MIPS ISA-II: Procedure Calls & Program Assembly

Size: px
Start display at page:

Download "MIPS ISA-II: Procedure Calls & Program Assembly"

Transcription

1 MIPS ISA-II: Procedure Calls & Program Assembly Module Outline Review ISA and understand instruction encodings Arithmetic and Logical Instructions Review memory organization Memory (data movement) instructions Control flow instructions Procedure/Function calls Program assembly, linking, & encoding (2) 1

2 Reading Reading 2.8, 2.12 Appendix A: A1 - A.6 Practice Problems: 10, 14,23 Goals v Understand the binary encoding of complete program executables o o o o o How can procedures be independently compiled and linked (e.g., libraries)? What makes up an executable? How do libraries become part of the executable? What is the role of the ISA in encoding programs? What constitutes the hardware/software interface (3) Procedure Calls Basic functionality v Transfer of parameters & control to procedure v Transfer of results & control back to the calling program v Support for nested procedures What is so hard about this? v Consider independently compiled code modules o Where are the inputs? o Where should I place the outputs? o Recall: What do you need to know when you write procedures in C? (4) 2

3 Specifics Where do we pass data v Preferably registers à make the common case fast v Memory as an overflow area Nested procedures v The stack, $fp, $sp and $ra v Saving and restoring machine state Set of rules that developers/compilers abide by v Which registers can am I permitted to use with no consequence? v Caller and callee save conventions for MIPS (5) Basic Parameter Passing.data arg1:.word 22, 20, 16, 4 arg2:.word 33,34,45,8 Register usage What about nested calls? What about excess arguments? loop:.text addi $t0, $0, 4 move $t3, $0 move $t1, $0 move $t2, $0 beq $t0, $0, exit addi $t0, $t0, -1 lw $a0, arg1($t1) lw $a1, arg2($t2) jal func add $t3, $t3, $v0 addi $t1, $t1, 4 addi $t2, $t2, 4 j loop func: sub $v0, $a0, $a1 jr $ra exit: --- PC $31 PC $ (6) 3

4 Leaf Procedure Example C code: int leaf_example (int g, h, i, j) { int f; f = (g + h) - (i + j); return f; } v Arguments g,, j are passed in $a0,, $a3 v f in $s0 (we need to save $s0 on stack we will see why later) v Results are returned in $v0, $v1 argument registers $a0 $a1 $a2 $a3 procedure $v0 result $v1 registers (7) Procedure Call Instructions Procedure call: jump and link jal ProcedureLabel v Address of following instruction put in $ra v Jumps to target address Procedure return: jump register jr $ra v Copies $ra to program counter v Can also be used for computed jumps o e.g., for case/switch statements Example: (8) 4

5 Leaf Procedure Example MIPS code: leaf_example: addi $sp, $sp, -4 sw $s0, 0($sp) add $t0, $a0, $a1 add $t1, $a2, $a3 sub $s0, $t0, $t1 add $v0, $s0, $zero lw $s0, 0($sp) addi $sp, $sp, 4 jr $ra Save $s0 on stack Procedure body Result Restore $s0 Return (9) Procedure Call Mechanics High Address $fp $sp Old Stack Frame $fp System Wide Memory Map $sp stack arg registers dynamic data New Stack Frame return address Saved registers $gp PC static data text reserved $sp local variables compiler compiler Low Address ISA HW addressing (10) 5

6 Example of the Stack Frame $fp $sp arg 1 arg 2.. callee saved registers caller saved registers local variables.. $fp $ra $s0-$s9 $a0-$a3 $t0-$t9 Call Sequence 1. place excess arguments 2. save caller save registers ($a0-$a3, $t0-$t9) 3. jal 4. allocate stack frame 5. save callee save registers ($s0-$s9, $fp, $ra) 6 set frame pointer Return 1. place function argument in $v0 2. restore callee save registers 3. restore $fp 4. pop frame 5. jr $31 (11) Policy of Use Conventions Name Register number Usage $zero 0 the constant value 0 $v0-$v1 2-3 values for results and expression evaluation $a0-$a3 4-7 arguments $t0-$t temporaries $s0-$s saved $t8-$t more temporaries $gp 28 global pointer $sp 29 stack pointer $fp 30 frame pointer $ra 31 return address (12) 6

7 Summary: Register Usage $a0 $a3: arguments (reg s 4 7) $v0, $v1: result values (reg s 2 and 3) $t0 $t9: temporaries v Can be overwritten by callee $s0 $s7: saved v Must be saved/restored by callee $gp: global pointer for static data (reg 28) $sp: stack pointer (reg 29) $fp: frame pointer (reg 30) $ra: return address (reg 31) (13) Non-Leaf Procedures Procedures that call other procedures For nested call, caller needs to save on the stack: v Its return address v Any arguments and temporaries needed after the call Restore from the stack after the call (14) 7

8 Non-Leaf Procedure Example C code: int fact (int n) { if (n < 1) return f; else return n * fact(n - 1); } v Argument n in $a0 v Result in $v0 (15) Template for a Procedure 1. Allocate stack frame (decrement stack pointer) 2. Save any registers (callee save registers) 3. Procedure body (remember some arguments may be on the stack!) 4. Restore registers (callee save registers) 5. Pop stack frame (increment stack pointer) 6. Return (jr $ra) (16) 8

9 Non-Leaf Procedure Example } int fact (int n) { callee save if (n < 1) return f; else return n * fact(n - 1); restore (17) Callee save Termination Check MIPS code: fact: Non-Leaf Procedure Example addi $sp, $sp, -8 # adjust stack for 2 items sw $ra, 4($sp) # save return address sw $a0, 0($sp) # save argument slti $t0, $a0, 1 # test for n < 1 beq $t0, $zero, L1 addi $v0, $zero, 1 # if so, result is 1 Leaf Node addi $sp, $sp, 8 # pop 2 items from stack jr $ra # and return L1: addi $a0, $a0, -1 # else decrement n Recursive call jal fact # recursive call lw $a0, 0($sp) # restore original n lw $ra, 4($sp) # and return address Intermediate addi $sp, $sp, 8 # pop 2 items from stack Node mul $v0, $a0, $v0 # multiply to get result jr $ra # and return (18) 9

10 Module Outline Review ISA and understand instruction encodings Arithmetic and Logical Instructions Review memory organization Memory (data movement) instructions Control flow instructions Procedure/Function calls Program assembly, linking, & encoding (19) The Complete Picture C program Reading: 2.12, A2, A3, A4, A5 compiler Assembly assembler Object module Object library linker executable loader memory (20) 10

11 The Assembler Create a binary encoding of all native instructions v Translation of all pseudo-instructions v Computation of all branch offsets and jump addresses v Symbol table for unresolved (library) references Create an object file with all pertinent information Header (information) Text segment Data segment Relocation information Example: Symbol table (21) One pass vs. two pass assembly Effect of fixed vs. variable length instructions Time, space and one pass assembly Local labels, global labels, external labels and the symbol table v What does mean when a symbol is unresolved? Absolute addresses and re-location Assembly Process (22) 11

12 Example.data L1:.word 0x44,22,33,55 # array.text.globl main main: la $t0, L1 li $t1, 4 add $t2, $t2, $zero loop: lw $t3, 0($t0) add $t2, $t2, $t3 addi $t0, $t0, 4 addi $t1, $t1, -1 bne $t1, $zero, loop What changes when you relocate code? ] 3c lui $8, 4097 [L1] [ ] ori $9, $0, 4 [ ] add $10, $10, $0 [ c] 8d0b0000 lw $11, 0($8) [ ] 014b5020 add $10, $10, $11 [ ] addi $8, $8, 4 [ ] 2129ffff addi $9, $9, -1 [ c] 1520fffc bne $9, $0, -16 [loop-0x c] [ ] 000a082a slt $1, $0, $10 [ ] bne $1, $0, 12 [then-0x ] [ ] 000a8021 addu $16, $0, $10 [ c] d j 0x [exit] [ ] 000a8821 addu $17, $0, $10 [ ] a ori $2, $0, 10 [ ] c syscall bgt $t2, $0, then move $s0, $t2 j exit then: move $s1, $t2 exit: li $v0, 10 syscall Assembly Program Native Instructions Assembled Binary (23) Linker & Loader Linker v Links independently compiled modules v Determines real addresses v Updates the executables with real addresses Loader v As the name implies v Specifics are operating system dependent (24) 12

13 Program A Assembly A Program B Assembly B cross reference labels Linking header text static data reloc symbol table debug Why do we need independent compilation? What are the issues with respect to independent compilation? references across files (can be to data or code!) absolute addresses and relocation Study: Example on pg. 127 (25) # separate file Example:.text 0x addi $4, $0, 4 0x addi $5, $0, jal func_add done 0x a 0x c # separate file.text.globl func_add func_add: add $2, $4, $5 0x jr $31 0x03e x x x x x ? 0x c 0x a 0x x c 0x x x x03e00008 Ans: 0x0c (26) 13

14 Loading a Program Load from image file on disk into memory 1. Read header to determine segment sizes 2. Create virtual address space (later) 3. Copy text and initialized data into memory o Or set page table entries so they can be faulted in 4. Set up arguments on stack 5. Initialize registers (including $sp, $fp, $gp) 6. Jump to startup routine o Copies arguments to $a0, and calls main o When main returns, do exit syscall (27) Dynamic Linking Static Linking v All labels are resolved at link time v Link all procedures that may be called by the program v Size of executables? Dynamic Linking: Only link/load library procedure when it is called v Requires procedure code to be relocatable v Avoids image bloat caused by static linking of all (transitively) referenced libraries v Automatically picks up new library versions (28) 14

15 Lazy Linkage Indirection table Stub: Loads routine ID, Jump to linker/loader Linker/loader code Dynamically mapped code (29) The Computing Model Revisited Register File (Programmer Visible State) 0x00 0x01 0x02 0x03 Memory Interface stack 0x1F Processor Internal Buses Dynamic Data Data segment (static) Text Segment Program Counter Instruction register Kernel registers Programmer Invisible State Reserved 0xFFFFFFFF Arithmetic Logic Unit (ALU) Memory Map Program Execution and the von Neumann model (30) 15

16 Instruction Set Architectures (ISA) Instruction set architectures are characterized by several features 1. Operations v Types, precision, size 2. Organization of internal storage v Stack machine v Accumulator v General Purpose Registers (GPR) 3. Memory addressing v Operand location and addressing (31) Instruction Set Architectures 4. Memory abstractions v Segments, virtual address spaces (more later) v Memory mapped I/O (later) 5. Control flow v Condition codes v Types of control transfers conditional vs. unconditiional ISA design is the result of many tradeoffs v Decisions determine hardware implementation v Impact on time, space, and energy Check out ISAs for PowerPC, ARM, x86, SPARC, etc. (32) 16

17 ARM & MIPS Similarities ARM: the most popular embedded core Similar basic set of instructions to MIPS ARM MIPS Date announced Instruction size 32 bits 32 bits Address space 32-bit flat 32-bit flat Data alignment Aligned Aligned Data addressing modes 9 3 Registers bit bit Input/output Memory mapped Memory mapped (33) Compare and Branch in ARM Uses condition codes for result of an arithmetic/logical instruction v Negative, zero, carry, overflow v Compare instructions to set condition codes without keeping the result Each instruction can be conditional v Top 4 bits of instruction word: condition value v Can avoid branches over single instructions Z V C N CPU/Core $0 $1 $31 ALU (34) 17

18 Instruction Encoding Differences? (35) The Intel x86 ISA Evolution with backward compatibility v 8080 (1974): 8-bit microprocessor o Accumulator, plus 3 index-register pairs v 8086 (1978): 16-bit extension to 8080 o Complex instruction set (CISC) v 8087 (1980): floating-point coprocessor o Adds FP instructions and register stack v (1982): 24-bit addresses, MMU o Segmented memory mapping and protection v (1985): 32-bit extension (now IA-32) o Additional addressing modes and operations o Paged memory mapping as well as segments (36) 18

19 The Intel x86 ISA Further evolution v i486 (1989): pipelined, on-chip caches and FPU v Pentium (1993): superscalar, 64-bit datapath o Later versions added MMX (Multi-Media extension) instructions o The infamous FDIV bug v Pentium Pro (1995), Pentium II (1997) o New microarchitecture (see Colwell, The Pentium Chronicles) v Pentium III (1999) o Added SSE (Streaming SIMD Extensions) and associated registers v Pentium 4 (2001) o New microarchitecture o Added SSE2 instructions (37) The Intel x86 ISA And further v AMD64 (2003): extended architecture to 64 bits v EM64T Extended Memory 64 Technology (2004) o AMD64 adopted by Intel (with refinements) o Added SSE3 instructions v Intel Core (2006) o Added SSE4 instructions, virtual machine support v AMD64 (announced 2007): SSE5 instructions v Intel Advanced Vector Extension (AVX announced 2008) If Intel didn t extend with compatibility, its competitors would! v Technical elegance market success Commonly thought of as a Complex Instruction Set Architecture (CISC) (38) 19

20 Basic x86 Registers (39) Basic x86 Addressing Modes Two operands per instruction n Source/dest operand Second source operand Register Register Register Immediate Register Memory Memory Register Memory Immediate Memory addressing modes n Address in register n Address = R base + displacement n Address = R base + 2 scale R index (scale = 0, 1, 2, or 3) n Address = R base + 2 scale R index + displacement (40) 20

21 x86 Instruction Encoding Variable length encoding v Postfix bytes specify addressing mode v Prefix bytes modify operation o Operand length, repetition, locking, (41) Implementing IA-32 Complex instruction set makes implementation difficult v Hardware translates instructions to simpler microoperations o Simple instructions: 1 1 o Complex instructions: 1 many v Microengine similar to RISC v Market share makes this economically viable Comparable performance to RISC v Compilers avoid complex instructions Better code density (42) 21

22 Fallacies Powerful instruction higher performance v Fewer instructions required v But complex instructions are hard to implement o May slow down all instructions, including simple ones v Compilers are good at making fast code from simple instructions Use assembly code for high performance v But modern compilers are better at dealing with modern processors v More lines of code more errors and less productivity (43) Fallacies Backward compatibility instruction set does not change v But they do accrete more instructions x86 instruction set (44) 22

23 Instruction complexity is only one variable v lower instruction count vs. higher CPI / lower clock rate Design Principles: v simplicity favors regularity v smaller is faster v good design demands compromise v make the common case fast Instruction set architecture v a very important abstraction indeed! Summary (45) Study Guide Compute number of bytes to encode a SPIM program What does it mean for a code segment to be relocatable? Identify addresses that need to be modified when a program is relocated. v Given the new start address modify the necessary addresses Given the assembly of an independently compiled procedure, ensure that it follows the MIPS calling conventions, modifying it if necessary (46) 23

24 Study Guide (cont.) Given a SPIM program with nested procedures, ensure that you know what registers are stored in the stack as a consequence of a call Encode/disassemble jal and jr instructions Computation of jal encodings for independently compiled modules How can I make procedure calls faster? v Hint: What about a call is it that takes time? How are independently compiled modules linked into a single executable? (assuming one calls a procedure located in another) (47) Glossary Argument registers Caller save registers Callee save registers Disassembly Frame pointer Independent compilation Labels: local, global, external Linker/loader Linking: static vs. dynamic vs. lazy Native instructions Nested procedures Object file One/two pass assembly Procedure invocation Pseudo instructions Relocatable code Stack frame Stack pointer Symbol table Unresolved symbol (48) 24

Instruction Set Architecture. or How to talk to computers if you aren t in Star Trek

Instruction Set Architecture. or How to talk to computers if you aren t in Star Trek Instruction Set Architecture or How to talk to computers if you aren t in Star Trek The Instruction Set Architecture Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture

More information

Instruction Set Architecture

Instruction Set Architecture Instruction Set Architecture Consider x := y+z. (x, y, z are memory variables) 1-address instructions 2-address instructions LOAD y (r :=y) ADD y,z (y := y+z) ADD z (r:=r+z) MOVE x,y (x := y) STORE x (x:=r)

More information

Intel 8086 architecture

Intel 8086 architecture Intel 8086 architecture Today we ll take a look at Intel s 8086, which is one of the oldest and yet most prevalent processor architectures around. We ll make many comparisons between the MIPS and 8086

More information

Stack machines The MIPS assembly language A simple source language Stack-machine implementation of the simple language Readings: 9.1-9.

Stack machines The MIPS assembly language A simple source language Stack-machine implementation of the simple language Readings: 9.1-9. Code Generation I Stack machines The MIPS assembly language A simple source language Stack-machine implementation of the simple language Readings: 9.1-9.7 Stack Machines A simple evaluation model No variables

More information

LSN 2 Computer Processors

LSN 2 Computer Processors LSN 2 Computer Processors Department of Engineering Technology LSN 2 Computer Processors Microprocessors Design Instruction set Processor organization Processor performance Bandwidth Clock speed LSN 2

More information

Lecture Outline. Stack machines The MIPS assembly language. Code Generation (I)

Lecture Outline. Stack machines The MIPS assembly language. Code Generation (I) Lecture Outline Code Generation (I) Stack machines The MIPS assembl language Adapted from Lectures b Profs. Ale Aiken and George Necula (UCB) A simple source language Stack- machine implementation of the

More information

More MIPS: Recursion. Computer Science 104 Lecture 9

More MIPS: Recursion. Computer Science 104 Lecture 9 More MIPS: Recursion Computer Science 104 Lecture 9 Admin Homework Homework 1: graded. 50% As, 27% Bs Homework 2: Due Wed Midterm 1 This Wed 1 page of notes 2 Last time What did we do last time? 3 Last

More information

MIPS Assembly Code Layout

MIPS Assembly Code Layout Learning MIPS & SPIM MIPS assembly is a low-level programming language The best way to learn any programming language is to write code We will get you started by going through a few example programs and

More information

Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.

Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University cwliu@twins.ee.nctu.edu. Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Review Computers in mid 50 s Hardware was expensive

More information

Reduced Instruction Set Computer (RISC)

Reduced Instruction Set Computer (RISC) Reduced Instruction Set Computer (RISC) Focuses on reducing the number and complexity of instructions of the ISA. RISC Goals RISC: Simplify ISA Simplify CPU Design Better CPU Performance Motivated by simplifying

More information

Instruction Set Architecture (ISA)

Instruction Set Architecture (ISA) Instruction Set Architecture (ISA) * Instruction set architecture of a machine fills the semantic gap between the user and the machine. * ISA serves as the starting point for the design of a new machine

More information

CSE 141 Introduction to Computer Architecture Summer Session I, 2005. Lecture 1 Introduction. Pramod V. Argade June 27, 2005

CSE 141 Introduction to Computer Architecture Summer Session I, 2005. Lecture 1 Introduction. Pramod V. Argade June 27, 2005 CSE 141 Introduction to Computer Architecture Summer Session I, 2005 Lecture 1 Introduction Pramod V. Argade June 27, 2005 CSE141: Introduction to Computer Architecture Instructor: Pramod V. Argade (p2argade@cs.ucsd.edu)

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture http://cs.nott.ac.uk/ txa/g51csa/ Thorsten Altenkirch and Liyang Hu School of Computer Science University of Nottingham Lecture 10: MIPS Procedure Calling Convention and Recursion

More information

Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX

Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX Overview CISC Developments Over Twenty Years Classic CISC design: Digital VAX VAXÕs RISC successor: PRISM/Alpha IntelÕs ubiquitous 80x86 architecture Ð 8086 through the Pentium Pro (P6) RJS 2/3/97 Philosophy

More information

a storage location directly on the CPU, used for temporary storage of small amounts of data during processing.

a storage location directly on the CPU, used for temporary storage of small amounts of data during processing. CS143 Handout 18 Summer 2008 30 July, 2008 Processor Architectures Handout written by Maggie Johnson and revised by Julie Zelenski. Architecture Vocabulary Let s review a few relevant hardware definitions:

More information

A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc

A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc Other architectures Example. Accumulator-based machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc

More information

Introduction to MIPS Assembly Programming

Introduction to MIPS Assembly Programming 1 / 26 Introduction to MIPS Assembly Programming January 23 25, 2013 2 / 26 Outline Overview of assembly programming MARS tutorial MIPS assembly syntax Role of pseudocode Some simple instructions Integer

More information

Instruction Set Design

Instruction Set Design Instruction Set Design Instruction Set Architecture: to what purpose? ISA provides the level of abstraction between the software and the hardware One of the most important abstraction in CS It s narrow,

More information

Assembly Language Programming

Assembly Language Programming Assembly Language Programming Assemblers were the first programs to assist in programming. The idea of the assembler is simple: represent each computer instruction with an acronym (group of letters). Eg:

More information

İSTANBUL AYDIN UNIVERSITY

İSTANBUL AYDIN UNIVERSITY İSTANBUL AYDIN UNIVERSITY FACULTY OF ENGİNEERİNG SOFTWARE ENGINEERING THE PROJECT OF THE INSTRUCTION SET COMPUTER ORGANIZATION GÖZDE ARAS B1205.090015 Instructor: Prof. Dr. HASAN HÜSEYİN BALIK DECEMBER

More information

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM 1 The ARM architecture processors popular in Mobile phone systems 2 ARM Features ARM has 32-bit architecture but supports 16 bit

More information

More on Pipelining and Pipelines in Real Machines CS 333 Fall 2006 Main Ideas Data Hazards RAW WAR WAW More pipeline stall reduction techniques Branch prediction» static» dynamic bimodal branch prediction

More information

Typy danych. Data types: Literals:

Typy danych. Data types: Literals: Lab 10 MIPS32 Typy danych Data types: Instructions are all 32 bits byte(8 bits), halfword (2 bytes), word (4 bytes) a character requires 1 byte of storage an integer requires 1 word (4 bytes) of storage

More information

Translating C code to MIPS

Translating C code to MIPS Translating C code to MIPS why do it C is relatively simple, close to the machine C can act as pseudocode for assembler program gives some insight into what compiler needs to do what's under the hood do

More information

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2 Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of

More information

CPU Organization and Assembly Language

CPU Organization and Assembly Language COS 140 Foundations of Computer Science School of Computing and Information Science University of Maine October 2, 2015 Outline 1 2 3 4 5 6 7 8 Homework and announcements Reading: Chapter 12 Homework:

More information

18-447 Computer Architecture Lecture 3: ISA Tradeoffs. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 1/18/2013

18-447 Computer Architecture Lecture 3: ISA Tradeoffs. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 1/18/2013 18-447 Computer Architecture Lecture 3: ISA Tradeoffs Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 1/18/2013 Reminder: Homeworks for Next Two Weeks Homework 0 Due next Wednesday (Jan 23), right

More information

Exceptions in MIPS. know the exception mechanism in MIPS be able to write a simple exception handler for a MIPS machine

Exceptions in MIPS. know the exception mechanism in MIPS be able to write a simple exception handler for a MIPS machine 7 Objectives After completing this lab you will: know the exception mechanism in MIPS be able to write a simple exception handler for a MIPS machine Introduction Branches and jumps provide ways to change

More information

Review: MIPS Addressing Modes/Instruction Formats

Review: MIPS Addressing Modes/Instruction Formats Review: Addressing Modes Addressing mode Example Meaning Register Add R4,R3 R4 R4+R3 Immediate Add R4,#3 R4 R4+3 Displacement Add R4,1(R1) R4 R4+Mem[1+R1] Register indirect Add R4,(R1) R4 R4+Mem[R1] Indexed

More information

EE361: Digital Computer Organization Course Syllabus

EE361: Digital Computer Organization Course Syllabus EE361: Digital Computer Organization Course Syllabus Dr. Mohammad H. Awedh Spring 2014 Course Objectives Simply, a computer is a set of components (Processor, Memory and Storage, Input/Output Devices)

More information

An Introduction to Assembly Programming with the ARM 32-bit Processor Family

An Introduction to Assembly Programming with the ARM 32-bit Processor Family An Introduction to Assembly Programming with the ARM 32-bit Processor Family G. Agosta Politecnico di Milano December 3, 2011 Contents 1 Introduction 1 1.1 Prerequisites............................. 2

More information

Figure 1: Graphical example of a mergesort 1.

Figure 1: Graphical example of a mergesort 1. CSE 30321 Computer Architecture I Fall 2011 Lab 02: Procedure Calls in MIPS Assembly Programming and Performance Total Points: 100 points due to its complexity, this lab will weight more heavily in your

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

Computer Architectures

Computer Architectures Computer Architectures 2. Instruction Set Architectures 2015. február 12. Budapest Gábor Horváth associate professor BUTE Dept. of Networked Systems and Services ghorvath@hit.bme.hu 2 Instruction set architectures

More information

An Overview of Stack Architecture and the PSC 1000 Microprocessor

An Overview of Stack Architecture and the PSC 1000 Microprocessor An Overview of Stack Architecture and the PSC 1000 Microprocessor Introduction A stack is an important data handling structure used in computing. Specifically, a stack is a dynamic set of elements in which

More information

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE 1. Introduction 6.004 Computation Structures β Documentation This handout is

More information

Design Cycle for Microprocessors

Design Cycle for Microprocessors Cycle for Microprocessors Raúl Martínez Intel Barcelona Research Center Cursos de Verano 2010 UCLM Intel Corporation, 2010 Agenda Introduction plan Architecture Microarchitecture Logic Silicon ramp Types

More information

ARM Microprocessor and ARM-Based Microcontrollers

ARM Microprocessor and ARM-Based Microcontrollers ARM Microprocessor and ARM-Based Microcontrollers Nguatem William 24th May 2006 A Microcontroller-Based Embedded System Roadmap 1 Introduction ARM ARM Basics 2 ARM Extensions Thumb Jazelle NEON & DSP Enhancement

More information

Winter 2002 MID-SESSION TEST Friday, March 1 6:30 to 8:00pm

Winter 2002 MID-SESSION TEST Friday, March 1 6:30 to 8:00pm University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Instructors: Dr. S. A. Norman (L01) and Dr. S. Yanushkevich (L02) Winter 2002 MID-SESSION TEST Friday,

More information

612 CHAPTER 11 PROCESSOR FAMILIES (Corrisponde al cap. 12 - Famiglie di processori) PROBLEMS

612 CHAPTER 11 PROCESSOR FAMILIES (Corrisponde al cap. 12 - Famiglie di processori) PROBLEMS 612 CHAPTER 11 PROCESSOR FAMILIES (Corrisponde al cap. 12 - Famiglie di processori) PROBLEMS 11.1 How is conditional execution of ARM instructions (see Part I of Chapter 3) related to predicated execution

More information

CHAPTER 4 MARIE: An Introduction to a Simple Computer

CHAPTER 4 MARIE: An Introduction to a Simple Computer CHAPTER 4 MARIE: An Introduction to a Simple Computer 4.1 Introduction 195 4.2 CPU Basics and Organization 195 4.2.1 The Registers 196 4.2.2 The ALU 197 4.2.3 The Control Unit 197 4.3 The Bus 197 4.4 Clocks

More information

Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level

Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level System: User s View System Components: High Level View Input Output 1 System: Motherboard Level 2 Components: Interconnection I/O MEMORY 3 4 Organization Registers ALU CU 5 6 1 Input/Output I/O MEMORY

More information

CISC, RISC, and DSP Microprocessors

CISC, RISC, and DSP Microprocessors CISC, RISC, and DSP Microprocessors Douglas L. Jones ECE 497 Spring 2000 4/6/00 CISC, RISC, and DSP D.L. Jones 1 Outline Microprocessors circa 1984 RISC vs. CISC Microprocessors circa 1999 Perspective:

More information

Computer Organization and Architecture

Computer Organization and Architecture Computer Organization and Architecture Chapter 11 Instruction Sets: Addressing Modes and Formats Instruction Set Design One goal of instruction set design is to minimize instruction length Another goal

More information

VLIW Processors. VLIW Processors

VLIW Processors. VLIW Processors 1 VLIW Processors VLIW ( very long instruction word ) processors instructions are scheduled by the compiler a fixed number of operations are formatted as one big instruction (called a bundle) usually LIW

More information

Central Processing Unit (CPU)

Central Processing Unit (CPU) Central Processing Unit (CPU) CPU is the heart and brain It interprets and executes machine level instructions Controls data transfer from/to Main Memory (MM) and CPU Detects any errors In the following

More information

Introducción. Diseño de sistemas digitales.1

Introducción. Diseño de sistemas digitales.1 Introducción Adapted from: Mary Jane Irwin ( www.cse.psu.edu/~mji ) www.cse.psu.edu/~cg431 [Original from Computer Organization and Design, Patterson & Hennessy, 2005, UCB] Diseño de sistemas digitales.1

More information

Processor Architectures

Processor Architectures ECPE 170 Jeff Shafer University of the Pacific Processor Architectures 2 Schedule Exam 3 Tuesday, December 6 th Caches Virtual Memory Input / Output OperaKng Systems Compilers & Assemblers Processor Architecture

More information

Instruction Set Architecture (ISA) Design. Classification Categories

Instruction Set Architecture (ISA) Design. Classification Categories Instruction Set Architecture (ISA) Design Overview» Classify Instruction set architectures» Look at how applications use ISAs» Examine a modern RISC ISA (DLX)» Measurement of ISA usage in real computers

More information

Week 1 out-of-class notes, discussions and sample problems

Week 1 out-of-class notes, discussions and sample problems Week 1 out-of-class notes, discussions and sample problems Although we will primarily concentrate on RISC processors as found in some desktop/laptop computers, here we take a look at the varying types

More information

Property of ISA vs. Uarch?

Property of ISA vs. Uarch? More ISA Property of ISA vs. Uarch? ADD instruction s opcode Number of general purpose registers Number of cycles to execute the MUL instruction Whether or not the machine employs pipelined instruction

More information

X86-64 Architecture Guide

X86-64 Architecture Guide X86-64 Architecture Guide For the code-generation project, we shall expose you to a simplified version of the x86-64 platform. Example Consider the following Decaf program: class Program { int foo(int

More information

Intel 64 and IA-32 Architectures Software Developer s Manual

Intel 64 and IA-32 Architectures Software Developer s Manual Intel 64 and IA-32 Architectures Software Developer s Manual Volume 1: Basic Architecture NOTE: The Intel 64 and IA-32 Architectures Software Developer's Manual consists of seven volumes: Basic Architecture,

More information

COS 318: Operating Systems

COS 318: Operating Systems COS 318: Operating Systems OS Structures and System Calls Andy Bavier Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall10/cos318/ Outline Protection mechanisms

More information

CHAPTER 7: The CPU and Memory

CHAPTER 7: The CPU and Memory CHAPTER 7: The CPU and Memory The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides

More information

Introduction to RISC Processor. ni logic Pvt. Ltd., Pune

Introduction to RISC Processor. ni logic Pvt. Ltd., Pune Introduction to RISC Processor ni logic Pvt. Ltd., Pune AGENDA What is RISC & its History What is meant by RISC Architecture of MIPS-R4000 Processor Difference Between RISC and CISC Pros and Cons of RISC

More information

CS352H: Computer Systems Architecture

CS352H: Computer Systems Architecture CS352H: Computer Systems Architecture Topic 9: MIPS Pipeline - Hazards October 1, 2009 University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell Data Hazards in ALU Instructions

More information

Operating System Overview. Otto J. Anshus

Operating System Overview. Otto J. Anshus Operating System Overview Otto J. Anshus A Typical Computer CPU... CPU Memory Chipset I/O bus ROM Keyboard Network A Typical Computer System CPU. CPU Memory Application(s) Operating System ROM OS Apps

More information

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the

More information

Here is a diagram of a simple computer system: (this diagram will be the one needed for exams) CPU. cache

Here is a diagram of a simple computer system: (this diagram will be the one needed for exams) CPU. cache Computer Systems Here is a diagram of a simple computer system: (this diagram will be the one needed for exams) CPU cache bus memory controller keyboard controller display controller disk Computer Systems

More information

Memory Management Outline. Background Swapping Contiguous Memory Allocation Paging Segmentation Segmented Paging

Memory Management Outline. Background Swapping Contiguous Memory Allocation Paging Segmentation Segmented Paging Memory Management Outline Background Swapping Contiguous Memory Allocation Paging Segmentation Segmented Paging 1 Background Memory is a large array of bytes memory and registers are only storage CPU can

More information

2) Write in detail the issues in the design of code generator.

2) Write in detail the issues in the design of code generator. COMPUTER SCIENCE AND ENGINEERING VI SEM CSE Principles of Compiler Design Unit-IV Question and answers UNIT IV CODE GENERATION 9 Issues in the design of code generator The target machine Runtime Storage

More information

Computer Organization and Components

Computer Organization and Components Computer Organization and Components IS5, fall 25 Lecture : Pipelined Processors ssociate Professor, KTH Royal Institute of Technology ssistant Research ngineer, University of California, Berkeley Slides

More information

Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com CSCI-UA.0201-003 Computer Systems Organization Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Some slides adapted (and slightly modified)

More information

IA-64 Application Developer s Architecture Guide

IA-64 Application Developer s Architecture Guide IA-64 Application Developer s Architecture Guide The IA-64 architecture was designed to overcome the performance limitations of today s architectures and provide maximum headroom for the future. To achieve

More information

MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1

MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1 MICROPROCESSOR A microprocessor incorporates the functions of a computer s central processing unit (CPU) on a single Integrated (IC), or at most a few integrated circuit. It is a multipurpose, programmable

More information

MICROPROCESSOR AND MICROCOMPUTER BASICS

MICROPROCESSOR AND MICROCOMPUTER BASICS Introduction MICROPROCESSOR AND MICROCOMPUTER BASICS At present there are many types and sizes of computers available. These computers are designed and constructed based on digital and Integrated Circuit

More information

EC 362 Problem Set #2

EC 362 Problem Set #2 EC 362 Problem Set #2 1) Using Single Precision IEEE 754, what is FF28 0000? 2) Suppose the fraction enhanced of a processor is 40% and the speedup of the enhancement was tenfold. What is the overall speedup?

More information

Chapter 2 Topics. 2.1 Classification of Computers & Instructions 2.2 Classes of Instruction Sets 2.3 Informal Description of Simple RISC Computer, SRC

Chapter 2 Topics. 2.1 Classification of Computers & Instructions 2.2 Classes of Instruction Sets 2.3 Informal Description of Simple RISC Computer, SRC Chapter 2 Topics 2.1 Classification of Computers & Instructions 2.2 Classes of Instruction Sets 2.3 Informal Description of Simple RISC Computer, SRC See Appendix C for Assembly language information. 2.4

More information

Computer Organization and Components

Computer Organization and Components Computer Organization and Components IS1500, fall 2015 Lecture 5: I/O Systems, part I Associate Professor, KTH Royal Institute of Technology Assistant Research Engineer, University of California, Berkeley

More information

In the Beginning... 1964 -- The first ISA appears on the IBM System 360 In the good old days

In the Beginning... 1964 -- The first ISA appears on the IBM System 360 In the good old days RISC vs CISC 66 In the Beginning... 1964 -- The first ISA appears on the IBM System 360 In the good old days Initially, the focus was on usability by humans. Lots of user-friendly instructions (remember

More information

Interpreters and virtual machines. Interpreters. Interpreters. Why interpreters? Tree-based interpreters. Text-based interpreters

Interpreters and virtual machines. Interpreters. Interpreters. Why interpreters? Tree-based interpreters. Text-based interpreters Interpreters and virtual machines Michel Schinz 2007 03 23 Interpreters Interpreters Why interpreters? An interpreter is a program that executes another program, represented as some kind of data-structure.

More information

ARM Architecture. ARM history. Why ARM? ARM Ltd. 1983 developed by Acorn computers. Computer Organization and Assembly Languages Yung-Yu Chuang

ARM Architecture. ARM history. Why ARM? ARM Ltd. 1983 developed by Acorn computers. Computer Organization and Assembly Languages Yung-Yu Chuang ARM history ARM Architecture Computer Organization and Assembly Languages g Yung-Yu Chuang 1983 developed by Acorn computers To replace 6502 in BBC computers 4-man VLSI design team Its simplicity it comes

More information

Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 2 Basic Structure of Computers Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Functional Units Basic Operational Concepts Bus Structures Software

More information

Let s put together a Manual Processor

Let s put together a Manual Processor Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce

More information

COMP 303 MIPS Processor Design Project 4: MIPS Processor Due Date: 11 December 2009 23:59

COMP 303 MIPS Processor Design Project 4: MIPS Processor Due Date: 11 December 2009 23:59 COMP 303 MIPS Processor Design Project 4: MIPS Processor Due Date: 11 December 2009 23:59 Overview: In the first projects for COMP 303, you will design and implement a subset of the MIPS32 architecture

More information

umps software development

umps software development Laboratorio di Sistemi Operativi Anno Accademico 2006-2007 Software Development with umps Part 2 Mauro Morsiani Software development with umps architecture: Assembly language development is cumbersome:

More information

Laboratorio di Sistemi Operativi Anno Accademico 2009-2010

Laboratorio di Sistemi Operativi Anno Accademico 2009-2010 Laboratorio di Sistemi Operativi Anno Accademico 2009-2010 Software Development with umps Part 2 Mauro Morsiani Copyright Permission is granted to copy, distribute and/or modify this document under the

More information

1 The Java Virtual Machine

1 The Java Virtual Machine 1 The Java Virtual Machine About the Spec Format This document describes the Java virtual machine and the instruction set. In this introduction, each component of the machine is briefly described. This

More information

Keil C51 Cross Compiler

Keil C51 Cross Compiler Keil C51 Cross Compiler ANSI C Compiler Generates fast compact code for the 8051 and it s derivatives Advantages of C over Assembler Do not need to know the microcontroller instruction set Register allocation

More information

Administrative Issues

Administrative Issues CSC 3210 Computer Organization and Programming Introduction and Overview Dr. Anu Bourgeois (modified by Yuan Long) Administrative Issues Required Prerequisites CSc 2010 Intro to CSc CSc 2310 Java Programming

More information

Pentium vs. Power PC Computer Architecture and PCI Bus Interface

Pentium vs. Power PC Computer Architecture and PCI Bus Interface Pentium vs. Power PC Computer Architecture and PCI Bus Interface CSE 3322 1 Pentium vs. Power PC Computer Architecture and PCI Bus Interface Nowadays, there are two major types of microprocessors in the

More information

MIPS Assembler and Simulator

MIPS Assembler and Simulator MIPS Assembler and Simulator Reference Manual Last Updated, December 1, 2005 Xavier Perséguers (ing. info. dipl. EPF) Swiss Federal Institude of Technology xavier.perseguers@a3.epfl.ch Preface MIPS Assembler

More information

An Introduction to the ARM 7 Architecture

An Introduction to the ARM 7 Architecture An Introduction to the ARM 7 Architecture Trevor Martin CEng, MIEE Technical Director This article gives an overview of the ARM 7 architecture and a description of its major features for a developer new

More information

CS412/CS413. Introduction to Compilers Tim Teitelbaum. Lecture 20: Stack Frames 7 March 08

CS412/CS413. Introduction to Compilers Tim Teitelbaum. Lecture 20: Stack Frames 7 March 08 CS412/CS413 Introduction to Compilers Tim Teitelbaum Lecture 20: Stack Frames 7 March 08 CS 412/413 Spring 2008 Introduction to Compilers 1 Where We Are Source code if (b == 0) a = b; Low-level IR code

More information

Q. Consider a dynamic instruction execution (an execution trace, in other words) that consists of repeats of code in this pattern:

Q. Consider a dynamic instruction execution (an execution trace, in other words) that consists of repeats of code in this pattern: Pipelining HW Q. Can a MIPS SW instruction executing in a simple 5-stage pipelined implementation have a data dependency hazard of any type resulting in a nop bubble? If so, show an example; if not, prove

More information

Chapter 7D The Java Virtual Machine

Chapter 7D The Java Virtual Machine This sub chapter discusses another architecture, that of the JVM (Java Virtual Machine). In general, a VM (Virtual Machine) is a hypothetical machine (implemented in either hardware or software) that directly

More information

Chapter 5 Instructor's Manual

Chapter 5 Instructor's Manual The Essentials of Computer Organization and Architecture Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003 Chapter 5 Instructor's Manual Chapter Objectives Chapter 5, A Closer Look at Instruction

More information

Embedded Systems. Review of ANSI C Topics. A Review of ANSI C and Considerations for Embedded C Programming. Basic features of C

Embedded Systems. Review of ANSI C Topics. A Review of ANSI C and Considerations for Embedded C Programming. Basic features of C Embedded Systems A Review of ANSI C and Considerations for Embedded C Programming Dr. Jeff Jackson Lecture 2-1 Review of ANSI C Topics Basic features of C C fundamentals Basic data types Expressions Selection

More information

Pipelining Review and Its Limitations

Pipelining Review and Its Limitations Pipelining Review and Its Limitations Yuri Baida yuri.baida@gmail.com yuriy.v.baida@intel.com October 16, 2010 Moscow Institute of Physics and Technology Agenda Review Instruction set architecture Basic

More information

Embedded Software development Process and Tools: Lesson-4 Linking and Locating Software

Embedded Software development Process and Tools: Lesson-4 Linking and Locating Software Embedded Software development Process and Tools: Lesson-4 Linking and Locating Software 1 1. Linker 2 Linker Links the compiled codes of application software, object codes from library and OS kernel functions.

More information

LC-3 Assembly Language

LC-3 Assembly Language LC-3 Assembly Language Programming and tips Textbook Chapter 7 CMPE12 Summer 2008 Assembly and Assembler Machine language - binary Assembly language - symbolic 0001110010000110 An assembler is a program

More information

Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit.

Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit. Objectives The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Identify the components of the central processing unit and how they work together and interact with memory Describe how

More information

Chapter 5, The Instruction Set Architecture Level

Chapter 5, The Instruction Set Architecture Level Chapter 5, The Instruction Set Architecture Level 5.1 Overview Of The ISA Level 5.2 Data Types 5.3 Instruction Formats 5.4 Addressing 5.5 Instruction Types 5.6 Flow Of Control 5.7 A Detailed Example: The

More information

Digitale Signalverarbeitung mit FPGA (DSF) Soft Core Prozessor NIOS II Stand Mai 2007. Jens Onno Krah

Digitale Signalverarbeitung mit FPGA (DSF) Soft Core Prozessor NIOS II Stand Mai 2007. Jens Onno Krah (DSF) Soft Core Prozessor NIOS II Stand Mai 2007 Jens Onno Krah Cologne University of Applied Sciences www.fh-koeln.de jens_onno.krah@fh-koeln.de NIOS II 1 1 What is Nios II? Altera s Second Generation

More information

MADRAS: Multi-Architecture Binary Rewriting Tool Technical report. Cédric Valensi University of Versailles Saint-Quentin en Yvelines

MADRAS: Multi-Architecture Binary Rewriting Tool Technical report. Cédric Valensi University of Versailles Saint-Quentin en Yvelines MADRAS: Multi-Architecture Binary Rewriting Tool Technical report Cédric Valensi University of Versailles Saint-Quentin en Yvelines September 2, 2013 Chapter 1 Introduction In the domain of High Performance

More information

1 Classical Universal Computer 3

1 Classical Universal Computer 3 Chapter 6: Machine Language and Assembler Christian Jacob 1 Classical Universal Computer 3 1.1 Von Neumann Architecture 3 1.2 CPU and RAM 5 1.3 Arithmetic Logical Unit (ALU) 6 1.4 Arithmetic Logical Unit

More information

The AVR Microcontroller and C Compiler Co-Design Dr. Gaute Myklebust ATMEL Corporation ATMEL Development Center, Trondheim, Norway

The AVR Microcontroller and C Compiler Co-Design Dr. Gaute Myklebust ATMEL Corporation ATMEL Development Center, Trondheim, Norway The AVR Microcontroller and C Compiler Co-Design Dr. Gaute Myklebust ATMEL Corporation ATMEL Development Center, Trondheim, Norway Abstract High Level Languages (HLLs) are rapidly becoming the standard

More information

Motorola 8- and 16-bit Embedded Application Binary Interface (M8/16EABI)

Motorola 8- and 16-bit Embedded Application Binary Interface (M8/16EABI) Motorola 8- and 16-bit Embedded Application Binary Interface (M8/16EABI) SYSTEM V APPLICATION BINARY INTERFACE Motorola M68HC05, M68HC08, M68HC11, M68HC12, and M68HC16 Processors Supplement Version 2.0

More information

Introduction to Embedded Systems. Software Update Problem

Introduction to Embedded Systems. Software Update Problem Introduction to Embedded Systems CS/ECE 6780/5780 Al Davis logistics minor Today s topics: more software development issues 1 CS 5780 Software Update Problem Lab machines work let us know if they don t

More information