Lab Section (Circle) M Tu W Th F Date MEASUREMENTS

Size: px
Start display at page:

Download "Lab Section (Circle) M Tu W Th F Date MEASUREMENTS"

Transcription

1 Name_ Chem 305 Partner_ Lab Section (Circle) M Tu W Th F Date_ MEASUREMENTS Materials: Ice, sodium chloride, metal samples, urine solution, Tums, aspirin tablets Equipment: Hot plate, thermometers, graduated cylinders, weigh boats Purpose: In this lab you will become familiar with some of the equipment commonly used in the chemistry lab. You will use a thermometer to measure temperature, a balance to measure mass, and a graduated cylinder to measure volume. From the measurements of mass and volume, you will determine the density of water and a urine solution made of salt water with food coloring. You will also determine the specific gravity of a urine solution using a hydrometer and your density measurements. It is important that each instrument be used carefully so that your measurements are as accurate as possible. Hazards: All reagents are non-toxic. Use caution with hot plates and boiling water baths. Your instructor will demonstrate the use of balances and accurate reading of volumetric equipment and thermometers. INTRODUCTION: Mass Mass is measurement of how much matter is in a given object or substance. Physicists use the term weight to characterize the force of gravity on matter. In Chemistry 305 you can use the terms weight and mass interchangeably. There are several different balances in the Chemistry 305 laboratory. Some give measurements to 0.01 g while others give measurements to g or g. When using these balances, be sure to record all of the digits on the balance in the measurement. General Directions: 1. Before weighing something, be sure that balance reads zero (0.00g to g). This process is called tareing the balance. 2. Place the object on the balance. Wait until the numbers do not change. 3. Record the mass. Record all of the digits presented by the balance. Never round your mass measurement. Record the numbers directly onto your report sheet. Do not rely on your memory. Don t forget the units! 4. Clean up any spilled materials on or around the balance. 5. Weigh all chemicals in a weighing boat or in a container. Never place chemicals directly on the balance pan. 3-1

2 Volume When careful measurements of volume are required in Chemistry 305, you will use a graduated cylinder. General Directions: 1. In order to obtain an accurate reading, the graduated cylinder must be on a flat surface. Be sure your eye is lined up with the level of the liquid in the graduated cylinder. Sometimes it is easier to see against a black background. 2. You will notice that the liquid forms a curved surface (called a meniscus). When reading the level of the liquid, find the place on the scale that coincides with the bottom of the meniscus. 3. When reading the level of liquid in the cylinder, estimate the volume to the nearest 0.1mL as shown below. The volume in the graduated cylinder above could be read as 41.9 ml, 42.0 ml, or 42.1 ml. Notice, all of these values are reported to the nearest 0.1 ml. Temperature In the Chemistry 305 laboratory, temperature is measured in degrees Celsius (º C) and recorded to the nearest 0.1 degree. General Directions: 1. Hold the thermometer by the attached plastic triangle or with a paper towel to prevent transfer of heat from your hand. 2. When measuring the temperature of a liquid, place the thermometer in the middle of the container up from the bottom and away from the walls and bottom of the container. 3-2

3 3. It takes a while for the thermometer to reach the temperature of the liquid. Carefully observe the temperature and record when the reading no longer changes. 4. The thermometer is marked in Celsius degrees. Estimate the temperature between the marks to the nearest 0.1 º C. This means that all of your temperature measurements should be expressed to the tenths place. For example, 0.5 º C, 13.6 º C, and 99.0 º C are all temperature measurements expressed to the tenths place. PROCEDURES: You will work with one other person in this experiment but you and your partner will make separate measurements. You will record your own and your partner s measurements and then compare results. Report all results, answer all questions, and turn in your report before your leave lab today. I. MASS Part A Mass of Everyday Objects 1. Obtain two small everyday objects (coin, pen, key, etc). Your lab partner should obtain three different objects. 2. Read the general directions above for obtaining the mass of an object. 3. Obtain the mass of each of the objects. Record the mass of each object in the data table below. Do not round your mass measurement. Don t forget the units! 4. Write down the mass of your partner s objects. Don t forget the units! Your Objects Mass Partner s Objects Mass (1) (2) Part B Grams and Milligrams A unit of mass commonly used in the health professions, nutrition, and science is the milligram, abbreviated mg. For example, an Advil tablet (an NSAID ) contains 200 mg of the active ingredient ibuprofen. The milligram is a metric unit: the milli prefix means one thousandth and the gram is the base metric unit of mass. 3-3

4 Fill in the line or circle the appropriate word: 1. Since there are mg in one gram, one should (multiply or divide) by 1000 to convert g to mg. For example a 1.5 g dose of aspirin is equivalent to mg of aspirin. 2. On the other hand, if you wanted to convert mg to g, you would (multiply or divide) by For example, one of the Advil tablets discussed above contains 200. mg of ibuprofen which is equivalent to g ibuprofen. 3. Weigh one aspirin tablet. Record your data in the table below. Read the label on the aspirin bottle and record the mass of active ingredient (aspirin) in each tablet. 4. Weigh one Tums tablet. Record your data in the table below. Read the label on the Tums bottle and record the mass of the active ingredient (calcium carbonate) to 3 sig figs in each tablet. 5. Data Milligrams Tablet Mass of Tablet (g) Mass of Active Ingredient (mg) Aspirin Tums 6. What is the mass of the aspirin tablet in mg? Show your work. 7. What is the mass of the Tums tablet in mg? Show your work. 8. Calculate the percent (by mass) of active ingredient in each of the tablets. Show your work. [ Percent = mass of active ingredient x 100] total mass of tablet 3-4

5 II. TEMPERATURE Record all temperatures to the nearest 0.1º C (Refer to page 2). This means that all of your measurements must have a digit in the tenths place. 1. Fill a medium-sized beaker full of tap water. Place your thermometer in the beaker and record the temperature when it no longer changes. Your partner will also read the temperature, independently. In the spaces provided below, record your own reading and that of your partner. Be sure to include your units. Your reading: Partner: 2. Fill a mL beaker half-full of deionized water. Place it on a hot-plate. Heat the water to boiling and record the temperature of the boiling water. Do NOT let the thermometer touch the bottom of the beaker! In the spaces provided below, record your own reading and that of your partner. Be sure to include your units. Your reading: Partner: 3. While waiting for the water to boil, fill your ml beaker 3/4-full with ice and add 5 ml of water. Stir gently with the thermometer for a while, and record the lowest temperature obtained (with the thermometer bulb in the middle of the mixture). Your reading: Partner: 4. Together with your partner, weigh out approximately 10 grams of sodium chloride. To do this, obtain the mass of a weighing boat and record the mass. Then add about 10 g of sodium chloride and record the mass again. The difference in the two masses is the mass of the sodium chloride. This procedure is called weighing by difference. Note: It is not necessary (or even desirable) to weigh out exactly 10 grams, but you must be accurate in your measurement! Don t forget the units! Mass of weigh boat + NaCl Mass of weigh boat Mass of NaCl 5. Now add the NaCl to the ice-water mixture, stir gently with a stirring rod for several minutes until the NaCl dissolves, then read and record the lowest temperature observed. Your reading: Partner: 3-5

6 III. DENSITY In this part of the experiment you and your partner will determine the density of water and the density of a solid metal object. Density is an easily measured physical property of a substance, often used for identifying materials Density = mass (in grams = m volume (in ml) v Example: A section of a femur bone weighs g and occupies a volume of 13.5 ml. The density of the bone fragment would be calculated as follows: D = m = g = 1.92 g V 13.5 ml ml A. Density of water 1. One of the partners will weigh a clean dry 25 ml graduated cylinder and record its mass on line b). 2. Fill the graduated cylinder with deionized water to about 20 ml and record the volume to 0.1 ml on line d). This means that your volume measurement will have a digit in the tenths place. 3. Weigh the cylinder again on the same balance and record the mass on line a). Be sure to record units. 4. Calculate the density of the water, taking care to properly account for units and sig figs. 5. The other partner will repeat the experiment using 10 ml of deionized water in a 10mL graduated cylinder. 20 ml trial 10 ml trial a) Mass of graduated cylinder + water b) Mass of empty graduated cylinder c) Mass of water* d) Volume (read from cylinder) e) Density of water* *Show the setup for both calculations below. Don t forget to include all units. Watch your sig figs! Box your final answers. 3-6

7 B. Density of a solid metal object 1. Obtain a solid metal object. Record the type of metal in the table below. Weigh the object and record the mass. 2. To determine the volume of the object, fill a 25 ml graduated cylinder with water to about 15 ml and record the volume to 0.1 ml. Tip the graduated cylinder sideways and slowly and carefully slip the solid into the graduated cylinder. Record the new volume. The difference in the volume is the volume of the metal object. 3. Each partner should select a different metal object made of a different metal. Check each other as you do your measurement. Record all results. Type of Metal a) Mass of metal object b) Volume in cylinder with metal inside c) Volume in cylinder before inserting metal d) Volume of metal object (by subtraction)* e) Density of metal object* *Show the setup for both calculations below. Don t forget to include all units. Watch your sig figs! Box your final answers. Some Typical Density Values (g/cm 3 ): Steel: 7.87, Brass: 8.6, Al: 2.7, Cu:

8 C. Specific Gravity A measurement that is closely related to density is specific gravity. The specific gravity of a liquid can characterize the amount of dissolved solids in a solution. The specific gravity of a liquid is a comparison of the density of that liquid with the density of water, which is 1.00 g/ml (4 C). The formula for determining the specific gravity of a substance is shown below. Notice that the units cancel making specific gravity unit-less. This is one of the few measurements in chemistry without any units. Specific Gravity = Density of substance (g/ml). Density of water at the same temperature (g/ml) Specific gravity measurements are used in many fields including winemaking, automotive technology, athletics, and medicine. In winemaking, the stages of fermentation are followed by measuring the specific gravity of the wine. The amount of dissolved sugar and/or alcohol in wine can be characterized by specific gravity measurements. In medicine, the amount of dissolved solids in urine is indicated by a specific gravity measurement. A high specific gravity of urine could indicate dehydration, improper functioning of the kidneys, glucose and/or protein in the urine, etc. The specific gravity of a fluid is determined by using a hydrometer. Small hydrometers (urinometers) are used in medical labs to determine the specific gravity of urine. The specific gravity of urine can be approximated using special test strips. A hydrometer placed in liquid is spun slowly to keep it from sticking to the sides of the container. The scale on the hydrometer is read at the lowest (center) point of the meniscus of the fluid. Read the specific gravity on the hydrometer to

9 1. Determine the specific gravity of the urine by first determining its density. Weigh a clean and dry 25 ml graduated cylinder and record the mass. Fill with the urine solution to about 20 ml and record the volume to the nearest 0.1 ml. Be sure to record the units. 2. Weigh the graduated cylinder again and record the mass. (a) Mass of graduated cylinder + urine (b) Mass of empty graduated cylinder (c) Mass of urine (d) Volume of urine 3. Calculate the density of the urine. Watch your sig figs and don t forget the units. Show your calculation set-up and work below (e) Density of urine 4. Calculate the specific gravity of the urine using the density of the urine and the density of water (0.998g/mL). Show your calculation set-up and work below. Specific gravity of urine 5. Use a hydrometer to determine the specific gravity of the urine as demonstrated by your instructor. (Fill a 100 ml graduated cylinder to ml of urine. Gently place the hydrometer into the graduated cylinder and gently spin it in the urine. Read the hydrometer at the point where the meniscus interfaces with the hydrometer scale.) Specific gravity of urine (hydrometer reading) 3-9

10 D. Density and Specific Gravity Problems 1. Ammonium chloride is used as an expectorant in cough medicine. It has a density of 1.53 g/cm 3. What is the mass of 26.0 L of this substance in kg? 2. Jacy bought a gold necklace weighing 21.3 grams from a flea market. She filled a 10mL graduated cylinder with water to the 5.0 ml mark and dropped her necklace in. The level in the graduated cylinder rose to 7.4mL Is her necklace real or fake? If not, identify the possible composition of her necklace. Gold: 19.3 g/cm 3 Copper: 8.86 g/cm 3 Bronze: 9.87 g/cm 3 3. Diesel fuel has a density of 0.839g/mL. What is the volume, in gallons, of 2.3 kg of diesel? [ 1 gallon = 3.79 L] 3-10

11 3-11

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

SEPARATION OF A MIXTURE OF SUBSTANCES LAB SEPARATION OF A MIXTURE OF SUBSTANCES LAB Purpose: Every chemical has a set of defined physical properties, and when combined they present a unique fingerprint for that chemical. When chemicals are present

More information

Mixtures and Pure Substances

Mixtures and Pure Substances Unit 2 Mixtures and Pure Substances Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances. They

More information

Physical Properties of a Pure Substance, Water

Physical Properties of a Pure Substance, Water Physical Properties of a Pure Substance, Water The chemical and physical properties of a substance characterize it as a unique substance, and the determination of these properties can often allow one to

More information

DETERMINING THE DENSITY OF LIQUIDS & SOLIDS

DETERMINING THE DENSITY OF LIQUIDS & SOLIDS DETERMINING THE DENSITY OF LIQUIDS & SOLIDS 17 Density, like color, odor, melting point, and boiling point, is a physical property of matter. Therefore, density may be used in identifying matter. Density

More information

Measurement and Calibration

Measurement and Calibration Adapted from: H. A. Neidig and J. N. Spencer Modular Laboratory Program in Chemistry Thompson Learning;, University of Pittsburgh Chemistry 0110 Laboratory Manual, 1998. Purpose To gain an understanding

More information

PHYSICAL SEPARATION TECHNIQUES. Introduction

PHYSICAL SEPARATION TECHNIQUES. Introduction PHYSICAL SEPARATION TECHNIQUES Lab #2 Introduction When two or more substances, that do not react chemically, are blended together, the result is a mixture in which each component retains its individual

More information

Experiment 12- Classification of Matter Experiment

Experiment 12- Classification of Matter Experiment Experiment 12- Classification of Matter Experiment Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances.

More information

The volume of a penny will be calculated from its mass and density.

The volume of a penny will be calculated from its mass and density. Measurement and Density In science a key concern is the quantities involved in chemical processes. These amounts can be directly measured or calculated from other measurements. A measurement consists of

More information

Recovery of Elemental Copper from Copper (II) Nitrate

Recovery of Elemental Copper from Copper (II) Nitrate Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform

More information

Experiment 1: Measurement and Density

Experiment 1: Measurement and Density Experiment 1: Measurement and Density Chemistry 140 Learning Objectives Become familiar with laboratory equipment and glassware Begin to see the link between measurement and chemical knowledge Begin to

More information

Hands-On Labs SM-1 Lab Manual

Hands-On Labs SM-1 Lab Manual EXPERIMENT 4: Separation of a Mixture of Solids Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.

More information

UNIT (1) MEASUREMENTS IN CHEMISTRY

UNIT (1) MEASUREMENTS IN CHEMISTRY UNIT (1) MEASUREMENTS IN CHEMISTRY Measurements are part of our daily lives. We measure our weights, driving distances, and gallons of gasoline. As a health professional you might measure blood pressure,

More information

Dissolving of sodium hydroxide generates heat. Take care in handling the dilution container.

Dissolving of sodium hydroxide generates heat. Take care in handling the dilution container. TITRATION: STANDARDIZATION OF A BASE AND ANALYSIS OF STOMACH ANTACID TABLETS 2009, 1996, 1973 by David A. Katz. All rights reserved. Reproduction permitted for education use provided original copyright

More information

10 g 5 g? 10 g 5 g. 10 g 5 g. scale

10 g 5 g? 10 g 5 g. 10 g 5 g. scale The International System of Units, or the SI Units Vs. Honors Chem 1 LENGTH In the SI, the base unit of length is the Meter. Prefixes identify additional units of length, based on the meter. Smaller than

More information

Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared!

Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared! Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared! Introduction Vitamin C (also known as ascorbic acid, HC6H7O6) is a necessary ingredient

More information

Experiment 6 Coffee-cup Calorimetry

Experiment 6 Coffee-cup Calorimetry 6-1 Experiment 6 Coffee-cup Calorimetry Introduction: Chemical reactions involve the release or consumption of energy, usually in the form of heat. Heat is measured in the energy units, Joules (J), defined

More information

COMMON LABORATORY APPARATUS

COMMON LABORATORY APPARATUS COMMON LABORATORY APPARATUS Beakers are useful as a reaction container or to hold liquid or solid samples. They are also used to catch liquids from titrations and filtrates from filtering operations. Bunsen

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL SUPPLEMENTARY MATERIAL (Student Instructions) Determination of the Formula of a Hydrate A Greener Approach Objectives To experimentally determine the formula of a hydrate salt. To learn to think in terms

More information

Organic Chemistry Calculations

Organic Chemistry Calculations Organic Chemistry Calculations There are three basic units for measurement in the organic laboratory mass, volume, and number, measured in moles. Most of the other types of measurements are combinations

More information

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration. 81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum

More information

PART I: PREPARATION OF SOLUTIONS AND STANDARDIZATION OF A BASE

PART I: PREPARATION OF SOLUTIONS AND STANDARDIZATION OF A BASE TITRATION: STANDARDIZATION OF A BASE AND ANALYSIS OF STOMACH ANTACID TABLETS 2009, 1996, 1973 by David A. Katz. All rights reserved. Reproduction permitted for education use provided original copyright

More information

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point.. Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set

More information

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another

More information

Solubility Curve of Sugar in Water

Solubility Curve of Sugar in Water Solubility Curve of Sugar in Water INTRODUCTION Solutions are homogeneous mixtures of solvents (the larger volume of the mixture) and solutes (the smaller volume of the mixture). For example, a hot chocolate

More information

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT --------------------------------------------------------------------------------------------------------------------------------------------

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

Performing Calculatons

Performing Calculatons Performing Calculatons There are three basic units for measurement in the organic laboratory mass, volume, and number, measured in moles. Most of the other types of measurements are combinations of them,

More information

Density Determinations

Density Determinations CHEM 121L General Chemistry Laboratory Revision 3.1 Density Determinations To learn about intensive physical properties. To learn how to measure the density of substances. To learn how to characterize

More information

Apr 17, 2000 LAB MANUAL 1302.0. 1302 PARTICLE SIZE ANALYSIS OF SOILS AASHTO Designation T 88 (Mn/DOT Modified)

Apr 17, 2000 LAB MANUAL 1302.0. 1302 PARTICLE SIZE ANALYSIS OF SOILS AASHTO Designation T 88 (Mn/DOT Modified) Apr 17, 2000 LAB MANUAL 1302.0 1302 PARTICLE SIZE ANALYSIS OF SOILS AASHTO Designation T 88 (Mn/DOT Modified) 1302.1 SCOPE This method describes a procedure for the quantitative determination of the distribution

More information

Chem 100 Lab Experiment #9 - ACID/BASE INDICATORS

Chem 100 Lab Experiment #9 - ACID/BASE INDICATORS Lab #9 Chem 100 Lab Experiment #9 - ACID/BASE INDICATORS Name: Purpose: In this laboratory we will investigate how indicators can be used to test for the presence of acids or bases in a number of common

More information

THE ACTIVITY OF LACTASE

THE ACTIVITY OF LACTASE THE ACTIVITY OF LACTASE Lab VIS-8 From Juniata College Science in Motion Enzymes are protein molecules which act to catalyze the chemical reactions in living things. These chemical reactions make up the

More information

Determination of a Chemical Formula

Determination of a Chemical Formula 1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl

More information

AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996 by David A. Katz. All rights reserved

AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996 by David A. Katz. All rights reserved AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996 by David A. Katz. All rights reserved INTRODUCTION One of the goals of the ancient alchemists was to convert base metals into gold. Although

More information

The Empirical Formula of a Compound

The Empirical Formula of a Compound The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

More information

Acid Base Titrations

Acid Base Titrations Acid Base Titrations Introduction A common question chemists have to answer is how much of something is present in a sample or a product. If the product contains an acid or base, this question is usually

More information

Experiment 5 Preparation of Cyclohexene

Experiment 5 Preparation of Cyclohexene Experiment 5 Preparation of yclohexene In this experiment we will prepare cyclohexene from cyclohexanol using an acid catalyzed dehydration reaction. We will use the cyclohexanol that we purified in our

More information

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14 STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14 OBJECTIVE The objective of this experiment will be the standardization of sodium hydroxide using potassium hydrogen phthalate by the titration

More information

Calcium Analysis by EDTA Titration

Calcium Analysis by EDTA Titration Calcium Analysis by EDTA Titration ne of the factors that establish the quality of a water supply is its degree of hardness. The hardness of water is defined in terms of its content of calcium and magnesium

More information

EXPERIMENT 12: Empirical Formula of a Compound

EXPERIMENT 12: Empirical Formula of a Compound EXPERIMENT 12: Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

Determination of Molar Mass by Boiling Point Elevation of Urea Solution

Determination of Molar Mass by Boiling Point Elevation of Urea Solution Determination of Molar Mass by Boiling Point Elevation of Urea Solution CHRISTIAN E. MADU, PhD AND BASSAM ATTILI, PhD COLLIN COLLEGE CHEMISTRY DEPARTMENT Purpose of the Experiment Determine the boiling

More information

What s in a Mole? Molar Mass

What s in a Mole? Molar Mass LESSON 10 What s in a Mole? Molar Mass OVERVIEW Key Ideas Lesson Type Lab: Groups of 4 Chemists compare moles of substances rather than masses because moles are a way of counting atoms. When considering

More information

Synthesis of Aspirin and Oil of Wintergreen

Synthesis of Aspirin and Oil of Wintergreen Austin Peay State University Department of hemistry hem 1121 autions Purpose Introduction Acetic Anhydride corrosive and a lachrymator all transfers should be done in the vented fume hood Methanol, Ethanol

More information

Experiment 7: Titration of an Antacid

Experiment 7: Titration of an Antacid 1 Experiment 7: Titration of an Antacid Objective: In this experiment, you will standardize a solution of base using the analytical technique known as titration. Using this standardized solution, you will

More information

Chapter 3 Student Reading

Chapter 3 Student Reading Chapter 3 Student Reading If you hold a solid piece of lead or iron in your hand, it feels heavy for its size. If you hold the same size piece of balsa wood or plastic, it feels light for its size. The

More information

Physical and Chemical Properties and Changes

Physical and Chemical Properties and Changes Physical and Chemical Properties and Changes An understanding of material things requires an understanding of the physical and chemical characteristics of matter. A few planned experiments can help you

More information

PART I SIEVE ANALYSIS OF MATERIAL RETAINED ON THE 425 M (NO. 40) SIEVE

PART I SIEVE ANALYSIS OF MATERIAL RETAINED ON THE 425 M (NO. 40) SIEVE Test Procedure for PARTICLE SIZE ANALYSIS OF SOILS TxDOT Designation: Tex-110-E Effective Date: August 1999 1. SCOPE 1.1 This method covers the quantitative determination of the distribution of particle

More information

The Molar Mass of a Gas

The Molar Mass of a Gas The Molar Mass of a Gas Goals The purpose of this experiment is to determine the number of grams per mole of a gas by measuring the pressure, volume, temperature, and mass of a sample. Terms to Know Molar

More information

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid Purpose: a) To purify samples of organic compounds that are solids at room temperature b) To dissociate the impure sample in the minimum

More information

PREPARATION AND PROPERTIES OF A SOAP

PREPARATION AND PROPERTIES OF A SOAP (adapted from Blackburn et al., Laboratory Manual to Accompany World of Chemistry, 2 nd ed., (1996) Saunders College Publishing: Fort Worth) Purpose: To prepare a sample of soap and to examine its properties.

More information

Eighth Grade, Density To Float or Not to Float? 2004 Colorado Unit Writing Project 1

Eighth Grade, Density To Float or Not to Float? 2004 Colorado Unit Writing Project 1 Density To Float or Not to Float? That is the Question! Grade Level or Special Area: Eighth Grade Science Written by: Aida Peterson, Clear Lake Middle School, Denver, Colorado Length of Unit: Twelve lessons

More information

Sample Questions Chapter 2. Stoker

Sample Questions Chapter 2. Stoker Sample Questions Chapter 2. Stoker 1. The mathematical meaning associated with the metric system prefixes centi, milli, and micro is, respectively, A) 2, 4, and 6. B) 2, 3, and 6. C) 3, 6, and 9. D) 3,

More information

To measure the solubility of a salt in water over a range of temperatures and to construct a graph representing the salt solubility.

To measure the solubility of a salt in water over a range of temperatures and to construct a graph representing the salt solubility. THE SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES 2007, 1995, 1991 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included. OBJECTIVE To measure

More information

EXPERIMENT 10 Chemistry 110. Solutions Part 2 ACIDS, BASES, AND ELECTROLYTES

EXPERIMENT 10 Chemistry 110. Solutions Part 2 ACIDS, BASES, AND ELECTROLYTES EXPERIMENT 10 Chemistry 110 Solutions Part 2 ACIDS, BASES, AND ELECTROLYTES PURPOSE: The purpose of this experiment is to determine the properties of solutions of acids, bases and electrolytes. Students

More information

Experiment 13: Determination of Molecular Weight by Freezing Point Depression

Experiment 13: Determination of Molecular Weight by Freezing Point Depression 1 Experiment 13: Determination of Molecular Weight by Freezing Point Depression Objective: In this experiment, you will determine the molecular weight of a compound by measuring the freezing point of a

More information

Experiment 8 Synthesis of Aspirin

Experiment 8 Synthesis of Aspirin Experiment 8 Synthesis of Aspirin Aspirin is an effective analgesic (pain reliever), antipyretic (fever reducer) and anti-inflammatory agent and is one of the most widely used non-prescription drugs. The

More information

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

More information

1. The Determination of Boiling Point

1. The Determination of Boiling Point 1. The Determination of Boiling Point Objective In this experiment, you will first check your thermometer for errors by determining the temperature of two stable equilibrium systems. You will then use

More information

The Properties of Water (Instruction Sheet)

The Properties of Water (Instruction Sheet) The Properties of Water (Instruction Sheet) Property : High Polarity Activity #1 Surface Tension: PILE IT ON. Materials: 1 DRY penny, 1 eye dropper, water. 1. Make sure the penny is dry. 2. Begin by estimating

More information

Solutions: Molarity. A. Introduction

Solutions: Molarity. A. Introduction Solutions: Molarity. A. Introduction... 1 B. Molarity... 1 C. Making molar solutions... 2 D. Using molar solutions... 4 E. Other mole-based concentration units [optional]... 6 F. Answers... 7 A. Introduction

More information

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction General Chemistry I (FC, 09-10) Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant, does not

More information

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB Purpose: Most ionic compounds are considered by chemists to be salts and many of these are water soluble. In this lab, you will determine the solubility,

More information

The Analytical Balance

The Analytical Balance Chemistry 119: Experiment 1 The Analytical Balance Operation of the Single-Pan Analytical Balance Receive instruction from your teaching assistant concerning the proper operation of the Sartorius BP 210S

More information

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT -----------------------------------------------------------------------------------------------------------------------------

More information

Chapter 5, Lesson 3 Why Does Water Dissolve Salt?

Chapter 5, Lesson 3 Why Does Water Dissolve Salt? Chapter 5, Lesson 3 Why Does Water Dissolve Salt? Key Concepts The polarity of water molecules enables water to dissolve many ionically bonded substances. Salt (sodium chloride) is made from positive sodium

More information

Experiment 3 Limiting Reactants

Experiment 3 Limiting Reactants 3-1 Experiment 3 Limiting Reactants Introduction: Most chemical reactions require two or more reactants. Typically, one of the reactants is used up before the other, at which time the reaction stops. The

More information

Determining Equivalent Weight by Copper Electrolysis

Determining Equivalent Weight by Copper Electrolysis Purpose The purpose of this experiment is to determine the equivalent mass of copper based on change in the mass of a copper electrode and the volume of hydrogen gas generated during an electrolysis reaction.

More information

Austin Peay State University Department of Chemistry CHEM 1111. Empirical Formula of a Compound

Austin Peay State University Department of Chemistry CHEM 1111. Empirical Formula of a Compound Cautions Magnesium ribbon is flammable. Nitric acid (HNO 3 ) is toxic, corrosive and contact with eyes or skin may cause severe burns. Ammonia gas (NH 3 ) is toxic and harmful. Hot ceramic crucibles and

More information

Activity Sheets Enzymes and Their Functions

Activity Sheets Enzymes and Their Functions Name: Date: Activity Sheets Enzymes and Their Functions amylase What are Enzymes? starch glucose Enzymes are compounds that assist chemical reactions by increasing the rate at which they occur. For example,

More information

Carolina s Solution Preparation Manual

Carolina s Solution Preparation Manual 84-1201 Carolina s Solution Preparation Manual Instructions Carolina Biological Supply Company has created this reference manual to enable you to prepare solutions. Although many types of solutions may

More information

Three Methods for Calculating the Buoyant Force Gleue: Physics

Three Methods for Calculating the Buoyant Force Gleue: Physics Three Methods for Calculating the Buoyant Force Gleue: Physics Name Hr. The Buoyant Force (F b ) is the apparent loss of weight for an object submerged in a fluid. For example if you have an object immersed

More information

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND #3. Acid - Base Titrations 27 EXPERIMENT 3. ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND Carbonate Equilibria In this experiment a solution of hydrochloric

More information

Unit 2: Quantities in Chemistry

Unit 2: Quantities in Chemistry Mass, Moles, & Molar Mass Relative quantities of isotopes in a natural occurring element (%) E.g. Carbon has 2 isotopes C-12 and C-13. Of Carbon s two isotopes, there is 98.9% C-12 and 11.1% C-13. Find

More information

EXERCISE # 1.Metric Measurement & Scientific Notation

EXERCISE # 1.Metric Measurement & Scientific Notation EXERCISE # 1.Metric Measurement & Scientific Notation Student Learning Outcomes At the completion of this exercise, students will be able to learn: 1. How to use scientific notation 2. Discuss the importance

More information

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1. What is a hydrocarbon? 2. What products form in the complete combustion of a hydrocarbon? 3. Combustion is an exothermic reaction. What

More information

Partner: Jack 17 November 2011. Determination of the Molar Mass of Volatile Liquids

Partner: Jack 17 November 2011. Determination of the Molar Mass of Volatile Liquids Partner: Jack 17 November 2011 Determination of the Molar Mass of Volatile Liquids Purpose: The purpose of this experiment is to determine the molar mass of three volatile liquids. The liquid is vaporized

More information

Experiment 4 The Relationship of Density and Molarity of an Aqueous Salt Solution

Experiment 4 The Relationship of Density and Molarity of an Aqueous Salt Solution Experiment 4 The Relationship of Density and Molarity of an Aqueous Salt Solution Purpose: The purpose of this experiment is to investigate the relationship between the concentration of an aqueous salt

More information

Chapter 2 Measurement and Problem Solving

Chapter 2 Measurement and Problem Solving Introductory Chemistry, 3 rd Edition Nivaldo Tro Measurement and Problem Solving Graph of global Temperature rise in 20 th Century. Cover page Opposite page 11. Roy Kennedy Massachusetts Bay Community

More information

CHAPTER 2: MEASUREMENT AND PROBLEM SOLVING

CHAPTER 2: MEASUREMENT AND PROBLEM SOLVING CHAPTER 2: MEASUREMENT AND PROBLEM SOLVING Problems: 1-64, 69-88, 91-120, 123-124 2.1 Measuring Global Temperatures measurement: a number with attached units When scientists collect data, it is important

More information

Taking Apart the Pieces

Taking Apart the Pieces Lab 4 Taking Apart the Pieces How does starting your morning out right relate to relief from a headache? I t is a lazy Saturday morning and you ve just awakened to your favorite cereal Morning Trails and

More information

Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES

Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES The learning objectives of this experiment are to explore the relationship between the temperature and vapor pressure of water. determine the molar

More information

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap Introduction A soap is the sodium or potassium salt of a long-chain fatty acid. The fatty acid usually contains 12 to 18 carbon atoms.

More information

Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide.

Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide. The Empirical Formula of a Copper Oxide Reading assignment: Chang, Chemistry 10 th edition, pp. 55-58. Goals The reaction of hydrogen gas with a copper oxide compound will be studied quantitatively. By

More information

ISOLATION OF CAFFEINE FROM TEA

ISOLATION OF CAFFEINE FROM TEA ISLATIN F CAFFEINE FRM TEA Introduction In this experiment, caffeine is isolated from tealeaves. The chief problem with the isolation is that caffeine does not exist alone in the tealeaves, but other natural

More information

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole Topic 4 National Chemistry Summary Notes Formulae, Equations, Balancing Equations and The Mole LI 1 The chemical formula of a covalent molecular compound tells us the number of atoms of each element present

More information

Isolation of Caffeine from Tea

Isolation of Caffeine from Tea Isolation of Caffeine from Tea Introduction A number of interesting, biologically active compounds have been isolated from plants. Isolating some of these natural products, as they are called, can require

More information

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer Titration of a Diprotic Acid: Identifying an Unknown Computer 25 A diprotic acid is an acid that yields two H + ions per acid molecule. Examples of diprotic acids are sulfuric acid, H 2 SO 4, and carbonic

More information

Experiment #10: Liquids, Liquid Mixtures and Solutions

Experiment #10: Liquids, Liquid Mixtures and Solutions Experiment #10: Liquids, Liquid Mixtures and Solutions Objectives: This experiment is a broad survey of the physical properties of liquids. We will investigate solvent/solute mixtures. We will study and

More information

Separation of Dyes by Paper Chromatography

Separation of Dyes by Paper Chromatography Cautions: The FD&C food dyes used are concentrated and may stain clothing and skin. Do not ingest any of the food dyes or food samples used in this lab. Purpose: The purpose of this experiment is to determine

More information

Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle

Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle 1 Purpose 1. To determine the density of a fluid, such as water, by measurement of its mass when

More information

Chapter 1: Chemistry: Measurements and Methods

Chapter 1: Chemistry: Measurements and Methods Chapter 1: Chemistry: Measurements and Methods 1.1 The Discovery Process o Chemistry - The study of matter o Matter - Anything that has mass and occupies space, the stuff that things are made of. This

More information

How do scientists collect and analyze data?

How do scientists collect and analyze data? EXERCISE 1 Name How do scientists collect and analyze data? Objectives After completing this exercise, you should be able to: identify the names and functions of the laboratory items on display in the

More information

Density Lab. If you get stuck or are uncertain, please ask questions and/or refer to the hints at the end of the lab. Name: Section: Due Date:

Density Lab. If you get stuck or are uncertain, please ask questions and/or refer to the hints at the end of the lab. Name: Section: Due Date: Name: Section: Due Date: Lab 01B-1 If you get stuck or are uncertain, please ask questions and/or refer to the hints at the end of the lab. Density Lab Density is an important concept in oceanography,

More information

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Introduction Many metals react with acids to form hydrogen gas. In this experiment, you will use the reactions

More information

Determining the Quantity of Iron in a Vitamin Tablet. Evaluation copy

Determining the Quantity of Iron in a Vitamin Tablet. Evaluation copy Determining the Quantity of Iron in a Vitamin Tablet Computer 34 As biochemical research becomes more sophisticated, we are learning more about the role of metallic elements in the human body. For example,

More information

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER Chemistry 111 Lab: Synthesis of a Copper Complex Page H-1 SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER In this experiment you will synthesize a compound by adding NH 3 to a concentrated

More information

HYDRATES 2009 by David A. Katz. All Rights reserved. Reproduction permitted for education use provided original copyright is included.

HYDRATES 2009 by David A. Katz. All Rights reserved. Reproduction permitted for education use provided original copyright is included. HYDRATES 2009 by David A. Katz. All Rights reserved. Reproduction permitted for education use provided original copyright is included. OBJECTIVE In this experiment, the properties of a hydrated compound

More information

Warm-Up 9/9. 1. Define the term matter. 2. Name something in this room that is not matter.

Warm-Up 9/9. 1. Define the term matter. 2. Name something in this room that is not matter. Warm-Up 9/9 1. Define the term matter. 2. Name something in this room that is not matter. Warm-Up 9/16 1. List the three most important rules of lab safety. 2. Would you classify jello as a solid or a

More information

Vitamin C Content of Fruit Juice

Vitamin C Content of Fruit Juice 1 Vitamin C Content of Fruit Juice Introduction Vitamin C Vitamins are organic compounds that have important biological functions. For instance, in humans they enable a variety of enzymes in the body to

More information

Chapter 1 Chemistry: The Study of Change

Chapter 1 Chemistry: The Study of Change Chapter 1 Chemistry: The Study of Change This introductory chapter tells the student why he/she should have interest in studying chemistry. Upon completion of this chapter, the student should be able to:

More information

LAB #3: MEASURING SPECIFIC GRAVITY AND DENSITY. Set-up and Materials for Experiment

LAB #3: MEASURING SPECIFIC GRAVITY AND DENSITY. Set-up and Materials for Experiment Set-up and Materials for Experiment 1 OVERVIEW The mass density of a substance is a measure of the mass that that substance contains in a given volume. Mathematically is written: ρ = m V ( Density = Volume

More information