# 1 Proposition, Logical connectives and compound statements

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Discrete Mathematics: Lecture 4 Introduction to Logic Instructor: Arijit Bishnu Date: July 27, Proposition, Logical connectives and compound statements Logic is the discipline that deals with the methods of reasoning. Intuitively speaking, logic as a subject is the collection of techniques used to prove that an argument is valid. The purpose of studying logic in computer science is to prove theorems and verify the correctness of programs. We would follow [1, 2, 3] for logic in this course. We want to make statements which can be an atomic statement or a compound statement and determine whether the statement is true or false. In that sense, a statement is attached to a truth value. A proposition (or a statement) is a declarative sentence that is either TRUE (denoted as T) or FALSE (denoted as F), but not both. Exercise 1 Consider the statement S : 3 x = 5. Is it a proposition? 2 Logical connectives and compound statements Propositional variables are propositions usually denoted as p, q, r,.... Propositional variables can be combined using logical connectives to obtain compound statements. The truth value of a compound statement depends only on the truth value of the statements and the logical connective. Negation: The negation of p is denoted as p. p is TRUE when p is FALSE. In terms of truth table, we have the following: p p T F Conjunction: The conjunction of p and q is denoted as p q. p q is true when both p and q are true. F T p q p q F T F F F F Disjunction: The disjunction of p and q is denoted as p q. p q is true when either p or q or both are true. 1

2 p q p q T F T F T T F F F Exercise 2 Form the truth table for the compound statement (p q) ( p). 3 Quantifiers Let us recall our definition of sets. We defined sets as the collection of all elements x satisfying a property P (x). In terms of set theoretic notations, {x P (x)}. Consider an element w of this set. Surely, P (w) is true. Consider another element z not in this set. Surely, P (z) is false. P (x) is called to be a predicate or a propositional function. It is a propositional function because each choice of x produces a proposition P (x) that can either be true or false but not both. Example 1 Let A = {x x R and x Π}. Here, the proposition is P (x) : x is a real number less than equal to Π. P (1) is true, so 1 A, but P (400) is false, so 400 A. Example 2 Consider the following piece of C code. unsigned int i,j; while((i <=5 ) && (j >= 6)) { printf("\n Hello World \n"); i++; j--; } The statement i<=5 denotes a predicate or a propositional function as for some values of i, the statement is true. Similarly, with j>=6. With the && sign, we make a conjunction of the two propositional functions to get a new predicate. This predicate acts as a control of how the while loop will run. Universal Quantification: The universal quantification of a predicate P (x) is the statement: for all values of x, P (x) is true, denoted as x P (x). is the universal quantifier. Example 3 Let a predicate P (x) be P (x) : x + x = 2x, x R. So, the universal quantification of P (x), xp (x) is true. Existential Quantification: The existential quantification of a predicate P (x) is the statement: there exists a value of x for which P (x) is true, denoted as xp (x). is the existential quantifier. 2

3 Example 4 Let a predicate P (x) be P (x) : x 2 = 1, x R. So, the existential quantification of P (x), xp (x) is true, as P (1) is true. Consider the propositional function P (y) : y y + 2 = y. P (y) is false. Example 5 This is an example of writing compound predicates. Let P (x) : x is a person; B(x, y) : x is the brother of y; S(x, y) : x is the sister of y. We want to write the predicate: x is the sister of the brother of y. In order to symbolize the predicate, we name a person called z as the brother of y. So, the statement now is: there exists a person z such that x is the sister of z AND z is the brother of y. Thus, the predicate now is: ( z)(p (z) S(x, z) B(z, y)). Now, for a relation between existential quantifier and universal quantifier. Let p be a predicate xp (x). The negation of p is false when p is true and true when p is false. For p to be false, there must be at least one value of x for which P (x) is false. Thus, p is false if x, P (x) is true. On the other hand, if x, P (x) is false, then for every x, P (x) is false, i.e. xp (x) is true. Exercise 3 Are the following two statements always equivalent: z x y p(x, y, z) and x y z p(x, y, z)? Can you give an example of a p(x, y, z) to show that the two statements are not equivalent? 4 Conditional statements Let us first look at what are necessary and sufficient conditions. Sufficient condition: We start with an example. Example 6 Consider the following statement. If } a natural number {{ n is even}, then p n is divisible by 2. Look at the statement p : a natural number n is even, and the }{{} q statement q : n is divisible by 2. We say that p is a sufficient condition for q. Let p and q be two statements. We say that p is a sufficient condition for q when p being true implies q is true. Formally, a statement p is a sufficient condition of a statement q if p implies ( ) q. Another example. If you are studying M. Tech. (CS) at ISI then you have cleared the ISI entrance test. One more example. If x is a rational number, then x is real. In all the above examples, let p be the first statement and q be the second one. We can see that p q. Let us explore a feature that is emerging from all the above examples. Let S(p) be the set of objects for which p holds true and S(q) be the set of objects for which q holds true. Then, S(p) S(q). 3

4 Necessary condition: We start with an example. Example 7 Consider the following statement. If a natural number n > 2 is prime, }{{} q then n} is{{ odd}. Look at the statement p : n is odd, and the statement q : a natural p number n greater than 2 is prime. We say that p is a necessary condition for q. A necessary condition of a statement must be satisfied for the statement to be true. Let p and q be two statements. p is a necessary condition of q if q implies ( ) p. The contrapositive of a statement q p is p q. Then, we have another interpretation of a necessary statement: p is not true implies q is not true. As before, let S(p) be the set of objects for which p holds true and S(q) be the set of objects for which q holds true. Then, S(p) S(q). Necessary and sufficient condition: We say that a statement p is necessary and sufficient for q if p is necessary for q and p is sufficient for q. We also say p if and only if q which is denoted as p q. So, to prove p is a necessary and sufficient condition for q, we have to prove both p q and q p. We next look at truth tables of the compound statements corresponding to the conditional ( ) and biconditional ( ). Conditional statement: Let p and q be statements. Then, the compound statement: if p, then q, denoted as p q is called a conditional statement or an implication. p is said to be the hypothesis or antecedent and q is said to be the consequent or conclusion. if then is a connective. The compound statement p q is true asserts the following: if p is true, then q will also be found to be true. p q means q is a necessary condition for p. The converse of the statement p q is q p. Let us look at the truth table: p q p q F T T F F T Exercise 4 Using truth table, verify that p q and q p are the same implications. Biconditional statement: Let p and q be statements. Then, the compound statement: p if and only if q, denoted as p q is called a biconditional statement or an equivalence. The compound statement p q is true only when both p and q are true or when both p and q are false. p q means p is a necessary and sufficient condition for q. Let us look at the truth table: 4

5 p q p q F T F F F T Exercise 5 Compute the truth table for (p q) ( q p). Tautology and contradiction A statement that is true for all possible values of its propositional variables is called a tautology. A statement that is always false is called a contradiction. p and q are logically equivalent, denoted as, if p q is a tautology. Exercise 6 Prove the commutative, associative, distributive, idempotent properties and De Morgan s law using the notion of equivalence. Exercise 7 Show that ((p r) (q r)) ((p q) r) is a tautology. (p q) ( p q) (p q) ( q p) (p q) (p q) (q p) (p q) (p q) (p q) ((p q) (q p)) ( x p(x)) ( x ( p(x))) ( x p(x)) ( x ( p(x))) References [1] C. L. Liu, Elements of Discrete Mathematics, Tata McGraw Hill, New Delhi, [2] B. Kolman, R. C. Busby, S. C. Ross and N. Rehman, Discrete Mathematical Structures Pearson Education. [3] Elliott Mendelson, Introduction to Mathematical Logic, Litton Educational Publishing Inc. 5

### CHAPTER 1. Logic, Proofs Propositions

CHAPTER 1 Logic, Proofs 1.1. Propositions A proposition is a declarative sentence that is either true or false (but not both). For instance, the following are propositions: Paris is in France (true), London

### Handout #1: Mathematical Reasoning

Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or

### Section 1. Statements and Truth Tables. Definition 1.1: A mathematical statement is a declarative sentence that is true or false, but not both.

M3210 Supplemental Notes: Basic Logic Concepts In this course we will examine statements about mathematical concepts and relationships between these concepts (definitions, theorems). We will also consider

### DISCRETE MATHEMATICS W W L CHEN

DISCRETE MATHEMATICS W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It is available free

### Discrete Mathematics, Chapter : Propositional Logic

Discrete Mathematics, Chapter 1.1.-1.3: Propositional Logic Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 1.1-1.3 1 / 21 Outline 1 Propositions

### Chapter I Logic and Proofs

MATH 1130 1 Discrete Structures Chapter I Logic and Proofs Propositions A proposition is a statement that is either true (T) or false (F), but or both. s Propositions: 1. I am a man.. I am taller than

### 31 is a prime number is a mathematical statement (which happens to be true).

Chapter 1 Mathematical Logic In its most basic form, Mathematics is the practice of assigning truth to welldefined statements. In this course, we will develop the skills to use known true statements to

### 2. Propositional Equivalences

2. PROPOSITIONAL EQUIVALENCES 33 2. Propositional Equivalences 2.1. Tautology/Contradiction/Contingency. Definition 2.1.1. A tautology is a proposition that is always true. Example 2.1.1. p p Definition

### CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics Lecture 2 Logic: Predicate Calculus 1 Outline Predicates Quantifiers Binding Applications Logical Equivalences 2 Predicates In mathematics arguments, we will often see sentences

### n logical not (negation) n logical or (disjunction) n logical and (conjunction) n logical exclusive or n logical implication (conditional)

Discrete Math Review Discrete Math Review (Rosen, Chapter 1.1 1.6) TOPICS Propositional Logic Logical Operators Truth Tables Implication Logical Equivalence Inference Rules What you should know about propositional

### Propositional Logic. A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not both.

irst Order Logic Propositional Logic A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not both. Are the following sentences propositions? oronto

### Chapter 1 LOGIC AND PROOF

Chapter 1 LOGIC AND PROOF To be able to understand mathematics and mathematical arguments, it is necessary to have a solid understanding of logic and the way in which known facts can be combined to prove

### The Foundations: Logic and Proofs. Chapter 1, Part III: Proofs

The Foundations: Logic and Proofs Chapter 1, Part III: Proofs Rules of Inference Section 1.6 Section Summary Valid Arguments Inference Rules for Propositional Logic Using Rules of Inference to Build Arguments

### CSE 191, Class Note 01 Propositional Logic Computer Sci & Eng Dept SUNY Buffalo

Propositional Logic CSE 191, Class Note 01 Propositional Logic Computer Sci & Eng Dept SUNY Buffalo c Xin He (University at Buffalo) CSE 191 Discrete Structures 1 / 37 Discrete Mathematics What is Discrete

### CS 441 Discrete Mathematics for CS Lecture 5. Predicate logic. CS 441 Discrete mathematics for CS. Negation of quantifiers

CS 441 Discrete Mathematics for CS Lecture 5 Predicate logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Negation of quantifiers English statement: Nothing is perfect. Translation: x Perfect(x)

### WUCT121. Discrete Mathematics. Logic

WUCT121 Discrete Mathematics Logic 1. Logic 2. Predicate Logic 3. Proofs 4. Set Theory 5. Relations and Functions WUCT121 Logic 1 Section 1. Logic 1.1. Introduction. In developing a mathematical theory,

### CS 441 Discrete Mathematics for CS Lecture 2. Propositional logic. CS 441 Discrete mathematics for CS. Course administration

CS 441 Discrete Mathematics for CS Lecture 2 Propositional logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Course administration Homework 1 First homework assignment is out today will be posted

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 1

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 1 Course Outline CS70 is a course on Discrete Mathematics and Probability for EECS Students. The purpose of the course

### DISCRETE MATH: LECTURE 4

DISCRETE MATH: LECTURE 4 DR. DANIEL FREEMAN 1. Chapter 3.1 Predicates and Quantified Statements I A predicate is a sentence that contains a finite number of variables and becomes a statement when specific

### 2. Methods of Proof Types of Proofs. Suppose we wish to prove an implication p q. Here are some strategies we have available to try.

2. METHODS OF PROOF 69 2. Methods of Proof 2.1. Types of Proofs. Suppose we wish to prove an implication p q. Here are some strategies we have available to try. Trivial Proof: If we know q is true then

### Logic and Proofs. Chapter 1

Section 1.0 1.0.1 Chapter 1 Logic and Proofs 1.1 Propositional Logic 1.2 Propositional Equivalences 1.3 Predicates and Quantifiers 1.4 Nested Quantifiers 1.5 Rules of Inference 1.6 Introduction to Proofs

### Propositional Logic. Definition: A proposition or statement is a sentence which is either true or false.

Propositional Logic Definition: A proposition or statement is a sentence which is either true or false. Definition:If a proposition is true, then we say its truth value is true, and if a proposition is

### Logic, Sets, and Proofs

Logic, Sets, and Proofs David A. Cox and Catherine C. McGeoch Amherst College 1 Logic Logical Statements. A logical statement is a mathematical statement that is either true or false. Here we denote logical

### Discrete Mathematics for Computer Science

CS 441 Discrete Mathematics for CS Discrete Mathematics for Computer Science Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Course administrivia Instructor: Milos Hauskrecht 5329 Sennott Square

### Part A Course Outline

University of Macau Faculty of Science and Technology Department of Computer and Information Science Department of Electrical and Computer Engineering CISB111/ECEB222 Discrete Structures Syllabus 2 nd

### Math 3000 Running Glossary

Math 3000 Running Glossary Last Updated on: July 15, 2014 The definition of items marked with a must be known precisely. Chapter 1: 1. A set: A collection of objects called elements. 2. The empty set (

### Discrete Mathematics Lecture 1 Logic of Compound Statements. Harper Langston New York University

Discrete Mathematics Lecture 1 Logic of Compound Statements Harper Langston New York University Administration Class Web Site http://cs.nyu.edu/courses/summer05/g22.2340-001/ Mailing List Subscribe at

### Inference Rules and Proof Methods

Inference Rules and Proof Methods Winter 2010 Introduction Rules of Inference and Formal Proofs Proofs in mathematics are valid arguments that establish the truth of mathematical statements. An argument

### Chapter 1, Part I: Propositional Logic. With Question/Answer Animations

Chapter 1, Part I: Propositional Logic With Question/Answer Animations Chapter Summary Propositional Logic The Language of Propositions Applications Logical Equivalences Predicate Logic The Language of

### (Refer Slide Time: 05:02)

Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 1 Propositional Logic This course is about discrete

### 1 Propositional Logic

1 Propositional Logic Propositions 1.1 Definition A declarative sentence is a sentence that declares a fact or facts. Example 1 The earth is spherical. 7 + 1 = 6 + 2 x 2 > 0 for all real numbers x. 1 =

### Predicates and Quantifiers. Niloufar Shafiei

Predicates and Quantifiers Niloufar Shafiei Review Proposition: 1. It is a sentence that declares a fact. 2. It is either true or false, but not both. Examples: 2 + 1 = 3. True Proposition Toronto is the

### def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system.

Section 1.5 Methods of Proof 1.5.1 1.5 METHODS OF PROOF Some forms of argument ( valid ) never lead from correct statements to an incorrect. Some other forms of argument ( fallacies ) can lead from true

### CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi

Propositional Logic: logical operators Negation ( ) Conjunction ( ) Disjunction ( ). Exclusive or ( ) Conditional statement ( ) Bi-conditional statement ( ): Let p and q be propositions. The biconditional

### Fundamentals of Mathematics Lecture 6: Propositional Logic

Fundamentals of Mathematics Lecture 6: Propositional Logic Guan-Shieng Huang National Chi Nan University, Taiwan Spring, 2008 1 / 39 Connectives Propositional Connectives I 1 Negation: (not A) A A T F

### Problems on Discrete Mathematics 1

Problems on Discrete Mathematics 1 Chung-Chih Li 2 Kishan Mehrotra 3 Syracuse University, New York L A TEX at January 11, 2007 (Part I) 1 No part of this book can be reproduced without permission from

### Propositional Logic and Methods of Inference SEEM

Propositional Logic and Methods of Inference SEEM 5750 1 Logic Knowledge can also be represented by the symbols of logic, which is the study of the rules of exact reasoning. Logic is also of primary importance

### Section 7.1 First-Order Predicate Calculus predicate Existential Quantifier Universal Quantifier.

Section 7.1 First-Order Predicate Calculus Predicate calculus studies the internal structure of sentences where subjects are applied to predicates existentially or universally. A predicate describes a

### 1.4/1.5 Predicates and Quantifiers

1.4/1.5 Predicates and Quantifiers Can we express the following statement in propositional logic? Every computer has a CPU No Outline: Predicates Quantifiers Domain of Predicate Translation: Natural Languauge

### Math 3000 Section 003 Intro to Abstract Math Homework 2

Math 3000 Section 003 Intro to Abstract Math Homework 2 Department of Mathematical and Statistical Sciences University of Colorado Denver, Spring 2012 Solutions (February 13, 2012) Please note that these

### Predicate in English. Predicates and Quantifiers. Propositional Functions: Prelude. Predicate in Logic. Propositional Function

Predicates and Quantifiers By Chuck Cusack Predicate in English In English, a sentence has 2 parts: the subject and the predicate. The predicate is the part of the sentence that states something about

### MAT Discrete Mathematics

RHODES UNIVERSITY Grahamstown 6140, South Africa Lecture Notes CCR MAT 102 - Discrete Mathematics Claudiu C. Remsing DEPT. of MATHEMATICS (Pure and Applied) 2005 Mathematics is not about calculations but

### Discrete Mathematics, Chapter : Predicate Logic

Discrete Mathematics, Chapter 1.4-1.5: Predicate Logic Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 1.4-1.5 1 / 23 Outline 1 Predicates

### Even Number: An integer n is said to be even if it has the form n = 2k for some integer k. That is, n is even if and only if n divisible by 2.

MATH 337 Proofs Dr. Neal, WKU This entire course requires you to write proper mathematical proofs. All proofs should be written elegantly in a formal mathematical style. Complete sentences of explanation

### 1.4 Predicates and Quantifiers

Can we express the following statement in propositional logic? Every computer has a CPU No 1 Can we express the following statement in propositional logic? No Every computer has a CPU Let's see the new

### What is logic? Propositional Logic. Negation. Propositions. This is a contentious question! We will play it safe, and stick to:

Propositional Logic This lecture marks the start of a new section of the course. In the last few lectures, we have had to reason formally about concepts. This lecture introduces the mathematical language

### Chapter 1, Part II: Predicate Logic. With Question/Answer Animations

Chapter 1, Part II: Predicate Logic With Question/Answer Animations Summary Predicate Logic (First-Order Logic (FOL) The Language of Quantifiers Logical Equivalences Nested Quantifiers Translation from

### Discrete Mathematics

Slides for Part IA CST 2014/15 Discrete Mathematics Prof Marcelo Fiore Marcelo.Fiore@cl.cam.ac.uk What are we up to? Learn to read and write, and also work with, mathematical

### Chapter 1. Logic and Proof

Chapter 1. Logic and Proof 1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs contained paradoxes, and these paradoxes could be used to prove statements that were known

### Chapter 6 Finite sets and infinite sets. Copyright 2013, 2005, 2001 Pearson Education, Inc. Section 3.1, Slide 1

Chapter 6 Finite sets and infinite sets Copyright 013, 005, 001 Pearson Education, Inc. Section 3.1, Slide 1 Section 6. PROPERTIES OF THE NATURE NUMBERS 013 Pearson Education, Inc.1 Slide Recall that denotes

### The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;

Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method

### Problems on Discrete Mathematics 1

Problems on Discrete Mathematics 1 Chung-Chih Li 2 Kishan Mehrotra 3 L A TEX at July 18, 2007 1 No part of this book can be reproduced without permission from the authors 2 Illinois State University, Normal,

### MATH 55: HOMEWORK #2 SOLUTIONS

MATH 55: HOMEWORK # SOLUTIONS ERIC PETERSON * 1. SECTION 1.5: NESTED QUANTIFIERS 1.1. Problem 1.5.8. Determine the truth value of each of these statements if the domain of each variable consists of all

### 3. Predicates and Quantifiers

3. PREDICATES AND QUANTIFIERS 45 3. Predicates and Quantifiers 3.1. Predicates and Quantifiers. Definition 3.1.1. A predicate or propositional function is a description of the property (or properties)

### LECTURE 10: FIRST-ORDER LOGIC. Software Engineering Mike Wooldridge

LECTURE 10: FIRST-ORDER LOGIC Mike Wooldridge 1 Why not Propositional Logic? Consider the following statements: all monitors are ready; X12 is a monitor. We saw in an earlier lecture that these statements

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

### CHAPTER 2. Logic. 1. Logic Definitions. Notation: Variables are used to represent propositions. The most common variables used are p, q, and r.

CHAPTER 2 Logic 1. Logic Definitions 1.1. Propositions. Definition 1.1.1. A proposition is a declarative sentence that is either true (denoted either T or 1) or false (denoted either F or 0). Notation:

### 1.5 Methods of Proof INTRODUCTION

1.5 Methods of Proof INTRODUCTION Icon 0049 Two important questions that arise in the study of mathematics are: (1) When is a mathematical argument correct? (2) What methods can be used to construct mathematical

### CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce

### LOGICAL INFERENCE & PROOFs. Debdeep Mukhopadhyay Dept of CSE, IIT Madras

LOGICAL INFERENCE & PROOFs Debdeep Mukhopadhyay Dept of CSE, IIT Madras Defn A theorem is a mathematical assertion which can be shown to be true. A proof is an argument which establishes the truth of a

### Likewise, we have contradictions: formulas that can only be false, e.g. (p p).

CHAPTER 4. STATEMENT LOGIC 59 The rightmost column of this truth table contains instances of T and instances of F. Notice that there are no degrees of contingency. If both values are possible, the formula

### 1.5 Rules of Inference

1.5 Rules of Inference (Inference: decision/conclusion by evidence/reasoning) Introduction Proofs are valid arguments that establish the truth of statements. An argument is a sequence of statements that

### Proof: A logical argument establishing the truth of the theorem given the truth of the axioms and any previously proven theorems.

Math 232 - Discrete Math 2.1 Direct Proofs and Counterexamples Notes Axiom: Proposition that is assumed to be true. Proof: A logical argument establishing the truth of the theorem given the truth of the

### Predicate Logic. Lucia Moura. Winter Predicates and Quantifiers Nested Quantifiers Using Predicate Calculus

Predicate Logic Winter 2010 Predicates A Predicate is a declarative sentence whose true/false value depends on one or more variables. The statement x is greater than 3 has two parts: the subject: x is

### 22C:19 Discrete Math. So. What is it? Why discrete math? Fall 2009 Hantao Zhang

22C:19 Discrete Math Fall 2009 Hantao Zhang So. What is it? Discrete mathematics is the study of mathematical structures that are fundamentally discrete, in the sense of not supporting or requiring the

### INTRODUCTORY SET THEORY

M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

### 3.3. INFERENCE 105. Table 3.5: Another look at implication. p q p q T T T T F F F T T F F T

3.3. INFERENCE 105 3.3 Inference Direct Inference (Modus Ponens) and Proofs We concluded our last section with a proof that the sum of two even numbers is even. That proof contained several crucial ingredients.

### Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics. Introductory Notes in Discrete Mathematics

Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics Introductory Notes in Discrete Mathematics Marcel B. Finan c All Rights Reserved Last Updated April 6, 2016 Preface

### Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

### Florida State University Course Notes MAD 2104 Discrete Mathematics I

Florida State University Course Notes MAD 2104 Discrete Mathematics I Florida State University Tallahassee, Florida 32306-4510 Copyright c 2011 Florida State University Written by Dr. John Bryant and Dr.

### vertex, 369 disjoint pairwise, 395 disjoint sets, 236 disjunction, 33, 36 distributive laws

Index absolute value, 135 141 additive identity, 254 additive inverse, 254 aleph, 466 algebra of sets, 245, 278 antisymmetric relation, 387 arcsine function, 349 arithmetic sequence, 208 arrow diagram,

### Statements, negations, connectives, truth tables, equivalent statements, De Morgan s Laws, arguments, Euler diagrams

Logic Statements, negations, connectives, truth tables, equivalent statements, De Morgan s Laws, arguments, Euler diagrams Part 1: Statements, Negations, and Quantified Statements A statement is a sentence

### Definition 10. A proposition is a statement either true or false, but not both.

Chapter 2 Propositional Logic Contrariwise, continued Tweedledee, if it was so, it might be; and if it were so, it would be; but as it isn t, it ain t. That s logic. (Lewis Carroll, Alice s Adventures

### CSI 2101 / Rules of Inference ( 1.5)

CSI 2101 / Rules of Inference ( 1.5) Introduction what is a proof? Valid arguments in Propositional Logic equivalence of quantified expressions Rules of Inference in Propositional Logic the rules using

### Logical Inference and Mathematical Proof

Logical Inference and Mathematical Proof CSE 191, Class Note 03: Logical Inference and Mathematical Proof Computer Sci & Eng Dept SUNY Buffalo c Xin He (University at Buffalo) CSE 191 Discrete Structures

### Jeff Wickstrom Jason Slattery Discrete Mathematics - Logic. Lesson Plans. Discrete Mathematics

Jeff Wickstrom Jason Slattery Discrete Mathematics - Logic Lesson Plans Discrete Mathematics Discrete mathematics, also called finite mathematics, is the study of mathematical structures that are fundamentally

### Exam 1 Answers: Logic and Proof

Q250 FALL 2012, INDIANA UNIVERSITY Exam 1 Answers: Logic and Proof September 17, 2012 Instructions: Please answer each question completely, and show all of your work. Partial credit will be awarded where

### A set is a Many that allows itself to be thought of as a One. (Georg Cantor)

Chapter 4 Set Theory A set is a Many that allows itself to be thought of as a One. (Georg Cantor) In the previous chapters, we have often encountered sets, for example, prime numbers form a set, domains

### 1.2 Truth and Sentential Logic

Chapter 1 Mathematical Logic 13 69. Assume that B has m left parentheses and m right parentheses and that C has n left parentheses and n right parentheses. How many left parentheses appear in (B C)? How

### Review Name Rule of Inference

CS311H: Discrete Mathematics Review Name Rule of Inference Modus ponens φ 2 φ 2 Modus tollens φ 2 φ 2 Inference Rules for Quantifiers Işıl Dillig Hypothetical syllogism Or introduction Or elimination And

### 4. FIRST-ORDER LOGIC

4. FIRST-ORDER LOGIC Contents 4.1: Splitting the atom: names, predicates and relations 4.2: Structures 4.3: Quantification:, 4.4: Syntax 4.5: Semantics 4.6: De Morgan s laws for and 4.7: Truth trees for

### 1 Propositional Logic - Axioms and Inference Rules

1 Propositional Logic - Axioms and Inference Rules Axioms Axiom 1.1 [Commutativity] (p q) (q p) (p q) (q p) (p q) (q p) Axiom 1.2 [Associativity] p (q r) (p q) r p (q r) (p q) r Axiom 1.3 [Distributivity]

### Discrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof. Harper Langston New York University

Discrete Mathematics Lecture 3 Elementary Number Theory and Methods of Proof Harper Langston New York University Proof and Counterexample Discovery and proof Even and odd numbers number n from Z is called

### Foundations of Artificial Intelligence

Foundations of Artificial Intelligence 7. Propositional Logic Rational Thinking, Logic, Resolution Wolfram Burgard, Bernhard Nebel and Martin Riedmiller Albert-Ludwigs-Universität Freiburg Contents 1 Agents

### Resolution in Propositional and First-Order Logic

Resolution in Propositional and First-Order Logic Inference rules Logical inference creates new sentences that logically follow from a set of sentences (KB) An inference rule is sound if every sentence

### 3.3 Proofs Involving Quantifiers

3.3 Proofs Involving Quantifiers 1. In exercise 6 of Section 2.2 you use logical equivalences to show that x(p (x) Q(x)) is equivalent to xp (x) xq(x). Now use the methods of this section to prove that

### Predicate Calculus. There are certain arguments that seem to be perfectly logical, yet they cannot be expressed by using propositional calculus.

Predicate Calculus (Alternative names: predicate logic, first order logic, elementary logic, restricted predicate calculus, restricted functional calculus, relational calculus, theory of quantification,

### DISCRETE MATH: LECTURE 3

DISCRETE MATH: LECTURE 3 DR. DANIEL FREEMAN 1. Chapter 2.2 Conditional Statements If p and q are statement variables, the conditional of q by p is If p then q or p implies q and is denoted p q. It is false

### Logic will get you from A to B. Imagination will take you everywhere.

Chapter 3 Predicate Logic Logic will get you from A to B. Imagination will take you everywhere. A. Einstein In the previous chapter, we studied propositional logic. This chapter is dedicated to another

### Semantics for the Predicate Calculus: Part I

Semantics for the Predicate Calculus: Part I (Version 0.3, revised 6:15pm, April 14, 2005. Please report typos to hhalvors@princeton.edu.) The study of formal logic is based on the fact that the validity

### An Introduction to Symbolic Logic

An Introduction to Symbolic Logic Guram Bezhanishvili and Wesley Fussner 1 Introduction This project is dedicated to the study of the basics of propositional and predicate logic. We will study it based

### Review for Final Exam

Review for Final Exam Note: Warning, this is probably not exhaustive and probably does contain typos (which I d like to hear about), but represents a review of most of the material covered in Chapters

### Predicate Logic. Example: All men are mortal. Socrates is a man. Socrates is mortal.

Predicate Logic Example: All men are mortal. Socrates is a man. Socrates is mortal. Note: We need logic laws that work for statements involving quantities like some and all. In English, the predicate is

### Sections 2.1, 2.2 and 2.4

SETS Sections 2.1, 2.2 and 2.4 Chapter Summary Sets The Language of Sets Set Operations Set Identities Introduction Sets are one of the basic building blocks for the types of objects considered in discrete

### 1.3 Induction and Other Proof Techniques

4CHAPTER 1. INTRODUCTORY MATERIAL: SETS, FUNCTIONS AND MATHEMATICAL INDU 1.3 Induction and Other Proof Techniques The purpose of this section is to study the proof technique known as mathematical induction.

### Logic: Statements, Connectives, Quantifiers

Logic: Statements, Connectives, Quantifiers Contemporary Math Josh Engwer TTU 20 July 2015 Josh Engwer (TTU) Logic: Statements, Connectives, Quantifiers 20 July 2015 1 / 16 Logic Statements (Definition)

### Week 5: Quantifiers. Number Sets. Quantifier Symbols. Quantity has a quality all its own. attributed to Carl von Clausewitz

Week 5: Quantifiers Quantity has a quality all its own. attributed to Carl von Clausewitz Number Sets Many people would say that mathematics is the science of numbers. This is a common misconception among

### 2.1.1 Examples of Sets and their Elements

Chapter 2 Set Theory 2.1 Sets The most basic object in Mathematics is called a set. As rudimentary as it is, the exact, formal definition of a set is highly complex. For our purposes, we will simply define