Fluorescence spectroscopy

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Fluorescence spectroscopy"

Transcription

1

2 Spectral characteristics A Jablonski diagram represents absorption and emission in a fluorescent molecule A typical molecule absorbs from the ground state (S 0 ) into the vibrational manifold above the first singlet state (S 1 ). It then emits from S 1 into the vibrational levels above S 0. Since some of the energy of the absorbed photon is lost during relaxation, the emitted photon has a longer wavelength: it is redshifted). The pictured molecule absorbs in the green and emits in the red. The gap between absorption and emission is the Stokes shift. A large Stokes shift means emission is well separated (spectrally) from absorption. This process takes ~1 ns. Not all absorbed photons result in an emitted photon. Quenching (transfer to another species, often oxygen) or nonradiative relaxation gets rid of excitation energy without emitting a photon. The ratio of emitted photons to absorbed photons is the quantum efficiency or quantum yield Φ0. A good dye will have Φ0 very close to 1. The efficiency typically depends on ph, temperature, and environment, but can be within a few % of 1.

3 Excitation and emission spectra Usually the vibrational manifolds are so dense that individual absorption lines cannot be resolved. To get an emission spectrum, pick a location in the absorption manifold (e.g. 600 nm here) and measure the power emitted at each wavelength. To get an absorption spectrum, scan through the absorption band, measuring the ratio of transmitted light to incident light at each wavelength. This gives the extinction coefficient To get an excitation spectrum, pick a location in the emission manifold (e.g. 700 nm here) and scan the excitation wavelength through the excitation manifold, measuring the emitted power at each wavelength. A well-designed fluorophore will have little nonspecific absorption, so its excitation and absorption spectra will be quite similar. Almost everyone reports absorption spectra even if the excitation spectrum is more relevant. Since the vibrational levels of S 0 and S 1 are often similar, the absorption/excitation and emission spectra are often mirror images of each other. Java Jablonski at Olympus. A) FITC excitation and emission spectra B) This example has an excitation (rather than absorption) spectrum because I grabbed this from the handbook of a filter manufacturer (Chroma) who has thought hard about the fluorescence process.

4 Excitation and emission are largely decoupled by the relaxations between them. The spectral characteristics of a fluorophore are Absorption scan: Excitation spectrum: Emission spectrum: A(λ) = ɛ(λ) F (λ; λ em ) = Φ 0 ɛ(λ)f(λ em ) F (λ; λ ex ) = Φ 0 ɛ(λ ex )f(λ) Only the magnitude of the emission spectrum (not its shape) is affected by the choice of excitation wavelength.

5 Population measurement If two states have different spectra (usually emission spectra), measuring a full spectrum reveals the fraction of population in each state. An artificial example: Fluo-3 and Fura Red have different responses to Ca levels. If the initial and final spectra cross at the isosbestic point, the intensity at that point should be unchanged throughout the experiment. If not, there must be an intermediate state.

6 Spectrofluorimeters Light from an excitation source (usually a Xenon or Mercury lamp) is filtered through a monochromator and excites the sample. Emission is harvested at 90º, filtered through a second monochromator, and recorded by a photomultiplier tube (PMT). The measured emission is usually normalized to the incident intensity using the reference PMT. Purple inserts are for polarized fluorescence (coming soon)

7 Fluorescence microscopy On a microscope, you usually don t enough light to split up the whole spectrum. Pass excitation and emission through filters and record the total intensity. In principle you could get the same information using a color camera In practice, most people take sequential (or simultaneous) black and white shots with different filter sets and combine them in a false-color image.

8 Excitation and emission filters are usually combined in a filter cube: The excitation light is several orders of magnitude more intense than emission, so the filters must have selectivities of many O.M. This is often expressed as optical density, a log 10 scale of absorption: OD = log10(i/i0)

9 The excitation and emission filters (and dichroic) must be matched to the fluor. Allowing extra excitation risks damaging fluor and letting in stray light. If illuminating with a pre-defined wavelength (like from a laser line) the excitation filter may be unnecessary. A) B) C) D)

10 Fluorescence spectroscopy Fluorescent proteins (FPs) The development of a range of stable, fast-folding variant of jellyfish green fluorescent protein (mostly by Rogen Tsien) has revolutionized in vivo fluorescent measurements.

Lecture 29. Introduction to Fluorescence Spectroscopy

Lecture 29. Introduction to Fluorescence Spectroscopy Lecture 29 Introduction to Fluorescence Spectroscopy Introduction When a molecule absorbs light, an electron is promoted to a higher excited state (generally a singlet state, but may also be a triplet

More information

Molecular Spectroscopy

Molecular Spectroscopy Molecular Spectroscopy UV-Vis Spectroscopy Absorption Characteristics of Some Common Chromophores UV-Vis Spectroscopy Absorption Characteristics of Aromatic Compounds UV-Vis Spectroscopy Effect of extended

More information

Copyright 1999 2010 by Mark Brandt, Ph.D. 12

Copyright 1999 2010 by Mark Brandt, Ph.D. 12 Introduction to Absorbance Spectroscopy A single beam spectrophotometer is comprised of a light source, a monochromator, a sample holder, and a detector. An ideal instrument has a light source that emits

More information

Problem Set 3 Solutions CH332 (SP 06) 1. Skoog problem 15-1 (omit terms (j), (k) and (m)). Draw diagrams as necessary.

Problem Set 3 Solutions CH332 (SP 06) 1. Skoog problem 15-1 (omit terms (j), (k) and (m)). Draw diagrams as necessary. Problem Set 3 Solutions CH332 (SP 06) 1. Skoog problem 15-1 (omit terms (j), (k) and (m)). Draw diagrams as necessary. a) fluorescence Relaxation of an excited state by emission of a photon without a change

More information

Fundamentals of molecular absorption spectroscopy (UV/VIS)

Fundamentals of molecular absorption spectroscopy (UV/VIS) 10.2.1.3 Molecular spectroscopy 10.2.1.3.1 Introduction Molecular radiation results from the rotational, vibrational and electronic energy transitions of molecules. Band spectra are the combination of

More information

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy. Presentation Materials Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

More information

Lecture 1: Basic Concepts on Absorption and Fluorescence

Lecture 1: Basic Concepts on Absorption and Fluorescence Lecture 1: Basic Concepts on Absorption and Fluorescence Nicholas G. James Cell and Molecular Biology University of Hawaii at Manoa, Honolulu The Goal The emission of light after absorption of an outside

More information

Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy**

Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy** Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy** Objectives In this lab, you will use fluorescence spectroscopy to determine the mass and percentage of riboflavin in a vitamin pill.

More information

Chapter 12 Filters for FISH Imaging

Chapter 12 Filters for FISH Imaging Chapter 12 Filters for FISH Imaging Dan Osborn The application of in situ hybridization (ISH) has advanced from short lived, non-specific isotopic methods, to very specific, long lived, multiple color

More information

5.33 Lecture Notes: Introduction to Spectroscopy

5.33 Lecture Notes: Introduction to Spectroscopy 5.33 Lecture Notes: ntroduction to Spectroscopy What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. Latin:

More information

Introduction to flow cytometry

Introduction to flow cytometry Introduction to flow cytometry Flow cytometry is a popular laser-based technology. Discover more with our introduction to flow cytometry. Flow cytometry is now a widely used method for analyzing the expression

More information

Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy

Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy Objectives In this lab, you will use fluorescence spectroscopy to determine the mass of riboflavin in a vitamin pill. Riboflavin fluorescence

More information

DNA Detection. Chapter 13

DNA Detection. Chapter 13 DNA Detection Chapter 13 Detecting DNA molecules Once you have your DNA separated by size Now you need to be able to visualize the DNA on the gel somehow Original techniques: Radioactive label, silver

More information

Raman Spectroscopy Basics

Raman Spectroscopy Basics Raman Spectroscopy Basics Introduction Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light, usually from a laser source. Inelastic scattering means that

More information

Applications of confocal fluorescence microscopy in biological sciences

Applications of confocal fluorescence microscopy in biological sciences Applications of confocal fluorescence microscopy in biological sciences B R Boruah Department of Physics IIT Guwahati Email: brboruah@iitg.ac.in Page 1 Contents Introduction Optical resolution Optical

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

Flow cytometry basics fluidics, optics, electronics...

Flow cytometry basics fluidics, optics, electronics... Title Flow cytometry basics fluidics, optics, electronics... RNDr. Jan Svoboda, Ph.D. Cytometry and Microscopy Core Facility IMB, CAS, v.v.i Vídeňská 1083 Fluorescence Fluorescence occurs when a valence

More information

The Measurement of Sensitivity in Fluorescence Spectroscopy

The Measurement of Sensitivity in Fluorescence Spectroscopy The Measurement of Sensitivity in Fluorescence Spectroscopy Among instrumental techniques, fluorescence spectroscopy is recognized as one of the more sensitive. In fluorescence, the intensity of the emission

More information

Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM.

Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM. Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM. Some limitations (disadvantages) of NSOM A trade-off

More information

Observing a nanomachine at work: Single-molecule imaging or spectroscopy (SMI or SMS)

Observing a nanomachine at work: Single-molecule imaging or spectroscopy (SMI or SMS) Observing a nanomachine at work: Single-molecule imaging or spectroscopy (SMI or SMS) Principle: SMS allows one to observe the function and the motion of nano-objects in realtime in living systems. Usually,

More information

3 - Atomic Absorption Spectroscopy

3 - Atomic Absorption Spectroscopy 3 - Atomic Absorption Spectroscopy Introduction Atomic-absorption (AA) spectroscopy uses the absorption of light to measure the concentration of gas-phase atoms. Since samples are usually liquids or solids,

More information

Spectroscopy. energy Low λ High ν. UV-visible

Spectroscopy. energy Low λ High ν. UV-visible Spectroscopy frequency 10 20 10 18 10 16 10 14 10 12 10 8 Gamma rays X-rays UV IR Microwaves Radiowaves High energy Low λ High ν visible Low energy quantization of energy levels X-Ray UV-visible Infrared

More information

Preview of Period 3: Electromagnetic Waves Radiant Energy II

Preview of Period 3: Electromagnetic Waves Radiant Energy II Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How

More information

Time out states and transitions

Time out states and transitions Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hν = E = E i -E f Energy levels due to interactions between parts

More information

Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts?

Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts? Light PSC 203 Overview In this section: What is light? What is the EM Spectrum? How is light created? What can we learn from light? In-class activity Discuss your answers in groups of 2 Think of as many

More information

Triple Stage Raman spectrograph/spectrometer Raman system with scanning microscopy attachment: QTY: One

Triple Stage Raman spectrograph/spectrometer Raman system with scanning microscopy attachment: QTY: One Specifications: Triple Stage Raman spectrograph/spectrometer Raman system with scanning microscopy attachment: QTY: One A. Triple Stage Raman spectrograph/spectrometer: 1. Spectral range : UV_Vis_NIR :

More information

Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service

Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service Introduction into Flow Cytometry Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service How does a FACS look like? FACSCalibur FACScan What is Flow Cytometry?

More information

Time out states and transitions

Time out states and transitions Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hn = DE = E i - E f Energy levels due to interactions between

More information

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Background theory. 1. Movement of nuclei in a diatomic molecule - oscillations and rotations. 2. Internal

More information

Improved predictive modeling of white LEDs with accurate luminescence simulation and practical inputs

Improved predictive modeling of white LEDs with accurate luminescence simulation and practical inputs Improved predictive modeling of white LEDs with accurate luminescence simulation and practical inputs TracePro Opto-Mechanical Design Software s Fluorescence Property Utility TracePro s Fluorescence Property

More information

9- Labeled Immunoassays Fluorescent & Chemiluminescent Immunoassays

9- Labeled Immunoassays Fluorescent & Chemiluminescent Immunoassays 9- Labeled Immunoassays Fluorescent & Chemiluminescent Immunoassays In 1944 it was demonstrated that antibodies could be labeled with molecules that fluoresce. These fluorescent compounds are called fluorophores

More information

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance:

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance: Problem Set 6 UV-Vis Absorption Spectroscopy 13-1. Express the following absorbances in terms of percent transmittance: a 0.051 b 0.918 c 0.379 d 0.261 e 0.485 f 0.072 A = log P o /P = log1/t = - log T

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary

More information

LOW LEVEL LASER THERAPY(LLLT)

LOW LEVEL LASER THERAPY(LLLT) LOW LEVEL LASER THERAPY(LLLT) NEVADA HEALTH FORUM DR. REINHARD BRUCH PRESIDENT, APPLIED PHOTONICS WORLDWIDE INC. PROFESSOR OF PHYSICS, UNR 12/4/2003 1 Outline Introduction Basics of Lasers Low Level Laser

More information

Raman spectroscopy Lecture

Raman spectroscopy Lecture Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy

More information

TIE-36: Fluorescence of optical glass

TIE-36: Fluorescence of optical glass PAGE 1/12 1 Introduction Fluorescence is a phenomenon in which a substance absorbs light of a certain wavelength and almost instantaneously radiates light at longer wavelength (lower energy) These processes

More information

COMPENSATION MIT Flow Cytometry Core Facility

COMPENSATION MIT Flow Cytometry Core Facility COMPENSATION MIT Flow Cytometry Core Facility Why do we need compensation? 1) Because the long emission spectrum tail of dyes causes overlap like with the fluorophores FITC and PE. 2) For sensitivity reasons,

More information

Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

More information

MEASURABLE PARAMETERS: Flow cytometers are capable of measuring a variety of cellular characteristics such as:

MEASURABLE PARAMETERS: Flow cytometers are capable of measuring a variety of cellular characteristics such as: INTRODUCTION Flow Cytometry involves the use of a beam of laser light projected through a liquid stream that contains cells, or other particles, which when struck by the focused light give out signals

More information

Fluorescent dyes for use with the

Fluorescent dyes for use with the Detection of Multiple Reporter Dyes in Real-time, On-line PCR Analysis with the LightCycler System Gregor Sagner, Cornelia Goldstein, and Rob van Miltenburg Roche Molecular Biochemicals, Penzberg, Germany

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

SPECTROSCOPY. Light interacting with matter as an analytical tool

SPECTROSCOPY. Light interacting with matter as an analytical tool SPECTROSCOPY Light interacting with matter as an analytical tool Electronic Excitation by UV/Vis Spectroscopy : X-ray: core electron excitation UV: valance electronic excitation IR: molecular vibrations

More information

MCAL Spectrophotometry. Spectrophotometry

MCAL Spectrophotometry. Spectrophotometry MCAL Spectrophotometry Instruments include: Cary 50 UV-vis Spectrophotometer Eclipse Spectrofluorometer HPLC Diode Array and Fluorescence ICP-OES with CCD detection Spectrophotometry The instruments all

More information

Flow Cytometry. flow cytometer DNA apoptosis ph

Flow Cytometry. flow cytometer DNA apoptosis ph Flow Cytometry flow cytometer DNA apoptosis ph flow cytometry flow cytometer (a) (b) cell counting instrument (c) 1960 ink-jet technology 17 19 1940 1950 fluorescence microscopy fluorescent dye DNA polyclonal

More information

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

More information

How can I tell what the polarization axis is for a linear polarizer?

How can I tell what the polarization axis is for a linear polarizer? How can I tell what the polarization axis is for a linear polarizer? The axis of a linear polarizer determines the plane of polarization that the polarizer passes. There are two ways of finding the axis

More information

UNIT: Electromagnetic Radiation and Photometric Equipment

UNIT: Electromagnetic Radiation and Photometric Equipment UNIT: Electromagnetic Radiation and Photometric Equipment 3photo.wpd Task Instrumentation I To review the theory of electromagnetic radiation and the principle and use of common laboratory instruments

More information

Two-photon FCS Tutorial. Berland Lab Department of Physics Emory University

Two-photon FCS Tutorial. Berland Lab Department of Physics Emory University Two-photon FCS Tutorial Berland Lab Department of Physics Emory University What is FCS? FCS : Fluorescence Correlation Spectroscopy FCS is a technique for acquiring dynamical information from spontaneous

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

Recording the Instrument Response Function of a Multiphoton FLIM System

Recording the Instrument Response Function of a Multiphoton FLIM System Recording the Instrument Response Function of a Multiphoton FLIM System Abstract. FLIM data analysis in presence of SHG signals or extremely fast decay components requires the correct instrument response

More information

Principles of Flowcytometry

Principles of Flowcytometry Objectives Introduction to Cell Markers: Principles of Flowcytometry Michelle Petrasich NZIMLS Scientific Meeting August 24, 2010, Paihia What are cell markers How do we detect them Production of Monoclonal

More information

Supporting Information

Supporting Information Supporting Information [C 70 ] Fullerene-Sensitized Triplet-Triplet Annihilation Upconversion Kyle Moor a, Jae-Hyuk Kim a, Samuel Snow b, and Jae-Hong Kim a,b a Department of Chemical and Environmental

More information

UV/Vis (Ultraviolet and Visible) Spectroscopy

UV/Vis (Ultraviolet and Visible) Spectroscopy UV/Vis (Ultraviolet and Visible) Spectroscopy Agilent 8453 Diode Array UV-Vis Spectrophotometer Varian Cary 5000 UV-Vis-NIR Spectrophotometer To Do s Read Chapters 13 & 14. Complete the end-of-chapter

More information

APPLICATION: BP470 Blue Bandpass Filter. Application 1

APPLICATION: BP470 Blue Bandpass Filter. Application 1 Application 1 Before: Without a filter over the lens, the 39 5nm LED light overpowers the fluorescence emission that would allow the 2D matrix to be read by the camera. After: A mounted on the camera lens

More information

Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff

Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff December 2012 Specifying Advanced Plasma Deposited Hard Coated Optical Bandpass and Dichroic Filters. Introduction

More information

Introduction to spectroscopy

Introduction to spectroscopy Introduction to spectroscopy How do we know what the stars or the Sun are made of? The light of celestial objects contains much information hidden in its detailed color structure. In this lab we will separate

More information

Searching New Materials for Energy Conversion and Energy Storage

Searching New Materials for Energy Conversion and Energy Storage Searching New Materials for Energy Conversion and Energy Storage ZÜRICH & COLLEGIU UM HELVE ETICUM R. NES SPER ETH 1. Renewable Energy 2. Solar Cells 3. Thermoelectricity 4. Fast High Energy Li-Ion Batteries

More information

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

More information

Sysmex UF-1000i and UF-500i: the modern age of urinalysis

Sysmex UF-1000i and UF-500i: the modern age of urinalysis Sysmex UF-1000i and UF-500i: the modern age of urinalysis Sysmex Xtra Online February 2011 The request for a urine status in the laboratory routine mostly concerns incoming orders within the scope of health

More information

The Rate Constant for Fluorescence Quenching 1

The Rate Constant for Fluorescence Quenching 1 The Rate Constant for Fluorescence Quenching 1 Purpose This experiment utilizes fluorescence intensity measurements to determine the rate constant for the fluorescence quenching of anthracene or perylene

More information

Aspects of an introduction to photochemistry

Aspects of an introduction to photochemistry Aspects of an introduction to photochemistry Ground state reactants Excited state reactants Reaction Intermediates Ground state products Orbital occupancy Carbonyl photochemistry Vibrational structure

More information

University of Cyprus Biomedical Imaging and Applied Optics Laboratory Light-Tissue Interaction

University of Cyprus Biomedical Imaging and Applied Optics Laboratory Light-Tissue Interaction University of Cyprus Biomedical Imaging and Applied Optics Laboratory Light-Tissue Interaction Costas Pitris, MD, PhD KIOS Research Center Department of Electrical and Computer Engineering University of

More information

Zeiss 780 Training Notes

Zeiss 780 Training Notes Zeiss 780 Training Notes 780 Start Up Sequence Do you need the argon laser, 458,488,514nm lines? No Turn on the Systems PC Switch Turn on Main Power Switch Yes Turn on the laser main power switch and turn

More information

THE NATURE OF LIGHT AND COLOR

THE NATURE OF LIGHT AND COLOR THE NATURE OF LIGHT AND COLOR THE PHYSICS OF LIGHT Electromagnetic radiation travels through space as electric energy and magnetic energy. At times the energy acts like a wave and at other times it acts

More information

NanoChop NP-Functionalization and Determination of the Optical Properties of the Fluorescent NPs U. Resch-Genger

NanoChop NP-Functionalization and Determination of the Optical Properties of the Fluorescent NPs U. Resch-Genger anochop PFunctionalization and Determination of the Optical Properties of the Fluorescent Ps U. ReschGenger Preparation and Characterization of Fluorescent Particles I. Preparation of fluorescent nanoparticles

More information

Quantitation of Peptides and Amino Acids with a Synergy HT using UV Fluorescence

Quantitation of Peptides and Amino Acids with a Synergy HT using UV Fluorescence Quantitation of Peptides and Amino Acids with a Synergy HT using UV Fluorescence Introduction Eukaryotic and prokaryotic cells contain a number of compounds that are fluorescent with UV light excitation.

More information

Project 2B Building a Solar Cell (2): Solar Cell Performance

Project 2B Building a Solar Cell (2): Solar Cell Performance April. 15, 2010 Due April. 29, 2010 Project 2B Building a Solar Cell (2): Solar Cell Performance Objective: In this project we are going to experimentally measure the I-V characteristics, energy conversion

More information

VISIBLE SPECTROSCOPY

VISIBLE SPECTROSCOPY VISIBLE SPECTROSCOPY Visible spectroscopy is the study of the interaction of radiation from the visible part (λ = 380-720 nm) of the electromagnetic spectrum with a chemical species. Quantifying the interaction

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

More information

Chapter 12 Fluorescence Microscopy C. Robert Bagnell, Jr., Ph.D., 2012

Chapter 12 Fluorescence Microscopy C. Robert Bagnell, Jr., Ph.D., 2012 Chapter 12 Fluorescence Microscopy C. Robert Bagnell, Jr., Ph.D., 2012 August Köhler investigated fluorescence microscopy in 1904. He is quite likely the first person to have done so. Fluorescence microscopy

More information

White Paper. Zecotek Visible Fiber Laser Platform. Enabling the future of laser technology

White Paper. Zecotek Visible Fiber Laser Platform. Enabling the future of laser technology White Paper Zecotek Visible Fiber Laser Platform Enabling the future of laser technology Zecotek Photonics Inc. (TSX- V: ZMS; Frankfurt: W1I) www.zecotek.com is a Canadian photonics technology company

More information

UV-Vis Vis spectroscopy. Electronic absorption spectroscopy

UV-Vis Vis spectroscopy. Electronic absorption spectroscopy UV-Vis Vis spectroscopy Electronic absorption spectroscopy Absortpion spectroscopy Provide information about presence and absence of unsaturated functional groups Useful adjunct to IR Determination of

More information

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

More information

FRET Basics and Applications an EAMNET teaching module

FRET Basics and Applications an EAMNET teaching module FRET Basics and Applications an EAMNET teaching module Timo Zimmermann + Stefan Terjung Advanced Light Microscopy Facility European Molecular Biology Laboratory, Heidelberg http://www.embl.de/almf/ http://www.embl.de/eamnet/

More information

Electron Energy and Light

Electron Energy and Light Why? Electron Energy and Light How does light reveal the behavior of electrons in an atom? From fireworks to stars, the color of light is useful in finding out what s in matter. The emission of light by

More information

Image Acquisition. Fluorescent Microscope. Imaging Device. Four Types of Images. Benefits of Electronic Detectors. The Imaging Triangle 5.12.

Image Acquisition. Fluorescent Microscope. Imaging Device. Four Types of Images. Benefits of Electronic Detectors. The Imaging Triangle 5.12. Fluorescent Microscope Image Acquisition Lightsource Optics Detector Fluorescence Microscopy and Quantitative Imaging Image acquired can not be better than image generated by microscope (but it can be

More information

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu)

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) Introduction Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) The scattering of light may be thought of as the redirection

More information

Distinguishing GFP from Cellular Autofluorescence

Distinguishing GFP from Cellular Autofluorescence Distinguishing GFP from Cellular Autofluorescence by Andrew W. Knight and Nicholas Billinton SUMMARY Endogenous autofluorescence is a common nuisance that plagues many a researcher using green fluorescent

More information

Part 1: 2D/3D Geometry, Colour, Illumination

Part 1: 2D/3D Geometry, Colour, Illumination Part 1: 2D/3D Geometry, Colour, Illumination Colours Patrice Delmas and Georgy Gimel farb COMPSCI 373 Computer Graphics and Image Processing http://socks-studio.com/2013/... http://www.mutluduvar.com/...

More information

Semiconductor Laser Diode

Semiconductor Laser Diode Semiconductor Laser Diode Outline This student project deals with the exam question Semiconductor laser diode and covers the following questions: Describe how a semiconductor laser diode works What determines

More information

How Matter Emits Light: 1. the Blackbody Radiation

How Matter Emits Light: 1. the Blackbody Radiation How Matter Emits Light: 1. the Blackbody Radiation Announcements n Quiz # 3 will take place on Thursday, October 20 th ; more infos in the link `quizzes of the website: Please, remember to bring a pencil.

More information

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 SPECTROPHOTOMETRY Absorption Measurements & their Application to Quantitative Analysis study of the interaction of light (or other electromagnetic

More information

Chapter 10 Immunofluorescence

Chapter 10 Immunofluorescence Chapter 10 Immunofluorescence J. Paul Robinson PhD, Jennifer Sturgis BS and George L. Kumar PhD Immunofluorescence (IF) is a common laboratory technique used in almost all aspects of biology. This technique

More information

Fluorescence Lifetime Imaging Microscopy. Gin under fluorescence microscope 7

Fluorescence Lifetime Imaging Microscopy. Gin under fluorescence microscope 7 Fluorescence Lifetime Imaging Microscopy Gin under fluorescence microscope 7 Amy Bowser Chem 226 Spring 2003 Contents Page(s) Fluorescence Background 3-5 Fluorescence Lifetime 5-7 Utility 7-8 Measurements

More information

Confocal Microscopy and Atomic Force Microscopy (AFM) A very brief primer...

Confocal Microscopy and Atomic Force Microscopy (AFM) A very brief primer... Confocal Microscopy and Atomic Force Microscopy (AFM) of biofilms A very brief primer... Fundamentals of Confocal Microscopy Based on a conventional fluorescence microscope Fluorescent Microscope Confocal

More information

SSO Transmission Grating Spectrograph (TGS) User s Guide

SSO Transmission Grating Spectrograph (TGS) User s Guide SSO Transmission Grating Spectrograph (TGS) User s Guide The Rigel TGS User s Guide available online explains how a transmission grating spectrograph (TGS) works and how efficient they are. Please refer

More information

UVC LEDs for. Environmental Monitoring

UVC LEDs for. Environmental Monitoring UVC LEDs for Environmental Monitoring Environmental monitoring relies extensively on molecular spectroscopy for tracking air quality, water and wastewater quality, and detecting hazardous substances. Advances

More information

DETECTION. personal. Now, you can optimize your personal workflow. Promega instruments and reagents integrate easily.

DETECTION. personal. Now, you can optimize your personal workflow. Promega instruments and reagents integrate easily. personal DETECTION Now, you can optimize your personal workflow. Promega instruments and reagents integrate easily. A modular, easy to use and cost effective multimode reader for Luminescence, Fluorescence,

More information

Color Accurate Digital Photography of Artworks

Color Accurate Digital Photography of Artworks Color Accurate Digital Photography of Artworks Robin D. Myers Better Light, Inc. 30 October 2000 2000 Better Light, Inc., all rights reserved. Introduction In the world of photography, some colors are

More information

These particles have something in common

These particles have something in common These particles have something in common Blood cells Chromosomes Algae Protozoa Certain parameters of these particles can be measured with a flow cytometer Which parameters can be measured? the relative

More information

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated

More information

Near-field scanning optical microscopy (SNOM)

Near-field scanning optical microscopy (SNOM) Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques

More information

- thus, the total number of atoms per second that absorb a photon is

- thus, the total number of atoms per second that absorb a photon is Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

More information

UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES

UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES SEPTEMBER 2012, V 1.1 4878 RONSON CT STE K SAN DIEGO, CA 92111 858-565 - 4227 NANOCOMPOSIX.COM Note to the Reader: We at nanocomposix have published this

More information

Lecture 7: Photochemistry of Important Atmospheric Species

Lecture 7: Photochemistry of Important Atmospheric Species Lecture 7: Photochemistry of Important Atmospheric Species Required Reading: FP Chapter 4 Atmospheric Chemistry CHEM-5151 / ATC-5151 Spring 2005 Prof. Jose-Luis Jimenez General remarks 2 3 Nitrogen species

More information

University of Wisconsin Chemistry 524 Spectroscopic Applications (GFAA, ICP, UV/Vis, Fluorescence)

University of Wisconsin Chemistry 524 Spectroscopic Applications (GFAA, ICP, UV/Vis, Fluorescence) University of Wisconsin Chemistry 524 Spectroscopic Applications (GFAA, ICP, UV/Vis, Fluorescence) For this laboratory exercise, you will explore a variety of spectroscopic methods used in an analytical

More information

Electron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit:

Electron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit: Electron Orbits In an atom model in which negatively charged electrons move around a small positively charged nucleus stable orbits are possible. Consider the simple example of an atom with a nucleus of

More information

Atoms Absorb & Emit Light

Atoms Absorb & Emit Light Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions

More information

UV/Vis Spectroscopy. Varka Evi-Maria Ph.D. Chemist AUTH Thessaloniki 2012

UV/Vis Spectroscopy. Varka Evi-Maria Ph.D. Chemist AUTH Thessaloniki 2012 UV/Vis Spectroscopy Varka Evi-Maria Ph.D. Chemist AUTH Thessaloniki 2012 Introduction of Spectroscopy The structure of new synthesised molecules or isolated compounds from natural sources in the lab must

More information