Record your observations of what you feel. When the coil and magnetic dipole attract, what direction is the current in the coil? When the coil and magnetic dipole repel, what direction is the current in the coil? Sketch two separate pictures. What are the essential parts of any speaker, including earbuds or headphones or the speaker in your cell phone, for example? Describe how a speaker works. Measuring magnetic field as a function of current in a long, straight wire A compass points in the direction of the net magnetic field at the location of the compass. Moving electrons flowing through a wire create a magnetic field everywhere in space. A compass placed under a wire is affected by magnetic fields from two sources: (1) the Earth, and (2) the current in the wire. 6

7 Figure 2: 1. Move all wires and batteries far from the compass so that the compass points toward geographic North. Assemble a circuit consisting of one battery, a long copper wire, and a 10 Ω resistor in series. Leave one alligator clip disconnected 2. Align the long wire carefully with the compass needle, then connect the circuit. Don t move the compass! Carefully measure the compass deflection (to the nearest 2 ) when current is flowing through the circuit. θ = Sketch a picture of the net magnetic field at the location of the compass, the magnetic field of Earth at the location of the compass, and the magnetic field at the location of the compass that is due to the current flowing through the wire. The component of the Earth s magnetic field in the plane of the compass is approximately T at this location. Use trigonometry and your sketch of the right-triangle above to calculate the magnetic field at the location of the compass due to the current in the wire. In the following steps of the experiment, you will find the relationship between the magnetic field produced by a the current in a wire and the magnitude of the current. 7

8 What is the theoretical equation for the magnetic field at a distance r from a long, straight wire due to the current in the wire? 3. Set the compass on the edge of the table so that it points N. Use a piece of Scotch tape, folded and stuck to the bottom of the compass to keep it fixed to the table and aligned with N. 4. Connect a voltage source (i.e. power supply), a 10 Ω resistor, a long wire, and a current meter (i.e. ammeter) in series. 5. Adjust the voltage of the voltage source until the current reads 0.1 A. 6. Lay the wire on top of the compass, along the N-S axis. Measure the following data: I = θ = Using the deflection of the compass from N, calculate the magnetic field due to the wire: B wire = 7. Adjust the voltage to until I = 0.2 A and again measure current and magnetic field. Repeat until you fill out the data table below. Table 1: Magnetic field as a function of current for a long, straight wire I (A) θ ( ) B wire (T) Graph B vs. I in Logger Pro, and fit the appropriate function to the data. 8

9 Record the curve fit and the proportionality constant. 9. Use a ruler to measure as closely as possible the distance between the center of the compass needle and the wire. r = m. Using your curve fit parameter and the distance r, calculate the constant µ0 4π. Compare your measured value of µ0 4π to the theoretical value of T m/a. Magnetic field as a function of distance from the wire Now, we will measure how the magnetic field at a location from a wire varies as a function of the distance from the wire r. You have already learned how to measure magnetic field by measuring the deflection of a compass needle, and you will use this same technique to measure magnetic field. 1. Place the compass on the edge of the table and align it with geographic N. 2. Obtain a ruler and hold it perpendicular to the table. 3. Using the same circuit as before (battery, a long wire, ammeter, and 10 Ω resistor), hold the wire along the N-S axis at a distance above the compass that causes a deflection of 10. Measure the distance of the wire from the table and calculate/record its distance from the center of the compass needle. Do this for other deflections, and record your results below. r (m) θ ( ) B wire (T) Using Logger Pro, graph B vs. r. Assume a power relationship so that B 1/r and fit a curve to your data. 9

10 5. Record your curve fit and the proportionality constant. 10

### The DC Motor. Physics 1051 Laboratory #5 The DC Motor

The DC Motor Physics 1051 Laboratory #5 The DC Motor Contents Part I: Objective Part II: Introduction Magnetic Force Right Hand Rule Force on a Loop Magnetic Dipole Moment Torque Part II: Predictions Force

### The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

### 1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

### Magnetic Fields and Their Effects

Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

### Chapter 14 Magnets and

Chapter 14 Magnets and Electromagnetism How do magnets work? What is the Earth s magnetic field? Is the magnetic force similar to the electrostatic force? Magnets and the Magnetic Force! We are generally

### How do you measure voltage and current in electric circuits? Materials

20A Electricity How do you measure voltage and current in electric circuits? Electricity Investigation 20A We use electricity every day, nearly every minute! In this Investigation you will build circuits

### Lab 9 Magnetic Interactions

Lab 9 Magnetic nteractions Physics 6 Lab What You Need To Know: The Physics Electricity and magnetism are intrinsically linked and not separate phenomena. Most of the electrical devices you will encounter

### Magnets and the Magnetic Force

Magnets and the Magnetic Force We are generally more familiar with magnetic forces than with electrostatic forces. Like the gravitational force and the electrostatic force, this force acts even when the

### ELECTRICITYt. Electromagnetism

ELECTRICITYt Electromagnetism Subject area : Physics Topic focus : magnetic properties, magnetic field, the Earth s magnetic field, magnetic field of an electric wire. Learning Aims : Polarity of bar magnets

### Question Bank. 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction

1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction 1. Diagram below shows a freely suspended magnetic needle. A copper wire is held parallel to the axis of magnetic

### Question Details C14: Magnetic Field Direction Abbott [ ]

Phys 1114: Assignment 9 Abbott (5420633) Due: Mon Apr 7 2014 11:59 PM CDT Question 1 2 3 4 5 6 7 8 9 10 11 1. Question Details C14: Magnetic Field Direction Abbott [2861537] a) A wire is oriented horizontally

### Electromagnetic Induction Experiment

In this experiment, the activity will be based on a Phet simulation called Faraday s Electromagnetic Lab, created by a group at the University of Colorado at Boulder. This group has a number of good simulations

### Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral

### Magnetism. ***WARNING: Keep magnets away from computers and any computer disks!***

Magnetism This lab is a series of experiments investigating the properties of the magnetic field. First we will investigate the polarity of magnets and the shape of their field. Then we will explore the

### Multiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields

Multiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields 63 When a positive charge q is placed in the field created by two other charges Q 1 and Q 2, each a distance r away from q, the

### FORCE ON A CURRENT IN A MAGNETIC FIELD

7/16 Force current 1/8 FORCE ON A CURRENT IN A MAGNETIC FIELD PURPOSE: To study the force exerted on an electric current by a magnetic field. BACKGROUND: When an electric charge moves with a velocity v

### (1) Physics Purpose: Materials: Theory: We investigate the elementary properties of magnetism using the following four magnets:

Department of Physics and Geology The study of magnetic fields Physics 2402 Purpose: We investigate the elementary properties of magnetism using the following four magnets: 1. a compass needle 2. a bar

### Lab 11: Magnetic Fields Name:

Lab 11: Magnetic Fields Name: Group Members: Date: TA s Name: Objectives: To measure and understand the magnetic field of a bar magnet. To measure and understand the magnetic field of an electromagnet,

### Magnetism Basics. Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment. Net Effect = Zero!

Magnetism Basics Source: electric currents Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment Net Effect = Zero! Net Effect = Additive! Bipolar: all magnets

### Chapter 24 Practice Problems, Review, and Assessment

Section 1 Understanding Magnetism: Practice Problems 1. If you hold a bar magnet in each hand and bring your hands close together, will the force be attractive or repulsive if the magnets are held in the

### Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory

Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared

### Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth OBJECTIVES 1. To examine the magnetic field associated with a

### Magnetic Force on a Current-Carrying Wire

Title: Original Version: Revision: Authors: Appropriate Level: Abstract: Time Required: NY Standards Met: AP Physics Learning Objective: Magnetic Force on a Current-Carrying Wire 11 November 2006 24 June

### Fall 12 PHY 122 Homework Solutions #8

Fall 12 PHY 122 Homework Solutions #8 Chapter 27 Problem 22 An electron moves with velocity v= (7.0i - 6.0j)10 4 m/s in a magnetic field B= (-0.80i + 0.60j)T. Determine the magnitude and direction of the

### Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2006 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines

### Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

### Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2009 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines

### CHARGE TO MASS RATIO OF THE ELECTRON

CHARGE TO MASS RATIO OF THE ELECTRON In solving many physics problems, it is necessary to use the value of one or more physical constants. Examples are the velocity of light, c, and mass of the electron,

### ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

### Kirchhoff s Voltage Law and RC Circuits

Kirchhoff s oltage Law and RC Circuits Apparatus 2 1.5 batteries 2 battery holders DC Power Supply 1 multimeter 1 capacitance meter 2 voltage probes 1 long bulb and 1 round bulb 2 sockets 1 set of alligator

### MAGNETIC EFFECTS OF ELECTRIC CURRENT

CHAPTER 13 MAGNETIC EFFECT OF ELECTRIC CURRENT In this chapter, we will study the effects of electric current : 1. Hans Christian Oersted (1777-1851) Oersted showed that electricity and magnetism are related

### The Magnetic Field of a Permanent Magnet

Introduction The of a Permanent Magnet A bar magnet is called a dipole since it has two poles, commonly labeled North and South. Breaking a magnet in two does not produce two isolated poles; each fragment

### Build A Simple Electric Motor (example #1)

PHY115 Experiment 11 Build A Simple Electric Motor (example #1) MATERIAL This is the necessary equipment. Present any list of material in your written lab report. 1.5 V battery in series 1 ceramic magnet

### My lecture slides are posted at Information for Physics 112 midterm, Wednesday, May 2

My lecture slides are posted at http://www.physics.ohio-state.edu/~humanic/ Information for Physics 112 midterm, Wednesday, May 2 1) Format: 10 multiple choice questions (each worth 5 points) and two show-work

### Name: Date: Regents Physics Mr. Morgante UNIT 4B Magnetism

Name: Regents Physics Date: Mr. Morgante UNIT 4B Magnetism Magnetism -Magnetic Force exists b/w charges in motion. -Similar to electric fields, an X stands for a magnetic field line going into the page,

### 1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

### Physics Spring Experiment #8 1 Experiment #8, Magnetic Forces Using the Current Balance

Physics 182 - Spring 2012 - Experiment #8 1 Experiment #8, Magnetic Forces Using the Current Balance 1 Purpose 1. To demonstrate and measure the magnetic forces between current carrying wires. 2. To verify

### Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat

### Exam 2 Solutions. PHY2054 Spring Prof. P. Kumar Prof. P. Avery March 5, 2008

Prof. P. Kumar Prof. P. Avery March 5, 008 Exam Solutions 1. Two cylindrical resistors are made of the same material and have the same resistance. The resistors, R 1 and R, have different radii, r 1 and

### Objectives: Vocabulary: Materials: Students will: Safety: Magnet Electricity Electromagnet Charge Current Magnetic Field

Electromagnets Author: Jane Earle, Lauren Downing, Kevin Dilley Date Created: July 2007 Subject: Physics Level: High School Standards: New York State- Physics (www.emsc.nysed.gov/ciai/) Standard 1- Analysis,

### Force on Moving Charges in a Magnetic Field

[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

### Physics 221 Experiment 5: Magnetic Fields

Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found

### 104 Practice Exam 2-3/21/02

104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero

### Experiment P-27 Current Variations and Generation of a Magnetic Field

1 Experiment P-27 Current Variations and Generation of a Magnetic Field Objectives To learn about electromagnets. To build an electromagnet with a nail, a wire and an electrical circuit device. To investigate

### Date: Deflection of an Electron in a Magnetic Field

Name: Partners: Date: Deflection of an Electron in a Magnetic Field Purpose In this lab, we use a Cathode Ray Tube (CRT) to measure the effects of an electric and magnetic field on the motion of a charged

### Magnetic Force. For centuries, humans observed strange force. Between iron and special stones called lodestones. Force couldn't be gravity or electric

MAGNETIC FIELD Magnetic Force For centuries, humans observed strange force Between iron and special stones called lodestones Force couldn't be gravity or electric Not enough mass or electric charge to

### Candidate Number. General Certificate of Education Advanced Level Examination June 2010

entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 1 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Friday 18

### Physics 2212 GH Quiz #4 Solutions Spring 2015

Physics 1 GH Quiz #4 Solutions Spring 15 Fundamental Charge e = 1.6 1 19 C Mass of an Electron m e = 9.19 1 31 kg Coulomb constant K = 8.988 1 9 N m /C Vacuum Permittivity ϵ = 8.854 1 1 C /N m Earth s

### Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able

### Physics 1653 Exam 3 - Review Questions

Physics 1653 Exam 3 - Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but

### Electricity. Short Answer Questions QUESTIONS

S.N O Electricity Short Answer Questions QUESTIONS 1 A child has drawn the electric circuit to study Ohm s law as shown in Figure. His teacher told that the circuit diagram needs correction. Study the

### Kirchhoff's Rules and Applying Them

[ Assignment View ] [ Eðlisfræði 2, vor 2007 26. DC Circuits Assignment is due at 2:00am on Wednesday, February 21, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.

### Magnetic Fields Lab. Station #1 à Determining Magnetic Flux Lines

Magnetic Fields Lab Regents Physics Name Mr. Putnam Station #1 à Determining Magnetic Flux Lines You must FIRST FIND WHICH END of your compass needle that points Geographic North. THIS WILL BE THE NORTH

### Experiment 7: Forces and Torques on Magnetic Dipoles

MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics 8. Spring 5 OBJECTIVES Experiment 7: Forces and Torques on Magnetic Dipoles 1. To measure the magnetic fields due to a pair of current-carrying

### PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

### 1. E&M induction requires change, of the intensity of a magnetic field or of motion in a magnetic field.

Chapter 25 EXERCISE key 1. E&M induction requires change, of the intensity of a magnetic field or of motion in a magnetic field. 2. Magnetic induction will not occur in nylon, since it has no magnetic

### Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance Your name Lab section 1. What do you investigate in this lab? 2. Two straight wires are in parallel and carry electric currents in opposite directions

### Solution: (a) For a positively charged particle, the direction of the force is that predicted by the right hand rule. These are:

Problem 1. (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields as shown in the figure. (b) Repeat part (a), assuming the moving particle is

### Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

### Chapter 22 Magnetism

22.6 Electric Current, Magnetic Fields, and Ampere s Law Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field

### Equipotential and Electric Field Mapping

Experiment 1 Equipotential and Electric Field Mapping 1.1 Objectives 1. Determine the lines of constant electric potential for two simple configurations of oppositely charged conductors. 2. Determine the

### MAGNETISM MAGNETISM. Principles of Imaging Science II (120)

Principles of Imaging Science II (120) Magnetism & Electromagnetism MAGNETISM Magnetism is a property in nature that is present when charged particles are in motion. Any charged particle in motion creates

### Electricity, Energy and Magnetism

Electricity, Energy and Magnetism A. What's a Magnet? A magnet is a substance with two opposite poles: orth and outh. Like opposite charges, opposite poles attract, so the north pole of one magnet will

### Experiment #8: Magnetic Forces

Experiment #8: Magnetic Forces Purpose: To study the nature of magnetic forces exerted on currents. Equipment: Magnet Assembly and Stand Set of Current Loop PC oards Triple-Arm Pan alance 0 15 V dc Variable

1 Electromagnetic Induction: Faraday's Law OBJECTIVE: To understand how changing magnetic fields can produce electric currents. To examine Lenz's Law and the derivative form of Faraday's Law. EQUIPMENT:

### TIME OF COMPLETION DEPARTMENT OF NATURAL SCIENCES. PHYS 2212, Exam 2 Section 1 Version 1 April 16, 2014 Total Weight: 100 points

TIME OF COMPLETION NAME DEPARTMENT OF NATURAL SCIENCES PHYS 2212, Exam 2 Section 1 Version 1 April 16, 2014 Total Weight: 100 points 1. Check your examination for completeness prior to starting. There

### Review Questions PHYS 2426 Exam 2

Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.

Last Name: First Name: Physics 102 Spring 2006: Exam #2 Multiple-Choice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged

### Lab 3 - DC Circuits and Ohm s Law

Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

### MAGNETISM AND ELECTRICITY

MAGNETISM AND ELECTRICITY Magnetism is a natural phenomenon first documented by the Greeks who observed that a naturally occurring substance, magnetite would attract pieces of iron. Later on, the Chinese

### Physics 1020 Laboratory #6 Equilibrium of a Rigid Body. Equilibrium of a Rigid Body

Equilibrium of a Rigid Body Contents I. Introduction II. III. IV. Finding the center of gravity of the meter stick Calibrating the force probe Investigation of the angled meter stick V. Investigation of

### Capacitors & RC Circuits

Capacitors & C Circuits Name: EQUIPMENT NEEDED: Circuits Experiment Board One D-cell Battery Wire leads Multimeter Capacitors(100 F, 330 F) esistors(1k, 4.7k ) Logger Pro Software, ULI Purpose The purpose

### DC Motor Annotated Handout American Physical Society

DC Motor Annotated Handout American Physical Society A. What You Already Know Make a labeled drawing to show what you think is inside the motor. Write down how you think the motor works. Please do this

### MAGNETIC RESONANCE IMAGING Sytil Murphy

MAGNETIC RESONANCE IMAGING Sytil Murphy Modern Miracle Medical Machines When you go to the doctor s office with an injury, what diagnostic tools is the doctor likely to use to determine your injury? If

### Draw a ring around the correct answer to complete the following sentences. power supply. (1)

Q. The diagram shows a transformer made by a student. The student has designed the transformer to make a 6 V light bulb work using a 2 V power supply. (a) Draw a ring around the correct answer to complete

### Chapter 19: Magnetic Forces and Fields

Chapter 19: Magnetic Forces and Fields Magnetic Fields Magnetic Force on a Point Charge Motion of a Charged Particle in a Magnetic Field Crossed E and B fields Magnetic Forces on Current Carrying Wires

### DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

### F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.

PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 9 Magnetic Force on a Current Carrying Wire Equipment: Supplies: Unit. Electronic balance, Power supply, Ammeter, Lab stand Current Loop PC Boards, Magnet

### AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.

### Inductors in AC Circuits

Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

### How Does it Flow? Electricity, Circuits, and Motors

How Does it Flow? Electricity, Circuits, and Motors Introduction In this lab, we will investigate the behavior of some direct current (DC) electrical circuits. These circuits are the same ones that move

### Magnetism. Magnetism. Magnetic Fields and Magnetic Domains. Magnetic Fields and Magnetic Domains. Creating and Destroying a Magnet

Magnetism Magnetism Opposite poles attract and likes repel Opposite poles attract and likes repel Like electric force, but magnetic poles always come in pairs (North, South) Like electric force, but magnetic

### Physics 25 Exam 3 November 3, 2009

1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

### ELECTRODYNAMICS 05 AUGUST 2014

ELECTRODYNAMICS 05 AUGUST 2014 In this lesson we: Lesson Description Discuss the motor effect Discuss how generators and motors work. Summary The Motor Effect In order to realise the motor effect, the

### 4 th Grade Science Unit A: Physical Sciences Chapter 1: Electricity Lesson 1: How do charged objects behave?

4 th Grade Science Unit A: Physical Sciences Chapter 1: Electricity Lesson 1: How do charged objects behave? electric charge An electric charge is a property of some part of matter, described as positive

### Experiment A5. Hysteresis in Magnetic Materials

HYSTERESIS IN MAGNETIC MATERIALS A5 1 Experiment A5. Hysteresis in Magnetic Materials Objectives This experiment illustrates energy losses in a transformer by using hysteresis curves. The difference betwen

### Chapter 4. Magnetic Materials and Circuits

Chapter 4 Magnetic Materials and Circuits Objectives List six characteristics of magnetic field. Understand the right-hand rule for current and magnetic fluxes. Define magnetic flux, flux density, magnetomotive

### Chapter 33. The Magnetic Field

Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These

### INVESTIGATING THE EFFECT OF THE MAGNETIC FIELD FROM A WIRE ON A COMPASS

Prize recipient Low-cost Division Apparatus Competition 2009 AAPT Summer Meeting Ann Arbor, MI Modern Miracle Medical Machines INVESTIGATING THE EFFECT OF THE MAGNETIC FIELD FROM A WIRE ON A COMPASS Sytil

### E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

### Chapter 11- Electricity

Chapter 11- Electricity Course Content Definition of Electricity Circuit Diagrams Series and Parallel Circuits Calculating total resistances Measurement of Electricity Ammeters and Voltmeters Ohm s Law

### Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

### STUDY GUIDE: ELECTRICITY AND MAGNETISM

319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: info@questionsgalore.net Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three

### Chapter 19 Magnetic Forces and Fields

Chapter 19 Magnetic Forces and Fields Student: 3. The magnetism of the Earth acts approximately as if it originates from a huge bar magnet within the Earth. Which of the following statements are true?

### Magnetic Field of a Circular Coil Lab 12

HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,

### Experiment 9: Biot -Savart Law with Helmholtz Coil

Experiment 9: Biot -Savart Law with Helmholtz Coil ntroduction n this lab we will study the magnetic fields of circular current loops using the Biot-Savart law. The Biot-Savart Law states the magnetic

### Physics 126 Practice Exam #3 Professor Siegel

Physics 126 Practice Exam #3 Professor Siegel Name: Lab Day: 1. Which one of the following statements concerning the magnetic force on a charged particle in a magnetic field is true? A) The magnetic force

### Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets

Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets 1) The following simple magnet configurations were shown to you in class - draw the magnetic field lines