Class Notes for MATH 2 Precalculus. Fall Prepared by. Stephanie Sorenson

Size: px
Start display at page:

Download "Class Notes for MATH 2 Precalculus. Fall Prepared by. Stephanie Sorenson"

Transcription

1 Class Notes for MATH 2 Precalculus Fall 2012 Prepared by Stephanie Sorenson

2 Table of Contents 1.2 Graphs of Equations Functions Analyzing Graphs of Functions A Library of Parent Functions Transformations of Functions Combinations of Functions: Composite Functions Inverse Functions Quadratic Functions and Models Polynomial Functions of Higher Degree Polynomial and Synthetic Division Complex Numbers Zeros of Polynomial Functions Rational Functions Exponential Functions and Their Graphs Logarithmic Functions and Their Graphs Properties of Logarithms Exponential and Logarithmic Equations Exponential and Logarithmic Models Graphs of Sine and Cosine Functions Graphs of Other Trigonometric Functions Inverse Trigonometric Functions Using Fundamental Identities Verifying Trigonometric Identities Solving Trigonometric Equations Sum and Difference Formulas Multiple-Angle and Product-to-Sum Formulas Vectors in the Plane Vectors and Dot Products Trigonometric Form of a Complex Number Linear and Nonlinear Systems of Equations Two-Variable Linear Systems Multivariable Linear Systems Partial Fractions Systems of Inequalities Matrices and Systems of Equations

3 8.2 Operations with Matrices The Determinant of a Square Matrix The Inverse of a Square Matrix Applications of Matrices and Determinants Sequences and Series Arithmetic Sequences and Partial Sums Geometric Sequences and Series Mathematical Induction The Binomial Theorem Introduction to Conics: Parabolas Ellipses Hyperbolas Parametric Equations Polar Coordinates Graphs of Polar Equations

4 Section Graphs of Equations Example 1 Sketch the graph of by plotting points. Intercepts of a Graph The -intercepts of the graph of an equation are the points at which the graph intersects or touches the -axis. The -intercepts of the graph of an equation are the points at which the graph intersects or touches the -axis. Identify the - and - intercepts of the graph sketched in Example 1: -intercept(s): -intercept(s): Finding Intercepts 1. To find -intercepts, 2. To find -intercepts,

5 2 Section 1.2 Example 2 Find the - and - intercepts of the graph of the equation. (a) (b) (c)

6 Section Symmetry Knowing the symmetry of a graph before attempting to sketch it is helpful, because then you need only half as many solution points to sketch the graph. There are 3 basic types of symmetry a graph may have: -axis symmetry -axis symmetry origin symmetry Type of symmetry -axis Graphical Tests for Symmetry Whenever is on the graph, is also on the graph. Algebraic Tests for Symmetry Replacing with yields an equivalent equation. -axis Whenever is on the graph, is also on the graph. Replacing with yields an equivalent equation. Origin Whenever is on the graph, is also on the graph. Replacing with and with yields an equivalent equation.

7 4 Section 1.2 Example 3 Use the algebraic tests to check for symmetry with respect to both axes and the origin. (a) (b)

8 Section Use the algebraic tests to check for symmetry with respect to both axes and the origin. (c) Recall the following formula: Distance Formula The distance between two points and is given by the formula

9 6 Section 1.2 Circles Center: Point on circle: Use the distance formula to derive the equation of a circle of radius and center : Standard Form of the Equation of a Circle The point lies on the circle of radius and center if and only if For a circle with center at the origin,, the standard form simplifies to:

10 Section Example 4 Find the center and radius of the circle, and sketch its graph. Example 5 Write the standard form of the equation of the circle with the given characteristics. (a) Center: ; Radius: 3 (b) Center: ; Solution point:

11 8 Section 1.2 Write the standard form of the equation of the circle with the given characteristics. (c) Endpoints of a diameter:

12 Section Functions Definition of Function A function from a set to a set is a rule of correspondence (or relation) that assigns to each element in the set exactly one element in the set. The set of inputs,, is the of the function. The set of outputs,, is the of the function. A function may be represented as a set mapping, as a set of ordered pairs, graphically, or as an equation. In algebra, it is most common to represent functions by equations. Can you see why? Set Mapping Set of Ordered Pairs Graphically Equation

13 10 Section 1.4 Example 1 Determine whether the relation represents as a function of. Circle your answer. Function Function Function Not a Function Not a Function Not a Function Example 2 Determine whether the relation represents as a function of. (a) (b) Note: If is a function of, then is the independent variable and is the dependent variable. Function Notation When an equation is used to represent a function, it is convenient to name the function so that it can be referenced easily. For example, the equation describes as a function of. Suppose we give the function the name. Then we can use the following function notation. Input Output Equation The symbol represents the -value of the function at. So we can write.

14 Section Example 3 Let. Evaluate at each specified value of the independent variable and simplify. (a) (b) (c) A function defined by two or more equations over a specified domain is called a piecewise-defined function. Example 4 Evaluate at each specified value of the independent variable and simplify. (a) (b) (c) (d) As previously mentioned, the domain of a function is the set of all input values. The domain can be described explicitly or it can be implied by the expression used to define the function. The implied domain of a function is.

15 12 Section 1.4 Example 5 Find the domain of the function. (a) (b) (c) (d)

16 Section Difference Quotients The expression is called a difference quotient and is important in calculus. The difference quotient can also take on the following form: Example 6 Find the difference quotient and simplify your answer.

17 14 Section Analyzing Graphs of Functions Interval Notation for Sets: Inequality Interval Notation Graph x b (, b) x b (, b] ) b ] b x a ( a, ) x a [ a, ) a x b ( a, b) a x b ( a, b] ( a [ a ( ) a b ( ] a b a x b [ a, b) a x b [ a, b] [ a [ a ) b ] b All real numbers (, ) x a (, a ) ( a, ) )( a Note: The union symbol is used to indicate the union of disjoint sets. Example: To represent or in interval notation, we write

18 Section A closed dot An open dot indicates a point is included in the graph of a function. indicates a point is excluded from the graph of a function. The use of dots at the extreme left and right points of a graph indicates that the graph does not extend beyond these points. If no such dots are shown, assume that the graph extends beyond these points. Example 1 Use the graph of the function to find the following. Use interval notation when appropriate (a) Domain of (b) Range of f (c) (d) (e) Interval(s) for which

19 16 Section 1.5 Vertical Line Test Intersects in one point Intersects in more than one point Passes the test Function Fails the test Not a Function If a vertical line intersects a graph in more than one point, then the graph is not the graph of a function. Example 2 Determine whether each graph is that of a function. (a) (b) Zeros of a Function If the graph of a function of has an -intercept at, then is a zero of the function. The zeros of a function of are the -values for which. Example 3 Find the zeros of the function algebraically. (a) (b)

20 Section Increasing, Decreasing, and Constant Functions A function f is increasing on an interval if, for any and in the interval, implies. A function f is decreasing on an interval if, for any and in the interval, implies. A function f is constant on an interval if, for any and in the interval,. Example 4 Determine the intervals over which the function is increasing, decreasing, or constant.

21 18 Section 1.5 Example 5 (a) Find the domain and range of g. (b) Determine the intervals of increasing, decreasing, or constant. (c) Determine the interval(s) for which.

22 Section Even and Odd Functions A function f is even if, for every number x in its domain, the number is also in the domain and The graph of an even function is symmetric with respect to the y-axis. A function f is odd if, for every number x in its domain, the number is also in the domain and The graph of an odd function is symmetric with respect to the origin. To determine whether a function is even, odd, or possibly neither, replace by in the formula. Example 6 Determine whether the function is even, odd, or neither. Then describe the symmetry. (a)

23 20 Section 1.5 Determine whether the function is even, odd, or neither. Then describe the symmetry. (b) (c)

24 Section A Library of Parent Functions Quick Overview of Lines Slope Formula: Point-Slope Form: Slope-Intercept Form: Vertical Lines: Horizontal Lines: A linear function is any function that can be expressed in the form The graph of a linear function is a line with slope and -intercept. The domain is all real numbers. Example 1 Write the linear function for which and. Then sketch the graph.

25 22 Section 1.6 Library of Parent Functions Constant Function Identity Function Absolute Value Function Quadratic Function Cubic Function Reciprocal Function Square Root Function Cube Root Function

26 Section When functions are defined by more than one equation, they are called piecewise-defined functions. Example: Absolute Value Function To graph a piecewise-defined function, sketch each piece separately. Remember to use open and closed dots appropriately. Example 2 Graph the following piecewise-defined function.

27 24 Section Transformations of Functions Vertical shift units upward Vertical shift units downward Horizontal shift units to the right Horizontal shift units to the left Vertical and Horizontal Shifts Let be a positive real number. Vertical and horizontal shifts in the graph of are represented as follows. 1. Vertical shift units upward: 2. Vertical shift units downward: 3. Vertical shift units to the right: 4. Vertical shift units to the left:

28 Section Reflection in the x-axis Reflection in the y-axis Reflections in the Coordinate Axes Reflections in the coordinate axes of the graph of are represented as follows. 1. Reflection in the x-axis: 2. Reflection in the y-axis: ********************************************************************************** *Note: Always graph a function working with the expression inside to outside. 2 nd 1 st 3 rd 1. Shift left 2 units 2. Reflect across x-axis 3. Shift up 3 units Exception: Apply a horizontal reflection before a horizontal shift. (But only after you ve factored out the negative in front of!!) 1. Reflect across y-axis 2. Shift right 2 units 1 st 2 nd

29 26 Section 1.7 Vertical stretch (each value is multiplied by ) Vertical shrink (each value is multiplied by ) Horizontal stretch (each value is multiplied by ) Horizontal shrink (each value is multiplied by ) Vertical and Horizontal Stretches and Shrinks Let be a positive real number. Vertical and horizontal stretches and shrinks in the graph of are represented as follows. 1. Vertical stretch (each value is multiplied by ) 2. Vertical shrink (each value is multiplied by ) 3. Horizontal stretch (each value is multiplied by ) 4. Horizontal shrink (each value is multiplied by )

30 Section Example 1 Use the graph of (a) to sketch each graph. List which transformations are performed. (b) Example 2 Use the graph of to write an equation for the function whose graph is shown. (a)

31 28 Section 1.7 Use the graph of to write an equation for the function whose graph is shown. (b) Example 3 (a) Identify the parent function. (b) Describe the sequence of transformations from to. (c) Sketch the graph of. (d) Use function notation to write in terms of.

32 Section Example 4 (a) Identify the parent function. (b) Describe the sequence of transformations from to. (c) Sketch the graph of. (d) Use function notation to write in terms of. Example 5 Write an equation for the function that is described by the given characteristics: The shape of, but shifted nine units to the right and reflected in both the -axis and -axis.

33 30 Section Combinations of Functions: Composite Functions Arithmetic Combinations of Functions Let and be two functions with overlapping domains. Then, for all common to both domains, the sum, difference, product, and quotient of and are defined as follows. 1. Sum: 2. Difference: 3. Product: 4. Quotient:, Example 1 Given and, find the following: a) b) c) d) and specify domain e) Evaluate

34 Section Composition of Functions The composition of the function with the function is. The domain of is the set of all in the domain of such that is in the domain of. Example 2 Given and, find the following: a) b) c) Example 3 Given and, find and state the domain.

35 32 Section 1.8 Example 4 Given and, find and state the domain. Example 5 Find two functions and such that.

36 Section Inverse Functions One-to-One Functions A function is one-to-one if each output value corresponds to exactly one input value. Example 1 Is the function one-to-one? (a) (b) The may be used to determine if a function is one-to-one.

37 34 Section 1.9 The inverse function of a function, denoted, is found by interchanging the first and second coordinates. A function has an inverse function if and only if is. Domain of Range of Since the inverse functions and have the effect of undoing each other, when you form the composition you obtain the identify function: This is how we verify two functions are inverses! Example 2 Use the table of values for to complete the table for. 34

38 Section Example 3 (a) Show (or verify) that and are inverse functions algebraically. (b) Sketch the graphs of and on the same coordinate grid. What do you notice? How are the graphs of a function and its inverse function related?

39 36 Section 1.9 Finding an Inverse Function Algebraically Example 4 Find the inverse function of and state the domain and range of and. Example 5 Determine whether the function has an inverse function. If it does, find the inverse function. (a) (b) 36

40 Section Quadratic Functions and Models Definition Let be a nonnegative integer and let be real numbers with. The function given by is called a polynomial function of with degree. Special Cases of Polynomial Functions: Degree Type We will focus on the quadratic function in this section. Definition Let and be real numbers with. The function given by is called a quadratic function. The shape of the graph of a quadratic function is called a. If the leading coefficient is positive ( If the leading coefficient is negative ( ), the graph opens. ), the graph opens. All parabolas are symmetric with respect to a line called the. The highest (or lowest) point on the graph is called the of the parabola.

41 38 Section 2.1 Example 1 Match the quadratic function with its graph. (a) (b) (c) +3 (d) (i) (ii) (iii) (iv)

42 Example 2 Sketch the graph of. Identify the vertex, axis of symmetry and - intercept(s). Section

43 40 Section 2.1 Standard Form of a Quadratic Function Example 3 Sketch the graph of. Identify the vertex, axis of symmetry and -intercept(s).

44 Section Example 4 Write the standard form of the equation of the parabola whose vertex is the point. and passes through Example 5 Find a quadratic function whose graph has -intercepts and.

45 42 Section 2.1 In general, if, then completing the square yields the standard form: (Try it at home!) From this standard form, we get a formula for the vertex of the parabola: Many applications involve finding the maximum or minimum value of a quadratic function. The maximum or minimum value occurs at the vertex. Example 6 Find two positive real numbers whose product is a maximum if the sum of the first and three times the second is 42.

46 Section Polynomial Functions of Higher Degree The graphs of polynomial functions are continuous with smooth rounded turns. This means there are no jumps, holes, or sharp turns! Identify which of the following could be the graph of a polynomial function. The polynomial functions that have the simplest graph are of the form ( is an integer) Polynomial functions of this form are called. If is even, the graph of is similar to the graph of. If is odd, the graph of is similar to the graph of. The greater the value of, the the graph near the origin. Example 1 Sketch the graph of each polynomial function. (a) (b)

47 44 Section 2.2 The Leading Coefficient Test (for determining End Behavior ) As moves without bound to the left or to the right, the graph of the polynomial function eventually rises or falls in the following manner. 1. When is odd: Leading coefficient is positive Leading coefficient is negative The graph to the left and to the right. The graph to the left and to the right. 2. When is even: Leading coefficient is positive Leading coefficient is negative The graph to the left and to the right. The graph to the left and to the right.

48 Section The following function notation is often used to indicate end behavior of a graph: Falls to the left: Falls to the right: Rises to the left: Rises to the right: Example 2 Describe the right-hand and left-hand behavior of the graph. If is a polynomial function and is a real number, the following are equivalent (TFAE): Consider the graph of below. Observe the number of turning points, where the graph crosses the -axis, and where the graph touches the -axis. Factored form :

49 46 Section 2.2 For a polynomial function of degree, 1. has real zeros 2. The graph of has turning points. Repeated Zeros A factor yields a repeated zero of multiplicity. 1. If the multiplicity is odd, the graph the -axis at. 2. If the multiplicity is even, the graph the -axis at. Note: If the multiplicity, the graph will also at How to Sketch the Graph of a Polynomial Function

50 Section Example 3 Sketch the graph of the function by applying the Leading Coefficient Test, finding the zeros of the polynomial, and plotting any additional points as necessary. (a) (b)

51 48 Section 2.2 The Intermediate Value Theorem Let and be real numbers such that. If is a polynomial function such that, then, in the interval, takes on every value between and. Example 4 Use the Intermediate Value Theorem to approximate the real zero of given the following table of values.

52 Section Polynomial and Synthetic Division Example 1 Use long division to divide. Example 2 Use long division to divide. If you need to review the long division process, also refer to Examples 1, 2 and 3 in the book.

53 50 Section 2.3 Synthetic Division is a consolidated algorithm (a.k.a. short-cut) for dividing a polynomial by (where is any constant). Illustrative Example Divide by. Solution: Example 3 Use synthetic division to divide. Example 4 Consider. (a) Divide by. Then compare your answer with the function value. (b) Divide by. Then compare your answer with the function value.

54 Section From Example 4, we observe the following: The Remainder Theorem If a polynomial is divided by, the remainder is. Example 5 Use the Remainder Theorem and synthetic division to evaluate if Now, suppose is a zero of, so that. Then by the remainder theorem, when is divided by, the remainder is. But this implies. The Factor Theorem A polynomial has a factor if and only if. Example 6 Determine if is a factor of.

55 52 Section 2.3 Example 7 Use synthetic division to show that and are solutions of the equation Then use the result to factor the polynomial completely. List all real solutions of the equation.

56 Section Complex Numbers History of Numbers as Solutions to Equations Integers rational numbers irrational numbers imaginary numbers Historical Note: Imaginary numbers were first conceived and defined by the Italian mathematician Gerolamo Cardano ( ), who called them fictitious. We now know the applications extend to engineering, physics, and applied mathematics. Cardano was a friend of Leonardo da Vinci. Definition The imaginary unit is the number whose square is. That is, Definition Complex numbers are numbers of the form, where and are real numbers. The number The number is called the. is called the.* (*Other books define the imaginary part to be, not ) *Note: Write instead of, and instead of. Powers of

57 54 Section 2.4 Example 1 Evaluate. Equality of Complex Numbers if and only if and Sum or Difference of Complex Numbers Example 2 Product of Complex Numbers To find the product of two complex numbers, follow the usual rules for multiplying two binomials: FOIL Example 3

58 Section Definition and are called. Example 4 Multiply the number by its complex conjugate. We use conjugates to write the quotient of complex numbers in standard from Example 5 Write the quotient in standard form ( ). Definition If is a positive real number, the principal square root of, denoted by, is defined as

59 56 Section 2.4 Example 6 Write the complex number in standard form. Example 7 Perform the indicated operation and write the result in standard form. Example 8 Solve using the quadratic formula.

60 Section Zeros of Polynomial Functions The Fundamental Theorem of Algebra (FTA) If is a polynomial with positive degree, then. Historical Note: The FTA was proved by arguably one of the greatest mathematicians/physicists of all time, Carl Friedrich Gauss ( ). The proof is beyond the scope of this class. Now observe the following: If is a polynomial of degree, then by the FTA,. Then by Factor Theorem,. Thus, By the FTA again,. Then by Factor Theorem,. Thus, We can continue this process until is completely factored Linear Factorization Theorem If is an th-degree polynomial, then. ie. A polynomial of degree has exactly zeros. (The zeros may be real or complex, and they may be repeated) Example 1 List all the zeros of the function.

61 58 Section 2.5 Descartes Rule of Signs Suppose is a polynomial with real coefficients. 1) If the formula for has variations in sign, there are either, or etc. positive real zeros of. 2) If the formula for has variations in sign, there are either, or etc. negative real zeros of. *A variation in sign means that two consecutive coefficients have opposite signs. Example 2 Describe the possible real zeros of each function. (a) (b) Rational Zero Test Suppose is a polynomial with integer coefficients. Then the possible rational zeros are all numbers of the form where is a factor of and is a factor of. Example 3 List the possible rational zeros of the function.

62 Example 4 Find all the rational zeros of the function. Section

63 60 Section 2.5 Example 5 Find all solutions of the polynomial equation.

64 Section Definitions A quadratic factor with no real zeros is said to be irreducible over the reals. Example: A quadratic factor with no rational zeros is said to be irreducible over the rationals. Example: Example 6 Write (a) as the product of factors that are irreducible over the rationals. (b) as the product of linear and quadratic factors that are irreducible over the reals. (c) in completely factored form. The Conjugate Pairs Theorem If the polynomial function has real coefficients, and is a zero ( ), then is also a zero. Example 7 Find a polynomial function with real coefficients that has the given zeros: and

65 62 Section 2.5 Example 8 Find all the zeros of given that is a zero. Then write the polynomial as a product of linear factors.

66 Section Definition: A rational function can be written in the form 2.6 Rational Functions where and are polynomials and. Example 1 Find the domain of and discuss the behavior of using limit notation. Domain: Limits:

67 64 Section 2.6 Definition of Vertical and Horizontal Asymptotes 1. The line is a vertical asymptote of the graph of if or as, either from the right or from the left. 2. The line is a horizontal asymptote of the graph of if as or. How to Find Vertical Asymptotes and Holes 1. Write the rational function in lowest terms by factoring and canceling common factors. 2. The graph of will have holes at any zeros which were common to both numerator and denominator and thus canceled out. 3. The graph of will have vertical asymptotes at the zeros of the simplified denominator. Example 2 Find any vertical asymptotes and/ or holes of the graph: (a) (b) (c)

68 Section How to Find Horizontal/Slant Asymptotes: Let be the rational function given by 1. If, the line (the -axis) is a horizontal asymptote. 2. If, the line (the ratio of leading coefficients) is a horizontal asymptote. 3. If is exactly one more than, there is a slant asymptote which is found using long division: Example: Since as the the slant asymptote is. 4. If is two or more than, there is no horizontal or slant asymptote. Example 3 Find any horizontal/slant asymptotes of the graphs: (a) (b) (c)

69 66 Section 2.6 How to Graph a Rational Function Let, where and are polynomials. 1. Find and sketch the horizontal/slant asymptote, if any. 2. Simplify, if possible (factor and cancel common factors). Write for the zeros of any common factors that were canceled. There will be holes in the graph at these values. 3. Find and sketch the vertical asymptote(s), if any. 4. Find and plot the - and - intercepts. 5. Use the - intercepts and vertical asymptotes to divide the -axis into intervals. Evaluate at one test point in each interval, emphasizing if the value is or. Plot these points on the graph. 6. Use smooth curves to complete the sketch of the graph. Use the following guidelines: The graph must remain above the -axis for intervals where the test value was, and below the - axis for intervals where the text value was. The graph must never cross a vertical asymptote, but should go to near it. The graph must approach any horizontal or slant asymptote as. Don t forget to indicate any holes on the graph!

70 Section Example 4 Graph

71 68 Section 2.6 Example 5 Graph

72 Section Example 6 Graph

73 70 Section Exponential Functions and Their Graphs An exponential function with base is denoted by where, and is any real number. 1. Graph by plotting points. x f( x) 2 x Graph by plotting points. x f( x) x

74 Section The graph of f ( x) a x x If a 1, then f ( x) a is increasing. If 0 a 1, then f ( x) a is decreasing. x (0,1) (1, a ) (0,1) (1, a ) Base e There is a certain irrational exponential base which occurs frequently in calculus applications, the number e. Definition: The number e is defined as n ,000 1,000,000 1 e lim 1 n n 1 1 n 1 n , , ,000,000 n 1,000, As n gets larger, the approximation for e gets better! For all intents and purposes, we can think of e as approximately x Since e 1, the graph of f ( x) e is an increasing exponential function.

75 72 Section 3.1 Graphing Exponential Functions There are two techniques that can be used to sketch the graph of an exponential function. The following two examples illustrate these techniques. Example 1 Construct a table of values. Then sketch the graph of Example 2 Use transformations to sketch the graph of

76 Section Principal Total amount borrowed (or invested) Compound Interest Compound Interest When interest due (or earned) at the end of a payment period is added to the principal, so that the interest computed at the end of the next payment period is based on this new higher principal amount (old principal + interest), interest is said to have been compounded. Annually 1 time per year Semiannually 2 times per year Quarterly 4 times per year Monthly 12 times per year Daily 365* times per year *In practice, most banks use a 360-day year Simple Interest Formula If a principal of P dollars is borrowed (or invested) for a period of t years at an annual interest rate r, expressed as a decimal, the interest I charged (or earned) is: Suppose we invest $100 in a Money Market account at an annual interest rate 6% for 1 year 1) If interest is compounded annually, then: At the end of 1 year, we will earn the following in simple interest: I Prt =100(0.06)(1) = $6 2) If, however, interest is compounded semiannually, then: After 6 months (1/2 year), we will earn the following in simple interest: 1 I Prt = 100(0.06) 2 = $3 Compounding #1 Assuming this earned interest remains in the Money Market account, the new higher principal amount is now: $100 $3 =$103 After another 6 months, we will earn the following in simple interest: 1 I Prt = 103(0.06) 2 = $3.09 Compounding #2 So TOTAL interest earned after 1 year is $3 $3.09 = $6.09

77 74 Section 3.1 So we earned more than 6% interest annually with semiannually compounding because the interest earned after the first compounding (6 months) made the principal HIGHER for the second compounding!! In fact, since we started with $100 and earned a total of $6.09 in interest after semiannually compounding, we effectively earned 6.09% simple interest after 1 year. We call 6.09% the effective interest rate. Compound Interest Formula The balance A in an account after t years due to a principal P invested at an annual interest rate r (in decimal form) compounded n times per year is: What happens to the balance as the number of times interest is compounded per year gets larger and larger?? In other words, what happens as n? n 1 r r Recall, e lim 1. In general, e lim 1 n n n n. Hence, nt n r r A P 1 P 1 P e n n t r t as n n Continuous Compounding Formula The balance A in an account after t years due to a principal P invested at an annual interest rate r (in decimal form) compounded continuously is :

78 Example 3 Find the balance in an account after 10 years if is invested at 3% interest compounded a) monthly Section b) continuously

79 76 Section Logarithmic Functions and Their Graphs Since the exponential function function: is one-to-one, we can compute the inverse Step 1: Replace by. Step 2: Interchange x and y. Step 3: Solve for y. It would be helpful to have a function that would give the power of such a function and give it the name logarithmic function! that produces x. We create Note: Since is positive for all y, we have the result that for, x must be positive! Logarithmic Function If and, then for we have the following: if and only if The function given by is called the logarithmic function with base. Memory Device: Logarithmic form into EXPONENTIAL form log b x y means Logarithmic Form Exponential Form Exponential form into LOGARITHMIC form means

80 Section Example 1 Write each equation in exponential form. (a) (b) (c) Example 2 Write each equation in logarithmic form. (a) (b) (c) If the base of a logarithmic function is 10, we call this the common logarithmic function: *Note: If the base of a logarithm is not indicated, it is understood to be 10. If the base of a logarithmic function is e, we call this the natural logarithmic function: *Note: This function occurs so frequently in applications that it is given a special symbol, ln. Example 3 Evaluate the function at the indicated value of without using a calculator. (a) ; (b) ; Example 4 Use a calculator to evaluate at. Round your result to three decimal places.

81 78 Section 3.2 Properties of logarithms and 4. If then. Example 5 Use the properties of logarithms to simplify the expression. (a) (b) (c) Graphs of Logarithmic Functions Example 6 The graph of is provided below. Sketch the graph of: Step 1. Replace with. Step 2. Rewrite in exponential form. Step 3. Plot points and graph. x y

82 Section Example 7 The graph of is provided below. Sketch the graph of: Step 1. Replace with. Step 2. Rewrite in exponential form. Step 3. Plot points and graph. x y Note: All logarithmic functions pass through the points and and have the y-axis as a vertical asymptote. If, then is increasing. If, then is decreasing.

83 80 Section 3.2 We can apply transformations to graph logarithmic functions. Example 8 Sketch the graph of. Also, find the domain, -intercept, and vertical asymptote. Example 9 Sketch the graph of Also, find the domain, -intercept, and vertical asymptote.

84 Section Properties of Logarithms Here are some more properties of logarithms (the derivations are in the book on page 278). Do they remind you of rules of exponents? 1. Product Property 2. Quotient Property 3. Power Property Example 1 Assume that x, y, and z are positive numbers. Use the properties of logarithms to expand the expression as a sum, difference, and/or constant multiple of logarithms. (a) (b) (c)

85 82 Section 3.3 Example 2 Assume that x, y, z, and b are positive numbers. Use the properties of logarithms to condense the expression to the logarithm of a single quantity. (a) (b) Most calculators only have ln and log keys. So how should we approximate calculator when a is neither e nor 10? of a value on a Change-of-Base Formula Change to exponential form: Derivation of Change-of-Base Formula: Let Take the of both sides : Apply Power Property: Solve for y : Example 3 Use the Change-of-Base Formula and a calculator to evaluate the following logarithm. Round your answer to three decimal places.

86 Section Exponential and Logarithmic Equations Strategies for Solving Exponential and Logarithmic Equations 1. If possible, rewrite the original equation in a form that allows the use of the One-to-One Property of exponential or logarithmic functions. Example 1 Example 2 Solve: Solve: 2. To solve an exponential equation, take the log or ln of both sides. Note it may be necessary to isolate the exponential term first. Then apply the Power Property of logarithms. To solve a logarithmic equation, condense all logarithms into a single logarithm on one side of the equation, and then rewrite the equation in exponential form. Remember to check a logarithmic equation for extraneous solutions!! Example 3 Example 4 Solve: Solve:

87 84 Section 3.4 Example 5 Solve.

88 Section Exponential and Logarithmic Models Example 1 An initial investment of $10,000 in a savings account in which interest is compounded continuously doubles in 12 years. What is the annual % rate? Example 2 Determine the time necessary for $100 to triple if it is invested at 4.5% compounded monthly.

89 86 Section 3.5 Law of Exponential (or Uninhibited) Growth/Decay Many natural phenomena have been found to follow the law that an amount according to the models (growth) or (decay) varies with time where is the growth or decay rate, and is the initial quantity at time. Doubling time = Time for a population to double. Half-life = Time for a radio-active substance to decay to half the original amount. Example 3 The radioactive isotope decays exponentially with a half-life of 1599 years. After 1000 years, only 1.5 g of a sample remain. What was the initial quantity?

90 Section Example 4 The number of bacteria in a culture is modeled by where is the time in hours. If when, estimate the time required for the population to double in size.

91 88 Section 3.5 Other Applications Example 5 Find the exponential model whose graph passes through the points and. Example 6 Use the acidity model given by where acidity (ph) is a measure of the hydrogen ion concentration for a solution in which. of a solution, to compute

92 Section Graphs of Sine and Cosine Functions One complete revolution of the unit circle is 2, after which values of sine and cosine begin to repeat. The sine and cosine functions are periodic functions with period. Symmetric about Function Symmetric about Function The amplitude of a periodic function is half the distance between the maximum and minimum values of the function. The functions and have amplitude and period. Explanation: Notice that when a is negative, the graph is reflected in the x-axis.

93 90 Section 4.5 Example 1 Find the period and amplitude. (a) (b) To sketch the graph of * 1. Method #1 Rewrite by factoring out of the parentheses. Use the horizontal shift units and period to find an interval of one period. -OR- Method #2 Solve the 3-part inequality to find an interval of one period. 2. Divide the period-interval into four equal parts to locate the 5 key points on the graph. 3. Either evaluate the function at the 5 key points on the graph, or use your knowledge of the parent function, reflections, the vertical shift units, and the amplitude to complete the sketch of the graph. *The process above may also be used to graph any transformation of.

94 Section Example 2 Sketch the graph of. (Include two full periods.) Example 3 Sketch the graph of. (Include two full periods.)

95 92 Section 4.5 Example 4 After exercising for a few minutes, a person has a respiratory cycle for which the velocity of air flow is approximated by, where is the time (in seconds). (a) Find the time for one full respiratory cycle. (b) Find the number of cycles per minute. (c) Sketch the graph of the velocity function.

96 Section Graphs of Other Trigonometric Functions Let s graph y tan x: x sin x cos x /2 1 0 sin x y tan x cos x undefined 1 0 /3 3 / 2 1/ 2 3 /4 2 / 2 2 / /6 1/ 2 3 / /6 1/ 2 3 / /4 2 / 2 2 / /3 3 / 2 1/ 2 / / 3 3 / 2 1/ / 4 2 / 2 2 / 2 5 / 6 1/ 2 3 / / 6 1/ 2 3 / 2 5 / 4 2 / 2 2 / / 3 3 / 2 1/ 2 3 / undefined Domain: Range: Period: Vertical Asymptotes: Symmetry:

97 94 Section 4.6 Let s graph y cot x: x sin x cos x 0 1 cos x y cot x sin x undefined / 6 1/ 2 3 / / 4 2 / 2 2 / / 3 3 / 2 1/ 2 2 /2 1 0 /3 3 / 2 1/ 2 1 /4 2 / 2 2 / 2 /6 1/ 2 3 / /6 1/ 2 3 / 2 1 /4 2 / 2 2 / 2 /3 3 / 2 1/ 2 2 / / 3 3 / 2 1/ / 4 2 / 2 2 / 2 5 / 6 1/ 2 3 / undefined Domain: Range: Period: Vertical Asymptotes: Symmetry:

98 Section To sketch the graph of * 4. Solve the 3-part inequality to find an interval of one period and establish two consecutive vertical asymptotes. 5. At the midpoint between two consecutive vertical asymptotes is an -intercept of the graph. Plot this point as well as two other points. 6. Sketch at least one additional cycle to the left or right. To sketch the graph of * 1. Solve the 3-part inequality to find an interval of one period and establish two consecutive vertical asymptotes. 2. At the midpoint between two consecutive vertical asymptotes is an -intercept of the graph. Plot this point as well as two other points. 3. Sketch at least one additional cycle to the left or right. *Note that Steps 2 and 3 are the same for both graphs. Example 1 Sketch the graph of.

99 96 Section 4.6 Example 2 Sketch the graph of. Graphs of the Reciprocal Functions To get the graphs of the reciprocal functions and, we first sketch and then take the reciprocals of the - coordinates. *Note that is undefined whenever and is undefined whenever

100 Section Example 3 Sketch the graph of. Example 4 Sketch the graph of.

101 98 Section Inverse Trigonometric Functions Sketch a quick graph of. Does the function have an inverse function? However, if we restrict the domain to the interval, then the restricted domain and thus we can define the inverse function! is 1-1 on Recall, in general, if and only if. Inverse Sine Function Restriction: Domain of = Range of = The graph of the inverse sine function is obtained by reflecting the restricted sine function about the line. Sketch the graph of

102 Section Example 1 If possible, find the exact value. a) b) c) ******************************************************************************** Sketch a quick graph of. Does the function have an inverse function? However, if we restrict the domain to the interval, then is 1-1 on the restricted domain and thus we can define the inverse function! Inverse Cosine Function Restriction: Domain of = Range of =

103 100 Section 4.7 The graph of the inverse cosine function is obtained by reflecting the restricted cosine function about the line. Sketch the graph of Example 2 If possible, find the exact value. a) b) c)

104 Section ******************************************************************************** Sketch a quick graph of. Does the function have an inverse function? However, if we restrict the domain to the interval, then is 1-1 on the restricted domain and thus we can define the inverse function! Inverse Tangent Function Restriction: Domain of = Range of = The graph of the inverse tangent function is obtained by reflecting the restricted tangent function about the line. Sketch the graph of

105 102 Section 4.7 Example 3 If possible, find the exact value. a) b) c) Example 4 Use a calculator to approximate the value (if possible). a) b) Example 5 Write as a function of. 5

106 Section Example 6 Evaluate the expression. a) b) c) Example 7 Find the exact value of the expression. a) b) c) Example 8 Write an algebraic expression that is equivalent to the expression.

107 104 Section Using Fundamental Identities Fundamental Trigonometric Identities Reciprocal Identities Quotient Identities Pythagorean Identities Divide by : Divide by : Cofunction Identities Even/Odd Identities

108 Section Example 1 Given the values and, evaluate all six trig functions. Method #1) Draw triangle Method #2) Use the identities

109 106 Section 5.1 Example 2 Simplify: a) b) c) Example 3 Factor, then simplify. a) b)

110 Section Example 4 Perform the indicated operation, then simplify. a) b) Example 5 Use the trig. substitution to write the algebraic expression as a trig function of, where,

111 108 Section Verifying Trigonometric Identities Guidelines for Verifying Trig Identities: 1. Work with one side of the equation at a time. Start with the more complicated side. Keep in mind the goal is to simplify this side to look like the other side of the equation! 2. Look for opportunities to factor an expression, find a common denominator to add fractions, or create a monomial denominator by multiplying numerator and denominator by the same quantity. 3. Use the reciprocal/quotient identities to convert all terms to sines and cosines if this helps simplify the expression. 4. If both sides are complicated, work each side separately to obtain a common 3 rd expression. Example 1 Verify the identity: Example 2 Verify the identity:

112 Example 3 Verify the identity: Section

113 110 Section 5.2 Example 4 Verify the identity:

114 Section Solving Trigonometric Equations When solving a trigonometric equation, your primary goal is to isolate the trigonometric function involved in the equation. It may be necessary to do one or more of the following: 1) arrange all terms on one side of the equation and factor 2) rewrite the equation with a single trig function using the identities 3) square both sides and remember to check your answer for extraneous solutions ******************************************************************************** Example 1 Solve the equation Example 2 Solve the equation

115 112 Section 5.3 Example 3 Find all solutions of the equation in the interval. Example 4 Find all solutions of the equation in the interval.

116 Section To solve equations involving trigonometric functions of multiple angles of the forms, first solve the equation for. Then isolate. and Example 5 Solve the equation Example 6 Solve the equation

117 114 Section Sum and Difference Formulas Sum and Difference Formulas*: *Proofs are on page 424 in the book. Example 1 Find the exact value of a) b)

118 Section Example 2 Find the exact value of Example 3 Find the exact value of given that and. (Both and are in Quadrant IV.)

119 116 Section 5.4 Example 4 Verify the cofunction identity

120 Section Multiple-Angle and Product-to-Sum Formulas Double-Angle Formulas: Derivation of Double-Angle Formula for Sine: (The others are derived similarly.) Example 1 Find using the figure.

121 118 Section 5.5 Example 2 Solve in the interval. Example 3 Use the following to find.

122 Section Power-Reducing Formulas: Derivation of Power-Reducing Formula for Sine: (The others are derived similarly.) Example 4 Rewrite in terms of the first power of cosine.

123 120 Section 5.5 Half-Angle Formulas*: The sign depends on the quadrant in which lies. *To derive, replace with in the power reducing formulas. Example 5 ind Example 6 ind given

124 Section Product-to-Sum Formulas*: *may be verified using the sum and difference formulas in the preceding section Example 7 Write the product as a sum or difference. Sum-to-Product Formulas*: *Proofs are on page 426 in the book. Slightly complicated substitution is required.

125 122 Section 5.5 Example 8 Write the sum as a product. Example 9 Verify the identity.

126 Section Vectors in the Plane Quantities such as force and velocity involve both magnitude and direction. We represent such quantities by a vector: Terminal point (Tip) Initial point (Tail) Its magnitude (or length) is denoted by and can be found using the distance formula. Vectors have no fixed orientation in the plane. They may be translated up down left or right. All that defines a vector is its direction (angle) and magnitude (length). Equal Not Equal Not Equal Same Magnitude Different Magnitudes Different Directions Same Direction When we position a vector in the plane such that its initial point (or tail) is at the origin, we say that the vector is in standard position. (Many books call such a vector a position vector). The component form of a vector is: where and is the horizontal component is the vertical component. Note: A vector with initial point and terminal point has component form and magnitude If, then is called a unit vector. If, then is called the zero vector and denoted.

127 124 Section 6.3 Example 1 Find the component form and the magnitude of the vector with initial point and terminal point. The negative (or opposite) of is the vector which has the same magnitude, but opposite direction. The scalar multiple of times is the vector which has magnitude times the magnitude of. The sum of and is the vector, often referred to as the resultant vector, which is formed by placing the initial point of at the terminal point of ( tip to tail ). This is represented using the parallelogram law: Note: The difference of and is the vector

128 Section Example 2 Let and. Find and sketch the following: (a) (b) (c) Properties of Vector Addition and Scalar Multiplication Let, and be vectors and let and be scalars. Then the following properties are true and 9. If we divide a vector by its magnitude, the resulting vector has a magnitude of 1 and the same direction as. The vector is called a unit vector in the direction of. Example 3 Find a unit vector in the direction of.

129 126 Section 6.3 The unit vectors and are called the standard unit vectors and are denoted by and Sketch and : In fact, any vector may be represented as a linear combination of the standard unit vectors as follows: Example 4 Sketch the vector. Then write the component form of. Example 5 Let and. Find.

130 Section If is a unit vector in standard position, then it s tip lies on the unit circle. Label the diagram: The angle is the direction angle of the vector. If is any vector that makes an angle with the positive -axis, then is the scalar multiple of times, where is the unit vector with direction angle. Note: If has direction angle, then.

131 128 Section 6.3 Example 6 Find the magnitude and direction angle of the vector: a) b) Example 7 Find the component form of given its magnitude and the angle it makes with the positive -axis. and Example 8 Find the component form of the sum of and with direction angles and.,,

132 Section Vectors and Dot Products Definition The dot product of and is Example 1 Find the dot product of and. Properties of the Dot Product *There are other properties listed in the book, but we will only study these ones. Proof of Property 1: Proof of Property 2: Proof of Property 3: Example 2 Use the dot product to find the magnitude of.

133 130 Section 6.4 The Angle Between Two Vectors If is the angle ( ) between two nonzero vectors and, then Or alternatively, *The proof is on page 492 in the book and uses Law of Cosines. Example 3 Find the angle between and. Example 4 Use vectors to find the interior angles of the triangle with the given vertices:

134 Section Note, if the angle between and is a right angle (or ), then Definition The vectors and are orthogonal if Example 5 Determine whether and are orthogonal, parallel, or neither. *Note: Two vectors are parallel if one vector can be written as a scalar multiple of the other. a) and b) and

135 132 Section Trigonometric Form of a Complex Number The Complex Plane We may represent any complex number as the point in the complex plane as follows: Plot: (a) (b) Definition The absolute value of the complex number is Example 1 Find the absolute value of.

136 Section Trigonometric Form of a Complex Number Find expressions for and in terms of and. The trigonometric (or polar) form of the complex number is The number is the of, and is called an of. Note: The trigonometric form is not unique since there are infinitely many choices for. However normally is given in radians and restricted to the interval.

137 134 Section 6.5 Example 2 Write the complex number in trigonometric form. a) b) Example 3 Write the complex number in standard form.

138 Section Suppose we are given two complex numbers: and Find the product. Product and Quotient of Two Complex Numbers Let and be complex numbers. In words, to find the product,. In words, to find the quotient,.

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

Estimated Pre Calculus Pacing Timeline

Estimated Pre Calculus Pacing Timeline Estimated Pre Calculus Pacing Timeline 2010-2011 School Year The timeframes listed on this calendar are estimates based on a fifty-minute class period. You may need to adjust some of them from time to

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions. Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations

More information

2312 test 2 Fall 2010 Form B

2312 test 2 Fall 2010 Form B 2312 test 2 Fall 2010 Form B 1. Write the slope-intercept form of the equation of the line through the given point perpendicular to the given lin point: ( 7, 8) line: 9x 45y = 9 2. Evaluate the function

More information

PRE-CALCULUS GRADE 12

PRE-CALCULUS GRADE 12 PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary) Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

More information

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

More information

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University

More information

What are the place values to the left of the decimal point and their associated powers of ten?

What are the place values to the left of the decimal point and their associated powers of ten? The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

More information

How To Understand And Solve Algebraic Equations

How To Understand And Solve Algebraic Equations College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides

More information

Dear Accelerated Pre-Calculus Student:

Dear Accelerated Pre-Calculus Student: Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also

More information

Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks

Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Algebra 2 Year-at-a-Glance Leander ISD 2007-08 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks

More information

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

More information

Week 13 Trigonometric Form of Complex Numbers

Week 13 Trigonometric Form of Complex Numbers Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working

More information

SAT Subject Math Level 2 Facts & Formulas

SAT Subject Math Level 2 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses

More information

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

More information

of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433 Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

More information

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31

More information

Some Lecture Notes and In-Class Examples for Pre-Calculus:

Some Lecture Notes and In-Class Examples for Pre-Calculus: Some Lecture Notes and In-Class Examples for Pre-Calculus: Section.7 Definition of a Quadratic Inequality A quadratic inequality is any inequality that can be put in one of the forms ax + bx + c < 0 ax

More information

Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds

Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative

More information

MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!

MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing! MATH BOOK OF PROBLEMS SERIES New from Pearson Custom Publishing! The Math Book of Problems Series is a database of math problems for the following courses: Pre-algebra Algebra Pre-calculus Calculus Statistics

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

http://www.aleks.com Access Code: RVAE4-EGKVN Financial Aid Code: 6A9DB-DEE3B-74F51-57304

http://www.aleks.com Access Code: RVAE4-EGKVN Financial Aid Code: 6A9DB-DEE3B-74F51-57304 MATH 1340.04 College Algebra Location: MAGC 2.202 Meeting day(s): TR 7:45a 9:00a, Instructor Information Name: Virgil Pierce Email: piercevu@utpa.edu Phone: 665.3535 Teaching Assistant Name: Indalecio

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

Graphing Trigonometric Skills

Graphing Trigonometric Skills Name Period Date Show all work neatly on separate paper. (You may use both sides of your paper.) Problems should be labeled clearly. If I can t find a problem, I ll assume it s not there, so USE THE TEMPLATE

More information

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: A-APR.3: Identify zeros of polynomials

More information

Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry

Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

More information

Polynomial Operations and Factoring

Polynomial Operations and Factoring Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

More information

Understanding Basic Calculus

Understanding Basic Calculus Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Florida Math for College Readiness

Florida Math for College Readiness Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness

More information

Administrative - Master Syllabus COVER SHEET

Administrative - Master Syllabus COVER SHEET Administrative - Master Syllabus COVER SHEET Purpose: It is the intention of this to provide a general description of the course, outline the required elements of the course and to lay the foundation for

More information

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

More information

Math 1. Month Essential Questions Concepts/Skills/Standards Content Assessment Areas of Interaction

Math 1. Month Essential Questions Concepts/Skills/Standards Content Assessment Areas of Interaction Binghamton High School Rev.9/21/05 Math 1 September What is the unknown? Model relationships by using Fundamental skills of 2005 variables as a shorthand way Algebra Why do we use variables? What is a

More information

Logarithmic and Exponential Equations

Logarithmic and Exponential Equations 11.5 Logarithmic and Exponential Equations 11.5 OBJECTIVES 1. Solve a logarithmic equation 2. Solve an exponential equation 3. Solve an application involving an exponential equation Much of the importance

More information

Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

More information

HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

More information

CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide

CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide Curriculum Map/Pacing Guide page 1 of 14 Quarter I start (CP & HN) 170 96 Unit 1: Number Sense and Operations 24 11 Totals Always Include 2 blocks for Review & Test Operating with Real Numbers: How are

More information

MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

More information

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

More information

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:

More information

Answer Key for California State Standards: Algebra I

Answer Key for California State Standards: Algebra I Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

More information

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions. Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

More information

MATH 2 Course Syllabus Spring Semester 2007 Instructor: Brian Rodas

MATH 2 Course Syllabus Spring Semester 2007 Instructor: Brian Rodas MATH 2 Course Syllabus Spring Semester 2007 Instructor: Brian Rodas Class Room and Time: MC83 MTWTh 2:15pm-3:20pm Office Room: MC38 Office Phone: (310)434-8673 E-mail: rodas brian@smc.edu Office Hours:

More information

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS (Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving

More information

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1 Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

More information

Extra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam.

Extra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. Extra Credit Assignment Lesson plan The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. The extra credit assignment is to create a typed up lesson

More information

Mathematics Placement

Mathematics Placement Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

More information

Algebra 2: Themes for the Big Final Exam

Algebra 2: Themes for the Big Final Exam Algebra : Themes for the Big Final Exam Final will cover the whole year, focusing on the big main ideas. Graphing: Overall: x and y intercepts, fct vs relation, fct vs inverse, x, y and origin symmetries,

More information

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

More information

Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}

Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11} Mathematics Pre-Test Sample Questions 1. Which of the following sets is closed under division? I. {½, 1,, 4} II. {-1, 1} III. {-1, 0, 1} A. I only B. II only C. III only D. I and II. Which of the following

More information

COLLEGE ALGEBRA LEARNING COMMUNITY

COLLEGE ALGEBRA LEARNING COMMUNITY COLLEGE ALGEBRA LEARNING COMMUNITY Tulsa Community College, West Campus Presenter Lori Mayberry, B.S., M.S. Associate Professor of Mathematics and Physics lmayberr@tulsacc.edu NACEP National Conference

More information

Zeros of a Polynomial Function

Zeros of a Polynomial Function Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

More information

LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

More information

Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0

Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0 College Algebra Review Problems for Final Exam Equations #1-10 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve

More information

MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions

MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions The goal of this workshop is to familiarize you with similarities and differences in both the graphing and expression of polynomial

More information

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

KEANSBURG SCHOOL DISTRICT KEANSBURG HIGH SCHOOL Mathematics Department. HSPA 10 Curriculum. September 2007

KEANSBURG SCHOOL DISTRICT KEANSBURG HIGH SCHOOL Mathematics Department. HSPA 10 Curriculum. September 2007 KEANSBURG HIGH SCHOOL Mathematics Department HSPA 10 Curriculum September 2007 Written by: Karen Egan Mathematics Supervisor: Ann Gagliardi 7 days Sample and Display Data (Chapter 1 pp. 4-47) Surveys and

More information

HIGH SCHOOL: GEOMETRY (Page 1 of 4)

HIGH SCHOOL: GEOMETRY (Page 1 of 4) HIGH SCHOOL: GEOMETRY (Page 1 of 4) Geometry is a complete college preparatory course of plane and solid geometry. It is recommended that there be a strand of algebra review woven throughout the course

More information

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

More information

Algebra II. Weeks 1-3 TEKS

Algebra II. Weeks 1-3 TEKS Algebra II Pacing Guide Weeks 1-3: Equations and Inequalities: Solve Linear Equations, Solve Linear Inequalities, Solve Absolute Value Equations and Inequalities. Weeks 4-6: Linear Equations and Functions:

More information

PreCalculus Curriculum Guide

PreCalculus Curriculum Guide MOUNT VERNON CITY SCHOOL DISTRICT A World Class Organization PreCalculus Curriculum Guide THIS HANDBOOK IS FOR THE IMPLEMENTATION OF THE NYS MATH b CURRICULUM IN MOUNT VERNON. THIS PROVIDES AN OUTLINE

More information

DRAFT. Algebra 1 EOC Item Specifications

DRAFT. Algebra 1 EOC Item Specifications DRAFT Algebra 1 EOC Item Specifications The draft Florida Standards Assessment (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as

More information

Curriculum Map Precalculus Saugus High School Saugus Public Schools

Curriculum Map Precalculus Saugus High School Saugus Public Schools Curriculum Map Precalculus Saugus High School Saugus Public Schools The Standards for Mathematical Practice The Standards for Mathematical Practice describe varieties of expertise that mathematics educators

More information

Unit 1 Equations, Inequalities, Functions

Unit 1 Equations, Inequalities, Functions Unit 1 Equations, Inequalities, Functions Algebra 2, Pages 1-100 Overview: This unit models real-world situations by using one- and two-variable linear equations. This unit will further expand upon pervious

More information

Math Handbook of Formulas, Processes and Tricks. Algebra and PreCalculus

Math Handbook of Formulas, Processes and Tricks. Algebra and PreCalculus Math Handbook of Formulas, Processes and Tricks (www.mathguy.us) Algebra and PreCalculus Prepared by: Earl L. Whitney, FSA, MAAA Version 2.8 April 19, 2016 Copyright 2008 16, Earl Whitney, Reno NV. All

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

More information

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

This is a square root. The number under the radical is 9. (An asterisk * means multiply.) Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

More information

Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

More information

Big Ideas in Mathematics

Big Ideas in Mathematics Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards

More information

The degree of a polynomial function is equal to the highest exponent found on the independent variables.

The degree of a polynomial function is equal to the highest exponent found on the independent variables. DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

More information

Appendix 3 IB Diploma Programme Course Outlines

Appendix 3 IB Diploma Programme Course Outlines Appendix 3 IB Diploma Programme Course Outlines The following points should be addressed when preparing course outlines for each IB Diploma Programme subject to be taught. Please be sure to use IBO nomenclature

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

CAMI Education linked to CAPS: Mathematics

CAMI Education linked to CAPS: Mathematics - 1 - TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to

More information

COLLEGE ALGEBRA. Paul Dawkins

COLLEGE ALGEBRA. Paul Dawkins COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5

More information

MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab

MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring non-course based remediation in developmental mathematics. This structure will

More information

March 2013 Mathcrnatics MATH 92 College Algebra Kerin Keys. Dcnnis. David Yec' Lscture: 5 we ekly (87.5 total)

March 2013 Mathcrnatics MATH 92 College Algebra Kerin Keys. Dcnnis. David Yec' Lscture: 5 we ekly (87.5 total) City College of San Irrancisco Course Outline of Itecord I. GENERAI- DESCRIPI'ION A. Approval Date B. Departrnent C. Course Number D. Course Title E. Course Outline Preparer(s) March 2013 Mathcrnatics

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

More information

Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.

Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 2-49x + 6 x - 6 A) 1, x 6 B) 8x - 1, x 6 x -

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

The program also provides supplemental modules on topics in geometry and probability and statistics.

The program also provides supplemental modules on topics in geometry and probability and statistics. Algebra 1 Course Overview Students develop algebraic fluency by learning the skills needed to solve equations and perform important manipulations with numbers, variables, equations, and inequalities. Students

More information