Four Assumptions Of Multiple Regression That Researchers Should Always Test

Save this PDF as:

Size: px
Start display at page:

Transcription

1 A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to Practical Assessment, Research & Evaluation. Permission is granted to distribute this article for nonprofit, educational purposes if it is copied in its entirety and the journal is credited. PARE has the right to authorize third party reproduction of this article in print, electronic and database forms. Volume 8, Number 2, January, 2002 ISSN= Four Assumptions Of Multiple Regression That Researchers Should Always Test Jason W. Osborne and Elaine Waters North Carolina State University and University of Oklahoma Most statistical tests rely upon certain assumptions about the variables used in the analysis. When these assumptions are not met the results may not be trustworthy, resulting in a Type I or Type II error, or over- or under-estimation of significance or effect size(s). As Pedhazur (1997, p. 33) notes, "Knowledge and understanding of the situations when violations of assumptions lead to serious biases, and when they are of little consequence, are essential to meaningful data analysis". However, as Osborne, Christensen, and Gunter (2001) observe, few articles report having tested assumptions of the statistical tests they rely on for drawing their conclusions. This creates a situation where we have a rich literature in education and social science, but we are forced to call into question the validity of many of these results, conclusions, and assertions, as we have no idea whether the assumptions of the statistical tests were met. Our goal for this paper is to present a discussion of the assumptions of multiple regression tailored toward the practicing researcher. Several assumptions of multiple regression are robust to violation (e.g., normal distribution of errors), and others are fulfilled in the proper design of a study (e.g., independence of observations). Therefore, we will focus on the assumptions of multiple regression that are not robust to violation, and that researchers can deal with if violated. Specifically, we will discuss the assumptions of linearity, reliability of measurement, homoscedasticity, and normality. VARIABLES ARE NORMALLY DISTRIBUTED. Regression assumes that variables have normal distributions. Non-normally distributed variables (highly skewed or kurtotic variables, or variables with substantial outliers) can distort relationships and significance tests. There are several pieces of information that are useful to the researcher in testing this assumption: visual inspection of data plots, skew, kurtosis, and P-P plots give researchers information about normality, and Kolmogorov-Smirnov tests provide inferential statistics on normality. Outliers can be identified either through visual inspection of histograms or frequency distributions, or by converting data to z-scores. Bivariate/multivariate data cleaning can also be important (Tabachnick & Fidell, p 139) in multiple regression. Most regression or multivariate statistics texts (e.g., Pedhazur, 1997; Tabachnick & Fidell, 2000) discuss the examination of standardized or studentized residuals, or indices of leverage. Analyses by Osborne (2001) show that removal of univariate and bivariate outliers can reduce the probability of Type I and Type II errors, and improve accuracy of estimates. Outlier (univariate or bivariate) removal is straightforward in most statistical software. However, it is not always desirable to remove outliers. In this case transformations (e.g., square root, log, or inverse), can improve normality, but complicate the interpretation of the results, and should be used deliberately and in an informed manner. A full treatment of transformations is beyond the scope of this article, but is discussed in many popular statistical textbooks. ASSUMPTION OF A LINEAR RELATIONSHIP BETWEEN THE INDEPENDENT AND DEPENDENT VARIABLE(S). Standard multiple regression can only accurately estimate the relationship between dependent and independent variables if the relationships are linear in nature. As there are many instances in the social sciences where non-linear relationships occur (e.g., anxiety), it is essential to examine analyses for non-linearity. If the relationship between independent variables (IV) and the dependent variable (DV) is not linear, the results of the regression analysis will under-estimate the true relationship. This under-estimation carries two risks: increased chance of a Type II error for that IV, and in the case of multiple regression, an increased risk of Type I errors (over-estimation) for other IVs that share variance with that IV. Authors such as Pedhazur (1997), Cohen and Cohen (1983), and Berry and Feldman (1985) suggest three primary ways to detect non-linearity. The first method is the use of theory or previous research to inform current analyses. However, as many prior researchers have probably overlooked the possibility of non-linear relationships, this method is not Page 1 of 5

2 foolproof. A preferable method of detection is examination of residual plots (plots of the standardized residuals as a function of standardized predicted values, readily available in most statistical software). Figure 1 shows scatterplots of residuals that indicate curvilinear and linear relationships. Figure 1. Example of curvilinear and linear relationships with standardized residuals by standardized predicted values. Curvilinear Relationship Linear Relationship The third method of detecting curvilinearity is to routinely run regression analyses that incorporate curvilinear components (squared and cubic terms; see Goldfeld and Quandt, 1976 or most regression texts for details on how to do this) or utilizing the nonlinear regression option available in many statistical packages. It is important that the nonlinear aspects of the relationship be accounted for in order to best assess the relationship between variables. VARIABLES ARE MEASURED WITHOUT ERROR (RELIABLY) The nature of our educational and social science research means that many variables we are interested in are also difficult to measure, making measurement error a particular concern. In simple correlation and regression, unreliable measurement causes relationships to be under-estimated increasing the risk of Type II errors. In the case of multiple regression or partial correlation, effect sizes of other variables can be over-estimated if the covariate is not reliably measured, as the full effect of the covariate(s) would not be removed. This is a significant concern if the goal of research is to accurately model the real relationships evident in the population. Although most authors assume that reliability estimates (Cronbach alphas) of.7-.8 are acceptable (e.g., Nunnally, 1978) and Osborne, Christensen, and Gunter (2001) reported that the average alpha reported in top Educational Psychology journals was.83, measurement of this quality still contains enough measurement error to make correction worthwhile, as illustrated below. Correction for low reliability is simple, and widely disseminated in most texts on regression, but rarely seen in the literature. We argue that authors should correct for low reliability to obtain a more accurate picture of the true relationship in the population, and, in the case of multiple regression or partial correlation, to avoid over-estimating the effect of another variable. Reliability and simple regression Since the presence of measurement errors in behavioral research is the rule rather than the exception and reliabilities of many measures used in the behavioral sciences are, at best, moderate (Pedhazur, 1997, p. 172); it is important that researchers be aware of accepted methods of dealing with this issue. For simple regression, Equation #1 provides an estimate of the true relationship between the IV and DV in the population: (1) In this equation, r 12 is the observed correlation, and r 11 and r 22 are the reliability estimates of the variables. Table 1 and Figure 2 presents examples of the results of such a correction. Table 1: Values of r and r 2 after correction for attenuation Reliability of DV and IV Observed r Perfect measurement r r 2 r r 2 r r 2 r r 2 r r 2 Page 2 of 5

3 Note: for simplicity we show an example where both IV and DV have identical reliability estimates. In some of these hypothetical examples we would produce impossible values, and so do not report these. Figure 2: Change in variance accounted for as correlations are corrected for low reliability As Table 1 illustrates, even in cases where reliability is.80, correction for attenuation substantially changes the effect size (increasing variance accounted for by about 50%). When reliability drops to.70 or below this correction yields a substantially different picture of the true nature of the relationship, and potentially avoids a Type II error. Reliability and Multiple Regression With each independent variable added to the regression equation, the effects of less than perfect reliability on the strength of the relationship becomes more complex and the results of the analysis more questionable. With the addition of one independent variable with less than perfect reliability each succeeding variable entered has the opportunity to claim part of the error variance left over by the unreliable variable(s). The apportionment of the explained variance among the independent variables will thus be incorrect. The more independent variables added to the equation with low levels of reliability the greater the likelihood that the variance accounted for is not apportioned correctly. This can lead to erroneous findings and increased potential for Type II errors for the variables with poor reliability, and Type I errors for the other variables in the equation. Obviously, this gets increasingly complex as the number of variables in the equation grows. A simple example, drawing heavily from Pedhazur (1997), is a case where one is attempting to assess the relationship between two variables controlling for a third variable (r 12.3 ). When one is correcting for low reliability in all three variables Equation #2 is used: (2) Where r 11, r 22, and r 33 are reliabilities, and r 12, r 23, and r 13 are relationships between variables. If one is only correcting for low reliability in the covariate one could use Equation #3: Page 3 of 5

4 (3) Table 2 presents some examples of corrections for low reliability in the covariate (only) and in all three variables. Table 2: Values of r 12.3 and r after correction low reliability Examples: Reliability of Covariate Reliability of All Variables Observed r 12 r 13 r 23 r 12.3 r 12.3 r 12.3 r 12.3 r 12.3 r 12.3 r Note: In some examples we would produce impossible values that we do not report. Table 2 shows some of the many possible combinations of reliabilities, correlations, and the effects of correcting for only the covariate or all variables. Some points of interest: (a) as in Table 1, even small correlations see substantial effect size (r 2 ) changes when corrected for low reliability, in this case often toward reduced effect sizes (b) in some cases the corrected correlation is not only substantially different in magnitude, but also in direction of the relationship, and (c) as expected, the most dramatic changes occur when the covariate has a substantial relationship with the other variables. ASSUMPTION OF HOMOSCEDASTICITY Homoscedasticity means that the variance of errors is the same across all levels of the IV. When the variance of errors differs at different values of the IV, heteroscedasticity is indicated. According to Berry and Feldman (1985) and Tabachnick and Fidell (1996) slight heteroscedasticity has little effect on significance tests; however, when heteroscedasticity is marked it can lead to serious distortion of findings and seriously weaken the analysis thus increasing the possibility of a Type I error. This assumption can be checked by visual examination of a plot of the standardized residuals (the errors) by the regression standardized predicted value. Most modern statistical packages include this as an option. Figure 3 show examples of plots that might result from homoscedastic and heteroscedastic data. Figure 3. Examples of homoscedasticity and heteroscedasticity Ideally, residuals are randomly scattered around 0 (the horizontal line) providing a relatively even distribution. Heteroscedasticity is indicated when the residuals are not evenly scattered around the line. There are many forms heteroscedasticity can take, such as a bow-tie or fan shape. When the plot of residuals appears to deviate substantially Page 4 of 5

5 from normal, more formal tests for heteroscedasticity should be performed. Possible tests for this are the Goldfeld- Quandt test when the error term either decreases or increases consistently as the value of the DV increases as shown in the fan shaped plot or the Glejser tests for heteroscedasticity when the error term has small variances at central observations and larger variance at the extremes of the observations as in the bowtie shaped plot (Berry & Feldman, 1985). In cases where skew is present in the IVs, transformation of variables can reduce the heteroscedasticity. CONCLUSION The goal of this article was to raise awareness of the importance of checking assumptions in simple and multiple regression. We focused on four assumptions that were not highly robust to violations, or easily dealt with through design of the study, that researchers could easily check and deal with, and that, in our opinion, appear to carry substantial benefits. We believe that checking these assumptions carry significant benefits for the researcher. Making sure an analysis meets the associated assumptions helps avoid Type I and II errors. Attending to issues such as attenuation due to low reliability, curvilinearity, and non-normality often boosts effect sizes, usually a desirable outcome. Finally, there are many non-parametric statistical techniques available to researchers when the assumptions of a parametric statistical technique is not met. Although these often are somewhat lower in power than parametric techniques, they provide valuable alternatives, and researchers should be familiar with them. References Berry, W. D., & Feldman, S. (1985). Multiple Regression in Practice. Sage University Paper Series on Quantitative Applications in the Social Sciences, series no ). Newbury Park, CA: Sage. Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc. Nunnally, J. C. (1978). Psychometric Theory (2 nd ed.). New York: McGraw Hill. Osborne, J. W., Christensen, W. R., & Gunter, J. (April, 2001). Educational Psychology from a Statistician s Perspective: A Review of the Power and Goodness of Educational Psychology Research. Paper presented at the national meeting of the American Education Research Association (AERA), Seattle, WA. Osborne, J. W. (2001). A new look at outliers and fringeliers: Their effects on statistic accuracy and Type I and Type II error rates. Unpublished manuscript, Department of Educational Research and Leadership and Counselor Education, North Carolina State University. Pedhazur, E. J., (1997). Multiple Regression in Behavioral Research (3 rd ed.). Orlando, FL:Harcourt Brace. Tabachnick, B. G., Fidell, L. S. (1996). Using Multivariate Statistics (3rd ed.). New York: Harper Collins College Publishers Tabachnick, B. G., Fidell, L. S. (2001). Using Multivariate Statistics (4th ed.). Needham Heights, MA: Allyn and Bacon Contact Information: Jason W. Osborne, Ph.D ERLCE, Campus Box 7801 Poe Hall 608, North Carolina State University Raleigh NC (919) Descriptors: Hypothesis Testing; *Regression [Statistics]; Research Methodology; Statistical Studies Citation: Osborne, Jason & Elaine Waters (2002). Four assumptions of multiple regression that researchers should always test. Practical Assessment, Research & Evaluation, 8(2). Available online: Page 5 of 5

Running head: ASSUMPTIONS IN MULTIPLE REGRESSION 1. Assumptions in Multiple Regression: A Tutorial. Dianne L. Ballance ID#

Running head: ASSUMPTIONS IN MULTIPLE REGRESSION 1 Assumptions in Multiple Regression: A Tutorial Dianne L. Ballance ID#00939966 University of Calgary APSY 607 ASSUMPTIONS IN MULTIPLE REGRESSION 2 Assumptions

UNDERSTANDING THE INDEPENDENT-SAMPLES t TEST

UNDERSTANDING The independent-samples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly

Chapter 1 Introduction. 1.1 Introduction

Chapter 1 Introduction 1.1 Introduction 1 1.2 What Is a Monte Carlo Study? 2 1.2.1 Simulating the Rolling of Two Dice 2 1.3 Why Is Monte Carlo Simulation Often Necessary? 4 1.4 What Are Some Typical Situations

Multiple Regression: What Is It?

Multiple Regression Multiple Regression: What Is It? Multiple regression is a collection of techniques in which there are multiple predictors of varying kinds and a single outcome We are interested in

Improving your data transformations: Applying the Box-Cox transformation

A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to the Practical Assessment, Research & Evaluation. Permission is granted to

Simple linear regression

Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

UNDERSTANDING ANALYSIS OF COVARIANCE (ANCOVA)

UNDERSTANDING ANALYSIS OF COVARIANCE () In general, research is conducted for the purpose of explaining the effects of the independent variable on the dependent variable, and the purpose of research design

UNDERSTANDING THE ONE-WAY ANOVA

UNDERSTANDING The One-way Analysis of Variance (ANOVA) is a procedure for testing the hypothesis that K population means are equal, where K >. The One-way ANOVA compares the means of the samples or groups

Multivariate Analysis of Variance (MANOVA)

Multivariate Analysis of Variance (MANOVA) Aaron French, Marcelo Macedo, John Poulsen, Tyler Waterson and Angela Yu Keywords: MANCOVA, special cases, assumptions, further reading, computations Introduction

DISCRIMINANT FUNCTION ANALYSIS (DA)

DISCRIMINANT FUNCTION ANALYSIS (DA) John Poulsen and Aaron French Key words: assumptions, further reading, computations, standardized coefficents, structure matrix, tests of signficance Introduction Discriminant

UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

Statistics. Measurement. Scales of Measurement 7/18/2012

Statistics Measurement Measurement is defined as a set of rules for assigning numbers to represent objects, traits, attributes, or behaviors A variableis something that varies (eye color), a constant does

Estimate a WAIS Full Scale IQ with a score on the International Contest 2009

Estimate a WAIS Full Scale IQ with a score on the International Contest 2009 Xavier Jouve The Cerebrals Society CognIQBlog Although the 2009 Edition of the Cerebrals Society Contest was not intended to

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

Understanding Power and Rules of Thumb for Determining Sample Sizes

Tutorials in Quantitative Methods for Psychology 2007, vol. 3 (2), p. 43 50. Understanding Power and Rules of Thumb for Determining Sample Sizes Carmen R. Wilson VanVoorhis and Betsy L. Morgan University

Missing Data: Part 1 What to Do? Carol B. Thompson Johns Hopkins Biostatistics Center SON Brown Bag 3/20/13

Missing Data: Part 1 What to Do? Carol B. Thompson Johns Hopkins Biostatistics Center SON Brown Bag 3/20/13 Overview Missingness and impact on statistical analysis Missing data assumptions/mechanisms Conventional

Multinomial Logistic Regression

Multinomial Logistic Regression Dr. Jon Starkweather and Dr. Amanda Kay Moske Multinomial logistic regression is used to predict categorical placement in or the probability of category membership on a

II. DISTRIBUTIONS distribution normal distribution. standard scores

Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

Elements of statistics (MATH0487-1)

Elements of statistics (MATH0487-1) Prof. Dr. Dr. K. Van Steen University of Liège, Belgium December 10, 2012 Introduction to Statistics Basic Probability Revisited Sampling Exploratory Data Analysis -

A THEORETICAL COMPARISON OF DATA MASKING TECHNIQUES FOR NUMERICAL MICRODATA

A THEORETICAL COMPARISON OF DATA MASKING TECHNIQUES FOR NUMERICAL MICRODATA Krish Muralidhar University of Kentucky Rathindra Sarathy Oklahoma State University Agency Internal User Unmasked Result Subjects

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.

Module 5: Multiple Regression Analysis

Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College

Applications of Structural Equation Modeling in Social Sciences Research

American International Journal of Contemporary Research Vol. 4 No. 1; January 2014 Applications of Structural Equation Modeling in Social Sciences Research Jackson de Carvalho, PhD Assistant Professor

Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.

Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are

Regression analysis in practice with GRETL

Regression analysis in practice with GRETL Prerequisites You will need the GNU econometrics software GRETL installed on your computer (http://gretl.sourceforge.net/), together with the sample files that

Calculating, Interpreting, and Reporting Estimates of Effect Size (Magnitude of an Effect or the Strength of a Relationship)

1 Calculating, Interpreting, and Reporting Estimates of Effect Size (Magnitude of an Effect or the Strength of a Relationship) I. Authors should report effect sizes in the manuscript and tables when reporting

Introduction to Quantitative Methods

Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................

Canonical Correlation

Chapter 400 Introduction Canonical correlation analysis is the study of the linear relations between two sets of variables. It is the multivariate extension of correlation analysis. Although we will present

Teaching Multivariate Analysis to Business-Major Students

Teaching Multivariate Analysis to Business-Major Students Wing-Keung Wong and Teck-Wong Soon - Kent Ridge, Singapore 1. Introduction During the last two or three decades, multivariate statistical analysis

Understanding and Using Factor Scores: Considerations for the Applied Researcher

A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to the Practical Assessment, Research & Evaluation. Permission is granted to

business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel

POLYNOMIAL AND MULTIPLE REGRESSION. Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model.

Polynomial Regression POLYNOMIAL AND MULTIPLE REGRESSION Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model. It is a form of linear regression

Some Critical Information about SOME Statistical Tests and Measures of Correlation/Association

Some Critical Information about SOME Statistical Tests and Measures of Correlation/Association This information is adapted from and draws heavily on: Sheskin, David J. 2000. Handbook of Parametric and

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

EXPLORATORY DATA ANALYSIS: GETTING TO KNOW YOUR DATA

EXPLORATORY DATA ANALYSIS: GETTING TO KNOW YOUR DATA Michael A. Walega Covance, Inc. INTRODUCTION In broad terms, Exploratory Data Analysis (EDA) can be defined as the numerical and graphical examination

REGRESSION LINES IN STATA

REGRESSION LINES IN STATA THOMAS ELLIOTT 1. Introduction to Regression Regression analysis is about eploring linear relationships between a dependent variable and one or more independent variables. Regression

PROPERTIES OF THE SAMPLE CORRELATION OF THE BIVARIATE LOGNORMAL DISTRIBUTION

PROPERTIES OF THE SAMPLE CORRELATION OF THE BIVARIATE LOGNORMAL DISTRIBUTION Chin-Diew Lai, Department of Statistics, Massey University, New Zealand John C W Rayner, School of Mathematics and Applied Statistics,

Understanding Correlation: Factors That Affect the Size of r

The Journal of Experimental Education, 2006, 74(3), 251 266 Copyright 2006 Heldref Publications Understanding Correlation: Factors That Affect the Size of r LAURA D. GOODWIN NANCY L. LEECH University of

Statistics 2014 Scoring Guidelines

AP Statistics 2014 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home

SPSS: Descriptive and Inferential Statistics. For Windows

For Windows August 2012 Table of Contents Section 1: Summarizing Data...3 1.1 Descriptive Statistics...3 Section 2: Inferential Statistics... 10 2.1 Chi-Square Test... 10 2.2 T tests... 11 2.3 Correlation...

Getting Correct Results from PROC REG

Getting Correct Results from PROC REG Nathaniel Derby, Statis Pro Data Analytics, Seattle, WA ABSTRACT PROC REG, SAS s implementation of linear regression, is often used to fit a line without checking

Chapter 15 Multiple Choice Questions (The answers are provided after the last question.)

Chapter 15 Multiple Choice Questions (The answers are provided after the last question.) 1. What is the median of the following set of scores? 18, 6, 12, 10, 14? a. 10 b. 14 c. 18 d. 12 2. Approximately

Overview of Factor Analysis

Overview of Factor Analysis Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone: (205) 348-4431 Fax: (205) 348-8648 August 1,

Premaster Statistics Tutorial 4 Full solutions

Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for

Variables Control Charts

MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. Variables

UNIVERSITY OF NAIROBI

UNIVERSITY OF NAIROBI MASTERS IN PROJECT PLANNING AND MANAGEMENT NAME: SARU CAROLYNN ELIZABETH REGISTRATION NO: L50/61646/2013 COURSE CODE: LDP 603 COURSE TITLE: RESEARCH METHODS LECTURER: GAKUU CHRISTOPHER

Missing Data. A Typology Of Missing Data. Missing At Random Or Not Missing At Random

[Leeuw, Edith D. de, and Joop Hox. (2008). Missing Data. Encyclopedia of Survey Research Methods. Retrieved from http://sage-ereference.com/survey/article_n298.html] Missing Data An important indicator

Organizing Your Approach to a Data Analysis

Biost/Stat 578 B: Data Analysis Emerson, September 29, 2003 Handout #1 Organizing Your Approach to a Data Analysis The general theme should be to maximize thinking about the data analysis and to minimize

1 SAMPLE SIGN TEST. Non-Parametric Univariate Tests: 1 Sample Sign Test 1. A non-parametric equivalent of the 1 SAMPLE T-TEST.

Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.

Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases:

Profile Analysis Introduction Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases: ) Comparing the same dependent variables

THE SELECTION OF RETURNS FOR AUDIT BY THE IRS. John P. Hiniker, Internal Revenue Service

THE SELECTION OF RETURNS FOR AUDIT BY THE IRS John P. Hiniker, Internal Revenue Service BACKGROUND The Internal Revenue Service, hereafter referred to as the IRS, is responsible for administering the Internal

SPSS Explore procedure

SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stem-and-leaf plots and extensive descriptive statistics. To run the Explore procedure,

Chapter 14: Analyzing Relationships Between Variables

Chapter Outlines for: Frey, L., Botan, C., & Kreps, G. (1999). Investigating communication: An introduction to research methods. (2nd ed.) Boston: Allyn & Bacon. Chapter 14: Analyzing Relationships Between

Module 3: Correlation and Covariance

Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis

Hypothesis Testing - Relationships

- Relationships Session 3 AHX43 (28) 1 Lecture Outline Correlational Research. The Correlation Coefficient. An example. Considerations. One and Two-tailed Tests. Errors. Power. for Relationships AHX43

Mathematics within the Psychology Curriculum

Mathematics within the Psychology Curriculum Statistical Theory and Data Handling Statistical theory and data handling as studied on the GCSE Mathematics syllabus You may have learnt about statistics and

Fairfield Public Schools

Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

Homework 8 Solutions

Math 17, Section 2 Spring 2011 Homework 8 Solutions Assignment Chapter 7: 7.36, 7.40 Chapter 8: 8.14, 8.16, 8.28, 8.36 (a-d), 8.38, 8.62 Chapter 9: 9.4, 9.14 Chapter 7 7.36] a) A scatterplot is given below.

The Assumption(s) of Normality

The Assumption(s) of Normality Copyright 2000, 2011, J. Toby Mordkoff This is very complicated, so I ll provide two versions. At a minimum, you should know the short one. It would be great if you knew

Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

Terminating Sequential Delphi Survey Data Collection

A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to the Practical Assessment, Research & Evaluation. Permission is granted to

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

An Alternative Route to Performance Hypothesis Testing

EDHEC-Risk Institute 393-400 promenade des Anglais 06202 Nice Cedex 3 Tel.: +33 (0)4 93 18 32 53 E-mail: research@edhec-risk.com Web: www.edhec-risk.com An Alternative Route to Performance Hypothesis Testing

Multivariate Normal Distribution

Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

Biostatistics: A QUICK GUIDE TO THE USE AND CHOICE OF GRAPHS AND CHARTS

Biostatistics: A QUICK GUIDE TO THE USE AND CHOICE OF GRAPHS AND CHARTS 1. Introduction, and choosing a graph or chart Graphs and charts provide a powerful way of summarising data and presenting them in

Impact of Skewness on Statistical Power

Modern Applied Science; Vol. 7, No. 8; 013 ISSN 1913-1844 E-ISSN 1913-185 Published by Canadian Center of Science and Education Impact of Skewness on Statistical Power Ötüken Senger 1 1 Kafkas University,

An analysis appropriate for a quantitative outcome and a single quantitative explanatory. 9.1 The model behind linear regression

Chapter 9 Simple Linear Regression An analysis appropriate for a quantitative outcome and a single quantitative explanatory variable. 9.1 The model behind linear regression When we are examining the relationship

Data Analysis. Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) SS Analysis of Experiments - Introduction

Data Analysis Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) Prof. Dr. Dr. h.c. Dieter Rombach Dr. Andreas Jedlitschka SS 2014 Analysis of Experiments - Introduction

Variables and Data A variable contains data about anything we measure. For example; age or gender of the participants or their score on a test.

The Analysis of Research Data The design of any project will determine what sort of statistical tests you should perform on your data and how successful the data analysis will be. For example if you decide

Section 3 Part 1. Relationships between two numerical variables

Section 3 Part 1 Relationships between two numerical variables 1 Relationship between two variables The summary statistics covered in the previous lessons are appropriate for describing a single variable.

Research Variables. Measurement. Scales of Measurement. Chapter 4: Data & the Nature of Measurement

Chapter 4: Data & the Nature of Graziano, Raulin. Research Methods, a Process of Inquiry Presented by Dustin Adams Research Variables Variable Any characteristic that can take more than one form or value.

STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance

Principles of Statistics STA-201-TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis

Statistical Package for the Social Science (SPSS) and Sample Power

Statistical Package for the Social Science (SPSS) and Sample Power Introduction to the Practice of Statistics UF INFORMATION TECHNOLOGY Fall 2016 Authored by: Jose Lorenzo Silva-Lugo, Ph.D. STATISTICAL

Assumptions. Assumptions of linear models. Boxplot. Data exploration. Apply to response variable. Apply to error terms from linear model

Assumptions Assumptions of linear models Apply to response variable within each group if predictor categorical Apply to error terms from linear model check by analysing residuals Normality Homogeneity

Chi-Square Test. Contingency Tables. Contingency Tables. Chi-Square Test for Independence. Chi-Square Tests for Goodnessof-Fit

Chi-Square Tests 15 Chapter Chi-Square Test for Independence Chi-Square Tests for Goodness Uniform Goodness- Poisson Goodness- Goodness Test ECDF Tests (Optional) McGraw-Hill/Irwin Copyright 2009 by The

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

Data Analysis: Describing Data - Descriptive Statistics

WHAT IT IS Return to Table of ontents Descriptive statistics include the numbers, tables, charts, and graphs used to describe, organize, summarize, and present raw data. Descriptive statistics are most

Correlation & Regression, II. Residual Plots. What we like to see: no pattern. Steps in regression analysis (so far)

Steps in regression analysis (so far) Correlation & Regression, II 9.07 4/6/2004 Plot a scatter plot Find the parameters of the best fit regression line, y =a+bx Plot the regression line on the scatter

Correlation. What Is Correlation? Perfect Correlation. Perfect Correlation. Greg C Elvers

Correlation Greg C Elvers What Is Correlation? Correlation is a descriptive statistic that tells you if two variables are related to each other E.g. Is your related to how much you study? When two variables

International Statistical Institute, 56th Session, 2007: Phil Everson

Teaching Regression using American Football Scores Everson, Phil Swarthmore College Department of Mathematics and Statistics 5 College Avenue Swarthmore, PA198, USA E-mail: peverso1@swarthmore.edu 1. Introduction

MODIFIED PARAMETRIC BOOTSTRAP: A ROBUST ALTERNATIVE TO CLASSICAL TEST

MODIFIED PARAMETRIC BOOTSTRAP: A ROBUST ALTERNATIVE TO CLASSICAL TEST Zahayu Md Yusof, Nurul Hanis Harun, Sharipah Sooad Syed Yahaya & Suhaida Abdullah School of Quantitative Sciences College of Arts and

Calculating, Interpreting, and Reporting Cronbach s Alpha Reliability Coefficient for Likert-Type Scales

2003 Midwest Research to Practice Conference in Adult, Continuing, and Community Education Calculating, Interpreting, and Reporting Cronbach s Alpha Reliability Coefficient for Likert-Type Scales Joseph

Simple Regression Theory II 2010 Samuel L. Baker

SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

11 Linear and Quadratic Discriminant Analysis, Logistic Regression, and Partial Least Squares Regression

Frank C Porter and Ilya Narsky: Statistical Analysis Techniques in Particle Physics Chap. c11 2013/9/9 page 221 le-tex 221 11 Linear and Quadratic Discriminant Analysis, Logistic Regression, and Partial

Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables 2

Lesson 4 Part 1 Relationships between two numerical variables 1 Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables

Normality Testing in Excel

Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com

Accurately and Efficiently Measuring Individual Account Credit Risk On Existing Portfolios

Accurately and Efficiently Measuring Individual Account Credit Risk On Existing Portfolios By: Michael Banasiak & By: Daniel Tantum, Ph.D. What Are Statistical Based Behavior Scoring Models And How Are

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance

California University of Pennsylvania Guidelines for New Course Proposals University Course Syllabus Approved: 2/4/13. Department of Psychology

California University of Pennsylvania Guidelines for New Course Proposals University Course Syllabus Approved: 2/4/13 Department of Psychology A. Protocol Course Name: Statistics and Research Methods in

Content Validation and Cut-Score Evaluation for Accuplacer s Sentence Skills Meaning Assessment

RRN 782 Content Validation and Cut-Score Evaluation for Accuplacer s Sentence Skills Meaning Assessment April 2007 Prepared by Keith Wurtz Date: 20070425, Revised: 20070507 SS-ContentValidity-and-CutScores.doc

What Does the Correlation Coefficient Really Tell Us About the Individual?

What Does the Correlation Coefficient Really Tell Us About the Individual? R. C. Gardner and R. W. J. Neufeld Department of Psychology University of Western Ontario ABSTRACT The Pearson product moment

An introduction to Value-at-Risk Learning Curve September 2003

An introduction to Value-at-Risk Learning Curve September 2003 Value-at-Risk The introduction of Value-at-Risk (VaR) as an accepted methodology for quantifying market risk is part of the evolution of risk