Vibration, Waves, & Sound Test Review

Size: px
Start display at page:

Download "Vibration, Waves, & Sound Test Review"

Transcription

1 Vibration, Wave, & Sound Tet Review 1. Lit variable that affect the wing of a pendulum. See Pendulum Lab 2. Define the period of a pendulum. See Reading Quetion 3. Draw a tranvere wave and label the cret, amplitude, wavelength, and trough. See Wave Note 4. Draw a longitudinal wave and label the compreion and rarefaction. See Vibration & Wave Reading Quetion 5. Define wave peed in term of wavelength and frequency. See Wave Note 6. What do wave peed, wavelength, and frequency of a ound depend upon? See Wave Note 7. Define mechanical and electromagnetic wave. Give example. See Wave Note 8. Decribe the Doppler effect. See Doppler Effect Note 9. Give the equation for the Doppler effect and how to ue it. See Doppler Effect Note 10. Be able to determine the peed of a plane from the hock wave it create. See Workheet on the back of Loudne and Intenity 11. Define compreion and rarefaction. See Vibration & Wave Reading Quetion 12. What are the frequencie of AM and FM tation? See Sound Reading Quetion 13. What are the two poible unit of frequency? See Vibration & Wave Quetion 14. What type of a wave i a ound wave? See Sound Reading Quetion 15. What are the limit of human hearing? See Sound Reading Quetion 16. Define infraonic and ultraonic. See Sound Reading Quetion 17. What media tranfer ound the quicket? See Sound Reading Quetion 18. Define echo and reverberation. See Sound Reading Quetion 19. Decribe the refraction ound. See Sound Reading Quetion 20. How much energy do ound wave have? See Sound Reading Quetion 21. What happen to ound energy? See Sound Reading Quetion 22. What i a forced vibration? See Sound Reading Quetion 23. What i natural frequency? See Sound Reading Quetion 24. What i reonance? See Sound Reading Quetion 25. Decribe what happened to the Tacoma Narrow Bridge. You have to remember thi. 26. Define interference. See Sound Reading Quetion 27. Define beat. See Sound Reading Quetion 28. Define elaticity. See Sound Reading Quetion 29. How doe a radio wave differ from a ound wave? See Sound Reading Quetion 30. Decribe how you ued a reonance tube to meaure the peed ound. See Sound Lab 31. Decribe what tuning fork do to the urrounding medium. See Sound Lab 32. Decribe how to ue an echo to meaure the peed ound. See Sound Lab 33. Decribe how the computerized verion of a high pitch ound differ from the computerized verion of a low pitch ound. See Sound Lab 34. Decribe how the computerized verion of an orchetra ound different from a tuning fork. See Sound Lab 35. What medium conduct ound the fatet? See Sound Reading Quetion 36. Which ound travel further, high pitch or low pitch? See Sound Reading Quetion 37. Define intenity. See Loudne Note 38. Give a formula for ound intenity with appropriate unit. See Loudne Note 39. Define loudne. See Loudne Note 40. What i the threhold of hearing? See Loudne Note 41. Give the formula with appropriate unit for relative intenity. See Loudne Note 42. Why i relative intenity a logarithmic cale? See Loudne Note 43. Determine relative intenity given ound power and ditance from ource. See Loudne Note 44. Determine intenity given relative intenity. See Loudne Note 45. Draw a caled hock wave for a plane traveling fater than the peed ound. See workheet on back of Loudne & Intenity 46. Determine the peed of a uperonic plane from a caled drawing. See workheet on back of Loudne & Intenity 47. Give a formula for oberved frequency baed on the Doppler effect with appropriate uage. See Doppler Effect Note 48. Determine oberved frequencie, ource frequencie, oberver velocity, and ource velocity given the other 3 variable. See Doppler Effect Note Tet Review Problem (Ue 340 m/ a the peed ound in air.) 1. A wave ha a peed of 240 m/ and a wavelength of 3.2 m. What are the frequency and period of the wave? f = v λ = 24.0m / 3.2m = 75Hz T = 1 f = 1 75Hz = 0.013ec

2 2. A piano emit frequencie that range from a low of about 28 Hz to a high of about 4200 Hz. Find the range of wavelength panned by thi intrument. λ = v f λ = v f = 340m / 28Hz = 12m = 340m / 4200Hz = 0.081m 3. A ound wave i emitted by the foghorn of a tugboat. An echo i heard 2.6 later. How far away i the reflecting object? v = x t = 2d t d = 1 2 vt = 1 (340m /)(2.6ec) = 442m 2 4. The note middle C on a piano ha a frequency of approximately 264 Hz and a wavelength of 1.31 m. Find the peed ound in air. v = λf = (1.31m)(264Hz) = 346m / 5. An FM tation broadcat at a frequency of 100 MHz with a radio wave having a wavelength of 3 m. Find the peed of the radio wave. v = λf = (3m)(100x10 6 Hz) = 3x10 8 m / 6. The peed of electromagnetic wave in a vacuum i 3.0x10 8 m/. Wavelength of viible light wave range from about 400 nm in the violet to 700 nm in the red. What i the range of frequencie of light wave? (nanometer =10-9 m) f = v λ = 3x108 m / 400x10 9 m = 7.5x1014 m f = v λ = 3x108 m / 700x10 9 m = 4.3x1014 m 7. A group of hiker hear an echo 3 after they hout? How far away i the mountain that reflected the ound wave? v = x t = 2d t d = 1 2 vt = 1 (340m /)(3ec) = 510m 2 8. Earthquake S wave have a peed of 3000 m/. P wave have a peed of 5000 m/. P wave are detected 2.58 minute before S wave by a eimograph. How far i the earthquake' epicenter from the eimograph? t =t t p = d v d v p min(60ec/ min) = d 3000m / m / 154.8ec =d(1.33x10 4 ec/m) d = 1.16x10 6 m 9. Calculate the intenity level of a ound wave having an intenity of W/m 2, W/m 2, and W/m 2. I = 10log W /m 2 = 0dB I o W /m 2 I = 10log W /m 2 = 10dB I o W /m 2 I = 10log W /m 2 = 20dB I o W /m What i the intenity level in decibel of a ound wave of intenity 10-6 W/m 2? 10-5 W/m 2?

3 I = 10log W /m 2 I o W /m 2 = 60dB I I o = 10log W /m W /m 2 = 70dB 11. What i the intenity of a ound whoe intenity level i 40 db? 100dB? I I o I 40 = 10 log W /m 2 4 = logi log(10 12 W /m 2 ) I = 10 8 W /m 2 I 100 = 10log W /m 2 10 = logi log(10 12 W /m 2 ) I = 10 2 W /m The area of a typical eardrum i about 5.0x10-5 m 2. Calculate the ound power incident on an eardrum at the threhold of hearing. I = P A P =IA = (10 12 W /m 2 )(5.0x10 5 m 2 ) = 5.0x10 17 W 13. Repeat the calculation for the threhold of pain which i 120 db. I 120 = 10log W /m 2 I = 1.0W /m 2 I = P A P =IA = (1.0W /m 2 )(5.0x10 5 m 2 ) = 5.0x10 5 W 14. On a work day, the average decibel level of a buy treet i 70 db with 100 car/minute. If the number of car i reduced 25 car every minute on a weekend, what i the decibel level of the treet? I 100car 70dB =10 log W /m 2 I 100car =10 5 W /m 2 I 75car =.75(10 5 W /m 2 ) = 7.5x10 6 W /m 2.5x10 6 W /m 2 = 69dB W /m 2

4 15. A rather noiy typewriter produce a ound intenity of 10-5 W/m 2. Find the decibel level of thi machine and calculate the new decibel level when a econd identical typewriter i added to the office. I = 10log 10 5 W /m W /m 2 = 70dB I o I = 10log 2x10 5 W /m W /m 2 = 73dB I o 16. A mall ource emit ound wave with a power output of 80 W. Find the intenity 3 m from the ource. I = P A = P 4πr = 80W 2 2 = 0.71W /m2 4π(3m) 17. For the ound in the previou problem, find the ditance at which the ound level i 40 db. I 40 = 10log W /m 2 I = 10 8 W /m 2 = P 4πr 2 r = W π(10 8 W /m 2 ) = 25,231m 18. A train moving at a peed of 40 m/ ound it whitle, which ha a frequency of 500 Hz. Determine the frequency heard by a tationary oberver a the train approache. 1 ± v o v 1 1 v = 500Hz 40m / = 567Hz 1 v 340m / 19. An ambulance travel down a highway at a peed of 75 mi/h, it iren emitting ound at a frequency of 400 Hz. What i the frequency heard by a paenger in a car traveling at 55 mi/h in the oppoite direction a the car approache. 75 mile hour x 1610m mile x 1hour = 33.5m / 3600ec 55 mile hour x 1610m mile x 1hour = 24.6m / 3600ec 1 ± v o 24.6m / 1 + v 340m / 1 v = 400Hz 33.5m / 1 v 340m / = 476Hz 20. What frequency i heard by the car after it pae and move away from the ambulance? 1 ± v o 24.6m / 1 v 340m / 1 v = 400Hz 33.5m / = 338Hz 1+ v 340m / 21. A train at ret emit a ound at a frequency of 1000 Hz. An oberver in a car travel away from the ound at a peed of 30 m/. What i the frequency heard by the oberver?

5 1 ± v o 30m / 1 v 340m / 1 v = 1000Hz 1 = 912Hz v 22. The oberver in the previou problem top the car. Determine the frequency he hear when the train approache her at a peed of 30 m/ and when the train recede from her at a peed of 30 m/. 1 ± v o v 1 v 1 = 1000Hz 30m / =1098Hz 1 v 340m / 1 ± v o v 1 v 1 = 1000Hz 30m / = 919Hz 1 + v 340m / 23. An alert phyic tudent tand beide the track a a train roll lowly pat. She note that the frequency of the train whitle i 442 Hz when the train i approaching her and i 441 Hz when the train i receding from her. What hould thi alert phyic tudent determine the peed of the train to be?

6 1 ± v o v 1 m v v Hz v 1 and 441Hz v 340m / m / 442Hz 441Hz = 1 f v 1 340m / 1 f v m / v = 340m / v 1 340m / v v 340m / = m / v = 340 +v = v v = m /

SOLUTIONS TO CONCEPTS CHAPTER 16

SOLUTIONS TO CONCEPTS CHAPTER 16 . air = 30 m/. = 500 m/. Here S = 7 m So, t = t t = 330 500 SOLUIONS O CONCEPS CHPER 6 =.75 0 3 ec =.75 m.. Here gien S = 80 m = 60 m. = 30 m/ So the maximum time interal will be t = 5/ = 60/30 = 0.5 econd.

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 20. Traveling Waves You may not realize it, but you are surrounded by waves. The waviness of a water wave is readily apparent, from the ripples on a pond to ocean waves large enough to surf. It

More information

Waves Sound and Light

Waves Sound and Light Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

More information

Conceptual Physics Review (Chapters 25, 26, 27 & 28) Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of

Conceptual Physics Review (Chapters 25, 26, 27 & 28) Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of Conceptual Physics Review (Chapters 25, 26, 27 & 28) Solutions Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of waves. Describe wave motion. Describe factors

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

Ch 25 Chapter Review Q & A s

Ch 25 Chapter Review Q & A s Ch 25 Chapter Review Q & A s a. a wiggle in time is called? b. a wiggle in space & time is called? a. vibration b. wave What is the period of a pendulum? The period is the time for 1 cycle (back & forth)

More information

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide

More information

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity. 1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the

More information

Answer the following questions during or after your study of Wave Properties. 4. How are refraction and the speed of wave in different media related?

Answer the following questions during or after your study of Wave Properties. 4. How are refraction and the speed of wave in different media related? Wave Properties Student Worksheet Answer the following questions during or after your study of Wave Properties. 1. A person standing 385 m from a cliff claps her hands loudly, only to hear the sound return

More information

Waves-Wave Characteristics

Waves-Wave Characteristics 1. What is the wavelength of a 256-hertz sound wave in air at STP? 1. 1.17 10 6 m 2. 1.29 m 3. 0.773 m 4. 8.53 10-7 m 2. The graph below represents the relationship between wavelength and frequency of

More information

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude. practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes

More information

Review of Chapter 25. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review of Chapter 25. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Review of Chapter 25 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The time needed for a wave to make one complete cycle is its b. velocity.

More information

Solution Derivations for Capa #13

Solution Derivations for Capa #13 Solution Derivations for Capa #13 1 Identify the following waves as T-Transverse, or L-Longitudinal. If the first is T and the rets L, enter TLLL. QUESTION: A The WAVE made by fans at sports events. B

More information

PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction. Name. Constants and Conversion Factors

PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction. Name. Constants and Conversion Factors PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction Name Constants and Conversion Factors Speed of sound in Air œ $%!7Î= "'!*7/>/

More information

Sound Waves: Doppler Effect

Sound Waves: Doppler Effect Sound Wae: oppler Eect oppler Shit: I either the detector or the ource o i moing, or i both are moing, then the emitted requency,, o the ource and the detected requency, ob, are dierent. I both the ource

More information

v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review

v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review L 23 Vibrations and Waves [3] resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar radar guns Review

More information

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION 2011(2): WAVES Doppler radar can determine the speed and direction of a moving car. Pulses of extremely high frequency radio waves are sent out in a narrow

More information

Chapter 17: Change of Phase

Chapter 17: Change of Phase Chapter 17: Change of Phase Conceptual Physics, 10e (Hewitt) 3) Evaporation is a cooling process and condensation is A) a warming process. B) a cooling process also. C) neither a warming nor cooling process.

More information

The Design and Implementation of Multimedia Software

The Design and Implementation of Multimedia Software Chapter 10 Auditory Content The Design and Implementation of Multimedia Software David Bernstein Jones and Bartlett Publishers www.jbpub.com David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett

More information

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to : PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

More information

Class 23 Doppler Effect

Class 23 Doppler Effect Cla 23 Dppler Effect What determine hw lud we hear f the und prduced by a urce? In what way de the ditance f the urce frm u affect it apparent ludne? Belw i a imulatin f the und wave emitted frm a pint

More information

= 4.24 10 15 W m 2. = 1.20 10 12 J = 7.50 MeV

= 4.24 10 15 W m 2. = 1.20 10 12 J = 7.50 MeV Phyic 111 Fall 7 Light Solution 1 The huan eye i ot enitive to light having a wavelength of 55 7, which i in the green yellow region of the viible electroagnetic pectru What i the frequency of thi light?

More information

Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide)

Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide) Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide) OVERVIEW Students will measure a sound wave by placing the Ward s DataHub microphone near one tuning fork A440 (f=440hz). Then

More information

Chapter 21 Study Questions Name: Class:

Chapter 21 Study Questions Name: Class: Chapter 21 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If a fire engine is traveling toward you, the Doppler

More information

Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL

Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL Excerpt from the Proceeding of the COMSO Conference 0 India Two Dimenional FEM Simulation of Ultraonic Wave Propagation in Iotropic Solid Media uing COMSO Bikah Ghoe *, Krihnan Balaubramaniam *, C V Krihnamurthy

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

Physics in Entertainment and the Arts

Physics in Entertainment and the Arts Physics in Entertainment and the Arts Chapter VII Wave Transfer and Waves incident on a rigid boundary almost completely reflect Almost all the wave s energy is reflected back the way it came Waves incident

More information

Q1. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum.

Q1. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum. Q. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum. X rays, which have frequencies in the range 0 8 0 2 Hz are already marked

More information

Basic Concepts of Sound. Contents: Definitions db Conversion Sound Fields db ± db

Basic Concepts of Sound. Contents: Definitions db Conversion Sound Fields db ± db Basic Concepts of Sound Contents: Definitions db Conversion Sound Fields db ± db BA 7666-11, 1 Abstract This lecture introduces sound and sound measurements by describing sound pressure, sound level and

More information

Chapter 10 Velocity, Acceleration, and Calculus

Chapter 10 Velocity, Acceleration, and Calculus Chapter 10 Velocity, Acceleration, and Calculu The firt derivative of poition i velocity, and the econd derivative i acceleration. Thee derivative can be viewed in four way: phyically, numerically, ymbolically,

More information

You may use a scientific calculator (non-graphing, non-programmable) during testing.

You may use a scientific calculator (non-graphing, non-programmable) during testing. TECEP Tet Decription College Algebra MAT--TE Thi TECEP tet algebraic concept, procee, and practical application. Topic include: linear equation and inequalitie; quadratic equation; ytem of equation and

More information

Report 4668-1b 30.10.2010. Measurement report. Sylomer - field test

Report 4668-1b 30.10.2010. Measurement report. Sylomer - field test Report 4668-1b Meaurement report Sylomer - field tet Report 4668-1b 2(16) Contet 1 Introduction... 3 1.1 Cutomer... 3 1.2 The ite and purpoe of the meaurement... 3 2 Meaurement... 6 2.1 Attenuation of

More information

Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell (1831-1879)

Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell (1831-1879) L 30 Electricity and Magnetism [7] ELECTROMAGNETIC WAVES Faraday laid the groundwork with his discovery of electromagnetic induction Maxwell added the last piece of the puzzle Heinrich Hertz made the experimental

More information

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t Chapter 2 Motion in One Dimenion 2.1 The Important Stuff 2.1.1 Poition, Time and Diplacement We begin our tudy of motion by conidering object which are very mall in comparion to the ize of their movement

More information

The Sonometer The Resonant String and Timbre Change after plucking

The Sonometer The Resonant String and Timbre Change after plucking The Sonometer The Resonant String and Timbre Change after plucking EQUIPMENT Pasco sonometers (pick up 5 from teaching lab) and 5 kits to go with them BK Precision function generators and Tenma oscilloscopes

More information

Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

More information

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.)

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.) PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.) Sound Waves Test -- each multiple choice question is worth 3 points. 1. Sound waves are

More information

Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines

Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines Simple Harmonic Motion(SHM) Vibration (oscillation) Equilibrium position position of the natural length of a spring Amplitude maximum displacement Period and Frequency Period (T) Time for one complete

More information

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet 4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet Required: READ Hamper pp 115-134 SL/HL Supplemental: Cutnell and Johnson, pp 473-477, 507-513 Tsokos, pp 216-242 REMEMBER TO. Work through all

More information

Doppler Effect Plug-in in Music Production and Engineering

Doppler Effect Plug-in in Music Production and Engineering , pp.287-292 http://dx.doi.org/10.14257/ijmue.2014.9.8.26 Doppler Effect Plug-in in Music Production and Engineering Yoemun Yun Department of Applied Music, Chungwoon University San 29, Namjang-ri, Hongseong,

More information

Semester 2. Final Exam Review

Semester 2. Final Exam Review Semester 2 Final Exam Review Motion and Force Vocab Motion object changes position relative to a reference point. Speed distance traveled in a period of time. Velocity speed in a direction. Acceleration

More information

After a wave passes through a medium, how does the position of that medium compare to its original position?

After a wave passes through a medium, how does the position of that medium compare to its original position? Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

More information

On Reference RIAA Networks by Jim Hagerman

On Reference RIAA Networks by Jim Hagerman On eference IAA Network by Jim Hagerman You d think there would be nothing left to ay. Everything you need to know about IAA network ha already been publihed. However, a few year back I came acro an intereting

More information

P1 4. Waves and their uses

P1 4. Waves and their uses P 4. Waves and their uses P 8 minutes 8 marks Answer all questions using any and all resources. Page of 38 Q. Diagram shows four of the seven types of wave in the electromagnetic spectrum. Diagram J K

More information

Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15

Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15 Lesson 11 Physics 168 1 Oscillations and Waves 2 Simple harmonic motion If an object vibrates or oscillates back and forth over same path each cycle taking same amount of time motion is called periodic

More information

Acoustic Terms, Definitions and General Information

Acoustic Terms, Definitions and General Information Acoustic Terms, Definitions and General Information Authored by: Daniel Ziobroski Acoustic Engineer Environmental and Acoustic Engineering GE Energy Charles Powers Program Manager Environmental and Acoustic

More information

Sound Power Measurement

Sound Power Measurement Sound Power Measurement A sound source will radiate different sound powers in different environments, especially at low frequencies when the wavelength is comparable to the size of the room 1. Fortunately

More information

Responsibility of all areas which could be addressed in this learning journey: Sciences experiences and outcomes:

Responsibility of all areas which could be addressed in this learning journey: Sciences experiences and outcomes: 1 Through this learning journey, learners will be given the opportunity to explore the nature of sound, waves and wave characteristics using a variety of ICT. The learning journey offers opportunities

More information

BUILT-IN DUAL FREQUENCY ANTENNA WITH AN EMBEDDED CAMERA AND A VERTICAL GROUND PLANE

BUILT-IN DUAL FREQUENCY ANTENNA WITH AN EMBEDDED CAMERA AND A VERTICAL GROUND PLANE Progre In Electromagnetic Reearch Letter, Vol. 3, 51, 08 BUILT-IN DUAL FREQUENCY ANTENNA WITH AN EMBEDDED CAMERA AND A VERTICAL GROUND PLANE S. H. Zainud-Deen Faculty of Electronic Engineering Menoufia

More information

Engineering with Sound Lesson Plan

Engineering with Sound Lesson Plan Type of lesson: Challenge Teaching Plan: Engineering with Sound Lesson Plan Goal The goal of this lesson is to introduce the students to sound and its properties and have them apply what they learn to

More information

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

More information

MECH 2110 - Statics & Dynamics

MECH 2110 - Statics & Dynamics Chapter D Problem 3 Solution 1/7/8 1:8 PM MECH 11 - Static & Dynamic Chapter D Problem 3 Solution Page 7, Engineering Mechanic - Dynamic, 4th Edition, Meriam and Kraige Given: Particle moving along a traight

More information

Yerkes Summer Institute 2002

Yerkes Summer Institute 2002 Before we begin our investigations into radio waves you should review the following material on your trip up to Yerkes. For some of you this will be a refresher, but others may want to spend more time

More information

The Doppler Effect & Hubble

The Doppler Effect & Hubble The Doppler Effect & Hubble Objectives Explain the Doppler Effect. Describe Hubble s discoveries. Explain Hubble s Law. The Doppler Effect The Doppler Effect is named after Austrian physicist Christian

More information

A wave lab inside a coaxial cable

A wave lab inside a coaxial cable INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S0143-0807(04)76273-X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera

More information

Noise. CIH Review PDC March 2012

Noise. CIH Review PDC March 2012 Noise CIH Review PDC March 2012 Learning Objectives Understand the concept of the decibel, decibel determination, decibel addition, and weighting Know the characteristics of frequency that are relevant

More information

Kinetic Theory. Energy. Transfers and Efficiency. The National Grid

Kinetic Theory. Energy. Transfers and Efficiency. The National Grid AQA P1 Revision Infrared Radiation Heating and Insulating Buildings Kinetic Theory Energy Transfers and Efficiency Energy Transfer by Heating Transferring Electrical Energy Generating Electricity The National

More information

Physics 111. Exam #1. January 24, 2014

Physics 111. Exam #1. January 24, 2014 Phyic 111 Exam #1 January 24, 2014 Name Pleae read and follow thee intruction carefully: Read all problem carefully before attempting to olve them. Your work mut be legible, and the organization clear.

More information

UNIT 1: mechanical waves / sound

UNIT 1: mechanical waves / sound 1. waves/intro 2. wave on a string 3. sound waves UNIT 1: mechanical waves / sound Chapter 16 in Cutnell, Johnson: Physics, 8th Edition Properties of waves, example of waves (sound. Light, seismic), Reflection,

More information

Waves and Light Extra Study Questions

Waves and Light Extra Study Questions Waves and Light Extra Study Questions Short Answer 1. Determine the frequency for each of the following. (a) A bouncing spring completes 10 vibrations in 7.6 s. (b) An atom vibrates 2.5 10 10 times in

More information

Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems

Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Introduction to Electro-magnetic Interference Design engineers seek to minimize harmful interference between components,

More information

UNIVERSITY OF CALICUT

UNIVERSITY OF CALICUT UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION BMMC (2011 Admission) V SEMESTER CORE COURSE AUDIO RECORDING & EDITING QUESTION BANK 1. Sound measurement a) Decibel b) frequency c) Wave 2. Acoustics

More information

1) Assume that the sample is an SRS. The problem state that the subjects were randomly selected.

1) Assume that the sample is an SRS. The problem state that the subjects were randomly selected. 12.1 Homework for t Hypothei Tet 1) Below are the etimate of the daily intake of calcium in milligram for 38 randomly elected women between the age of 18 and 24 year who agreed to participate in a tudy

More information

Introduction to acoustic imaging

Introduction to acoustic imaging Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3

More information

Exercises on Oscillations and Waves

Exercises on Oscillations and Waves Exercises on Oscillations and Waves Exercise 1.1 You find a spring in the laboratory. When you hang 100 grams at the end of the spring it stretches 10 cm. You pull the 100 gram mass 6 cm from its equilibrium

More information

Resonance in a Closed End Pipe

Resonance in a Closed End Pipe Experiment 12 Resonance in a Closed End Pipe 12.1 Objectives Determine the relationship between frequency and wavelength for sound waves. Verify the relationship between the frequency of the sound, the

More information

MAKING SENSE OF ENERGY Electromagnetic Waves

MAKING SENSE OF ENERGY Electromagnetic Waves Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group

More information

Linear Momentum and Collisions

Linear Momentum and Collisions Chapter 7 Linear Momentum and Colliion 7.1 The Important Stuff 7.1.1 Linear Momentum The linear momentum of a particle with ma m moving with velocity v i defined a p = mv (7.1) Linear momentum i a vector.

More information

Waves and Sound. AP Physics B

Waves and Sound. AP Physics B Waves and Sound AP Physics B What is a wave A WAVE is a vibration or disturbance in space. A MEDIUM is the substance that all SOUND WAVES travel through and need to have in order to move. Two types of

More information

Physics Equation List :Form 5 Wave

Physics Equation List :Form 5 Wave Ocillation Phyic Equation Lit :Form 5 Wave f 1 T f frequency (Hz or -1 ) T Period () Dilacement-Time Grah Amlitude, Period and Frequency can be found from a Dilacement-Time Grah Wave v f λ v velocity (m

More information

σ m using Equation 8.1 given that σ

σ m using Equation 8.1 given that σ 8. Etimate the theoretical fracture trength of a brittle material if it i known that fracture occur by the propagation of an elliptically haped urface crack of length 0.8 mm and having a tip radiu of curvature

More information

Sound Pressure Measurement

Sound Pressure Measurement Objectives: Sound Pressure Measurement 1. Become familiar with hardware and techniques to measure sound pressure 2. Measure the sound level of various sizes of fan modules 3. Calculate the signal-to-noise

More information

Optical Illusion. Sara Bolouki, Roger Grosse, Honglak Lee, Andrew Ng

Optical Illusion. Sara Bolouki, Roger Grosse, Honglak Lee, Andrew Ng Optical Illuion Sara Bolouki, Roger Groe, Honglak Lee, Andrew Ng. Introduction The goal of thi proect i to explain ome of the illuory phenomena uing pare coding and whitening model. Intead of the pare

More information

The Phase Modulator In NBFM Voice Communication Systems

The Phase Modulator In NBFM Voice Communication Systems The Phase Modulator In NBFM Voice Communication Systems Virgil Leenerts 8 March 5 The phase modulator has been a point of discussion as to why it is used and not a frequency modulator in what are called

More information

Unit 12.3 Waves Topic 1: Types of waves

Unit 12.3 Waves Topic 1: Types of waves Unit 12.3 Waves Topic 1: Types of waves Topic 1 deals with the properties and types of waves (see Syllabus pp. 28 29). It covers: Longitudinal waves. Transverse waves. Electromagnetic waves. Sound waves.

More information

SOLUTIONS TO CONCEPTS CHAPTER 15

SOLUTIONS TO CONCEPTS CHAPTER 15 SOLUTIONS TO CONCEPTS CHAPTER 15 1. v = 40 cm/sec As velocity of a wave is constant location of maximum after 5 sec = 40 5 = 00 cm along negative x-axis. [(x / a) (t / T)]. Given y = Ae a) [A] = [M 0 L

More information

Chapter H - Problems

Chapter H - Problems Chapter H - Problem Blinn College - Phyic 45 - Terry Honan Problem H.1 A wheel rotate from ret to 1 ê in 3. Aume the angular acceleration i contant. (a) What i the magnitude of the wheel' angular acceleration?

More information

Description: Conceptual questions about projectile motion and some easy calculations. (uses applets)

Description: Conceptual questions about projectile motion and some easy calculations. (uses applets) Week 3: Chapter 3 [ Edit ] Overview Suary View Diagnotic View Print View with Anwer Week 3: Chapter 3 Due: 11:59p on Sunday, February 8, 2015 To undertand how point are awarded, read the Grading Policy

More information

PHY114 S11 Term Exam 3

PHY114 S11 Term Exam 3 PHY4 S Term Exam S. G. Rajeev Mar 2 20 2:0 pm to :45 pm PLEASE write your workshop number and your workshop leader s name at the top of your book, so that you can collect your graded exams at the workshop.

More information

Dr. Abdel Aziz Hussein Lecturer of Physiology Mansoura Faculty of Medicine

Dr. Abdel Aziz Hussein Lecturer of Physiology Mansoura Faculty of Medicine Physiological Basis of Hearing Tests By Dr. Abdel Aziz Hussein Lecturer of Physiology Mansoura Faculty of Medicine Introduction Def: Hearing is the ability to perceive certain pressure vibrations in the

More information

Acousto-optic modulator

Acousto-optic modulator 1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).

More information

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation

More information

Solution of the Heat Equation for transient conduction by LaPlace Transform

Solution of the Heat Equation for transient conduction by LaPlace Transform Solution of the Heat Equation for tranient conduction by LaPlace Tranform Thi notebook ha been written in Mathematica by Mark J. McCready Profeor and Chair of Chemical Engineering Univerity of Notre Dame

More information

Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k

Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k Physics 1C Midterm 1 Summer Session II, 2011 Solutions 1. If F = kx, then k m is (a) A (b) ω (c) ω 2 (d) Aω (e) A 2 ω Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of

More information

How To Understand Light And Color

How To Understand Light And Color PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m. P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, June 17, 2015 1:15 to 4:15 p.m., only The possession or use of any communications

More information

Lesson 2.15: Physical Science Speed, Velocity & Acceleration

Lesson 2.15: Physical Science Speed, Velocity & Acceleration Weekly Focus: Reading for Comprehension Weekly Skill: Numeracy Skills in Science Lesson Summary: This week students will continue reading for comprehension with reading passages on speed, velocity, and

More information

Physics 1230: Light and Color

Physics 1230: Light and Color Physics 1230: Light and Color Instructor: Joseph Maclennan TOPIC 3 - Resonance and the Generation of Light http://www.colorado.edu/physics/phys1230 How do we generate light? How do we detect light? Concept

More information

Friday 18 January 2013 Morning

Friday 18 January 2013 Morning Friday 18 January 2013 Morning AS GCE PHYSICS B (ADVANCING PHYSICS) G492/01 Understanding Processes / Experimentation and Data Handling *G411640113* Candidates answer on the Question Paper. OCR supplied

More information

Wireless and Battery-less Sensor Using RF Energy Harvesting

Wireless and Battery-less Sensor Using RF Energy Harvesting DOI.56/etc4/. Wirele and Battery-le Senor Uing RF Energy Harveting Chritian Merz, Gerald Kupri, Maximilian Niedernhuber 3 Deggendorf Intitute of Technology, Edlmairtr. 6 + 8, 94469 Deggendorf, Germany

More information

What is Sound? Simple Harmonic Motion -- a Pendulum. The Unit Circle. Sine Waves. Frequency

What is Sound? Simple Harmonic Motion -- a Pendulum. The Unit Circle. Sine Waves. Frequency What is Sound? As the tines move back and forth they exert pressure on the air around them. (a) The first displacement of the tine compresses the air molecules causing high pressure. (b) Equal displacement

More information

Exam 4 Review Questions PHY 2425 - Exam 4

Exam 4 Review Questions PHY 2425 - Exam 4 Exam 4 Review Questions PHY 2425 - Exam 4 Section: 12 2 Topic: The Center of Gravity Type: Conceptual 8. After a shell explodes at the top of its trajectory, the center of gravity of the fragments has

More information

Using the Spectrophotometer

Using the Spectrophotometer Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to

More information

Sound and stringed instruments

Sound and stringed instruments Sound and stringed instruments Lecture 14: Sound and strings Reminders/Updates: HW 6 due Monday, 10pm. Exam 2, a week today! 1 Sound so far: Sound is a pressure or density fluctuation carried (usually)

More information

Understanding Range for RF Devices

Understanding Range for RF Devices Understanding Range for RF Devices October 2012 White Paper Understanding how environmental factors can affect range is one of the key aspects to deploying a radio frequency (RF) solution. This paper will

More information

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet. INTRODUCTION Fibre optics behave quite different to metal cables. The concept of information transmission is the same though. We need to take a "carrier" signal, identify a signal parameter we can modulate,

More information

Mathematical Harmonies Mark Petersen

Mathematical Harmonies Mark Petersen 1 Mathematical Harmonies Mark Petersen What is music? When you hear a flutist, a signal is sent from her fingers to your ears. As the flute is played, it vibrates. The vibrations travel through the air

More information

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the 11 FORCED OSCILLATIONS AND RESONANCE POINTER INSTRUMENTS Analogue ammeter and voltmeters, have CRITICAL DAMPING so as to allow the needle pointer to reach its correct position on the scale after a single

More information

Interference. Physics 102 Workshop #3. General Instructions

Interference. Physics 102 Workshop #3. General Instructions Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

More information

Experiment 1: SOUND. The equation used to describe a simple sinusoidal function that propagates in space is given by Y = A o sin(k(x v t))

Experiment 1: SOUND. The equation used to describe a simple sinusoidal function that propagates in space is given by Y = A o sin(k(x v t)) Experiment 1: SOUND Introduction Sound is classified under the topic of mechanical waves. A mechanical wave is a term which refers to a displacement of elements in a medium from their equilibrium state,

More information