EE361: Digital Computer Organization Course Syllabus

Size: px
Start display at page:

Download "EE361: Digital Computer Organization Course Syllabus"

Transcription

1 EE361: Digital Computer Organization Course Syllabus Dr. Mohammad H. Awedh Spring 2014 Course Objectives Simply, a computer is a set of components (Processor, Memory and Storage, Input/Output Devices) interconnected (by Bus) in such a way as to enable the execution of a program (set of instructions) stored in memory. This course introduces students to the basic concepts of computers, their design and how they work. It encompasses the denition of the machine's instruction set architecture, its use in creating a program, and its implementation in hardware. The course addresses the bridge between gate logic and executable software, and includes programming both in assembly language (representing software) and HDL (representing hardware). We will study modern computer principles using a typical processor and emphasize system-level issues, understanding process performance, and the use of abstraction as a tool to manage complexity. We then learn how ecient memory systems are designed to work closely with the processor. Next, we study input/output (I/O) systems which bring the processor and memory together with a wide range of devices. Finally, we introduce systems with many processors. Catalog Description Introduction to computer organization, machine instructions, addressing modes, assembly language programming, integer and oating-point arithmetic, CPU performance and metrics, non-pipelined and pipelined processor design, datapath and control unit, pipeline hazards, memory system and cache memory. Prerequisite: EE 305, EE 360, IE 331 ECE M. Awedh

2 Textbook Computer Organization & Design: The Hardware/Software Interface, Fourth Edition, Patterson and Hennessy, Morgan Kaufmann Publishers, Course Learning Outcomes Upon completion of the course, students should posses the following knowledge and skills: ˆ An understanding of a machine's instruction set architecture (ISA) including basic instruction fetch and execute cycles, instruction formats, control ow, and operand addressing modes. ˆ The ability to create, assemble, execute, and debug assembly language programs along with a basic understanding of the assembly, linker, and loader processes. ˆ An understanding of a hardware description language, HDL (e.g., either VHDL or verilog) including their uses, structural, and behavioral descriptions. ˆ The ability to create, simulate, and debug a VHDL or verilog program. ˆ An understanding of the design and functioning of a machines central processing unit (CPU) including the datapath components (ALU, register le) and the control unit. ˆ An understanding of basic input/output functioning including program controlled I/O and interrupt I/O. ˆ An understanding of organization of memory hierarchies including the basics of cache design and DRAM architectures. ˆ Analyze the performance of processors and caches ECE M. Awedh

3 Course Information Grading Instructor Dr. Mohammad H. Awedh King Abdulaziz University Oce Location Building 42B, Room 412 Oce Phone Oce Hours Sunday 12:30 to 1:30 or by Appointment Meeting Sunday, Tuesday 11:00 12:20 Building 79, Room 201A Tutorial Thursday 11:00 12:50 Building 79, Room 201A The course has two major exams and a nal exam, weekly homework assignments, labs and a project. Exams will be cumulative, but will focus on the most recent material. Your homework should reect your individual work. Grading will follow approximately the divisions shown below. Participation 5œ Assignments 10œ Lab work 15œ Project 15œ Major Exam I 15œ Major Exam II 15œ Final Exam 25œ ˆ Late assignments are accepted up to 2 days late, but will be penalized 5œfor each late day. ˆ No makeup will be made for missing labs or exams. ECE M. Awedh

4 Class Web Page We shall use Moodle for this class. Moodle is a Course Management System (CMS) which helps to communicate outside of the classroom. Students in this class should visit the site and create an account. This site contains information about the class - syllabus, homework list, due dates for assignments, links to other web sites, etc. In addition, we shall also use it for discussion and questions about the material covered in the course. For each course, students should register for that course on the moodle site. Registration is enabled by a key that will be given to students in class during the rst lecture. You have to notice that registration for the course does not automatically entail registration on the moodle site and vice versa. ECE M. Awedh

5 Lecture Breakdown Week Topics 1 Introduction to computer organization, high-level, assembly, and machine languages, components of a computer system, processor datapath, control, memory hierarchy, disk storage, technology improvements, chip manufacturing process 2 Review of signed/unsigned integers, binary addition and subtraction, carry and overow. Instruction set architecture, registers, instruction formats, arithmetic instructions, immediate operands, bit manipulation. 3 Load and store instructions, ow control instructions, pseudoinstructions, and addressing modes. Translating expressions, if-else statements, loops, array indexing and traversal 4 MIPS assembly language programming, tools, program template, directives, text, data, and stack segments, dening data, arrays, and strings, symbol table, memory alignment, byte ordering, and console input and output. 5 Dening procedures, procedure calls and return address, nested procedure calls, passing arguments in registers, runtime stack, stack frames, local variables, value and reference parameters, saving and restoring registers. 6 Integer multiplication, unsigned and signed multiplication, sequential multiplier hardware, faster (tree) hardware multiplier, integer division, sequential divide hardware, integer multiplication and division in MIPS. 7 Floating point representation, IEEE 754 standard, normalized and denormalized numbers, zero, innity, NaN, FP comparison, FP addition, FP multiplication, rounding and accurate arithmetic. Floating-point instructions. ECE M. Awedh

6 Week Topics 8 CPU performance and metrics, CPI, performance equation, MIPS as a metric, Amdahl?s law, benchmarks and performance of recent processors. 9 Designing a processor, register transfer level, datapath components, clocking methodology, single-cycle datapath, implementing a register le and multifunction ALU. 10 Control signals and control unit, ALU control, single-cycle delay analysis and clock cycle, multi-cycle instruction execution, CPI of a multi-cycle processor, Performance comparison of a single-cycle versus a multi-cycle processor. 11 Pipelining versus serial execution, MIPS 5-stage pipeline, pipelined datapath, pipelined control, pipeline performance. 12 Pipeline hazards: structural, data, and control hazards, load delay, hazard detection, stall and forwarding unit, and delayed branching. 13 Main memory organization and performance, SRAM, DRAM, latency and bandwidth, memory hierarchy, cache memory, locality of reference. 14 Cache memory organization: direct-mapped, fully-associative, and setassociative caches, handling cache miss, write policy, and replacement policy. 15 Cache performance, memory stall cycles, and average memory access time. Tips for Success in this Class ˆ Don't miss class. New material is covered each lecture. If you miss class, you are responsible for covering the missed material on your own. Repeat lectures will not be given during oce hours. ˆ Read in advance. The reading assignments are listed in the class website. Your textbook author has written many digital design and computer engineering texts, and your text in particular is considered one of the most "readable" in print. The ECE M. Awedh

7 argument "but the book is dicult to read" receives very little respect in any forum. ˆ Start homework early. Give yourself some time to consider the problems and determine whether or not you need instructor assistance. Last-minute questions are a bad idea. ˆ Don't ignore the homework. They comprise 10% of your grade! ˆ Ask questions. This includes during class, during discussions, and during oce hours. I don't like a silent class feel free to ask questions or make reasonable comments at will (but no distracting side conversations). ˆ Don't arrive late for class. If you know you'll be delayed (or absent) for some reason, just let me know ahead of time in person or via . It's the courteous and adult thing to do. Policies ˆ All assignments will be due at the beginning of the class on the due date. No late submissions will be accepted unless a valid excuse is given to the instructor by the day prior to the due date. ˆ You are expected to attend all classes. If you miss a class, you are responsible for nding out the material covered in that class. If you miss an exam, a grade of zero will be assigned, unless a valid excuse is given. ˆ All assignments are expected to be done by each student individually. Verbal and informal exchange of ideas is permitted, indeed encouraged. However, written solution should NOT be shown to another student or copied from another student. Any act of academic dishonesty will result in an F grade. The material covered in this course is not hard, but it does require signicant amounts of eort. Be prepared to work hard and come out of this course with a good knowledge of the fundamentals of digital systems. Just like with anything worthwhile in life, if you aren't willing to put in the time and eort, you won't ever become good at it. Be prepared to devote considerable time and eort to this class. ECE M. Awedh

EE360: Digital Design I Course Syllabus

EE360: Digital Design I Course Syllabus : Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential

More information

Department of Electrical and Computer Engineering Faculty of Engineering and Architecture American University of Beirut Course Information

Department of Electrical and Computer Engineering Faculty of Engineering and Architecture American University of Beirut Course Information Department of Electrical and Computer Engineering Faculty of Engineering and Architecture American University of Beirut Course Information Course title: Computer Organization Course number: EECE 321 Catalog

More information

EE411: Introduction to VLSI Design Course Syllabus

EE411: Introduction to VLSI Design Course Syllabus : Introduction to Course Syllabus Dr. Mohammad H. Awedh Spring 2008 Course Overview This is an introductory course which covers basic theories and techniques of digital VLSI design in CMOS technology.

More information

KINGS COLLEGE OF ENGINEERING

KINGS COLLEGE OF ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE: CS1358 YEAR : III SUBJECT NAME: COMPUTER ARCHITECTURE SEM : VI 1. Define interrupt and ISR.

More information

A lab course of Computer Organization

A lab course of Computer Organization A lab course of Computer Organization J. Real, J. Sahuquillo, A. Pont, L. Lemus and A. Robles {jorge, jsahuqui, apont, lemus, arobles}@disca.upv.es Computer Science School Department of Computer Engineering

More information

response (or execution) time -- the time between the start and the finish of a task throughput -- total amount of work done in a given time

response (or execution) time -- the time between the start and the finish of a task throughput -- total amount of work done in a given time Chapter 4: Assessing and Understanding Performance 1. Define response (execution) time. response (or execution) time -- the time between the start and the finish of a task 2. Define throughput. throughput

More information

Computer Architecture

Computer Architecture PhD Qualifiers Examination Computer Architecture Spring 2009 NOTE: 1. This is a CLOSED book, CLOSED notes exam. 2. Please show all your work clearly in legible handwriting. 3. State all your assumptions.

More information

CSE Computer Architecture I Fall 2010 Final Exam December 13, 2010

CSE Computer Architecture I Fall 2010 Final Exam December 13, 2010 CSE 30321 Computer Architecture I Fall 2010 Final Exam December 13, 2010 Test Guidelines: 1. Place your name on EACH page of the test in the space provided. 2. Answer every question in the space provided.

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

Performance evaluation

Performance evaluation Performance evaluation Arquitecturas Avanzadas de Computadores - 2547021 Departamento de Ingeniería Electrónica y de Telecomunicaciones Facultad de Ingeniería 2015-1 Bibliography and evaluation Bibliography

More information

A Lab Course on Computer Architecture

A Lab Course on Computer Architecture A Lab Course on Computer Architecture Pedro López José Duato Depto. de Informática de Sistemas y Computadores Facultad de Informática Universidad Politécnica de Valencia Camino de Vera s/n, 46071 - Valencia,

More information

Motivation and Goal. Introduction to HPC content and definitions. Learning Outcomes. Organization

Motivation and Goal. Introduction to HPC content and definitions. Learning Outcomes. Organization Motivation and Goal Introduction to HPC content and definitions Jan Thorbecke, Section of Applied Geophysics Get familiar with hardware building blocks, how they operate, and how to make use of them in

More information

1 Computer Architecture Question Bank Part A Questions

1 Computer Architecture Question Bank Part A Questions 1 Computer Architecture Part A Questions 1. What is stored program concept? 2. Differentiate memory write and I/O write. 3. What are the various methods of accessing data from memory? 4. Define memory

More information

Chapter 5 Instructor's Manual

Chapter 5 Instructor's Manual The Essentials of Computer Organization and Architecture Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003 Chapter 5 Instructor's Manual Chapter Objectives Chapter 5, A Closer Look at Instruction

More information

Vhdl Implementation of A Mips-32 Pipeline Processor

Vhdl Implementation of A Mips-32 Pipeline Processor Vhdl Implementation of A Mips-32 Pipeline Processor 1 Kirat Pal Singh, 2 Shivani Parmar 1,2 Assistant Professor 1,2 Electronics and Communication Engineering Department 1 SSET, Surya World Institutions

More information

TDTS 08 Advanced Computer Architecture

TDTS 08 Advanced Computer Architecture TDTS 08 Advanced Computer Architecture [Datorarkitektur] www.ida.liu.se/~tdts08 Zebo Peng Embedded Systems Laboratory (ESLAB) Dept. of Computer and Information Science (IDA) Linköping University Contact

More information

Quiz for Chapter 1 Computer Abstractions and Technology 3.10

Quiz for Chapter 1 Computer Abstractions and Technology 3.10 Date: 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: Solutions in Red 1. [15 points] Consider two different implementations,

More information

PART OF THE PICTURE: Computer Architecture

PART OF THE PICTURE: Computer Architecture PART OF THE PICTURE: Computer Architecture 1 PART OF THE PICTURE: Computer Architecture BY WILLIAM STALLINGS At a top level, a computer consists of processor, memory, and I/O components, with one or more

More information

Why study the Alpha (assembly)?

Why study the Alpha (assembly)? Why study the Alpha (assembly)? The Alpha architecture is the first 64-bit load/store RISC (as opposed to CISC) architecture designed to enhance computer performance by improving clock speeding, multiple

More information

Ľudmila Jánošíková. Department of Transportation Networks Faculty of Management Science and Informatics University of Žilina

Ľudmila Jánošíková. Department of Transportation Networks Faculty of Management Science and Informatics University of Žilina Assembly Language Ľudmila Jánošíková Department of Transportation Networks Faculty of Management Science and Informatics University of Žilina Ludmila.Janosikova@fri.uniza.sk 041/5134 220 Recommended texts

More information

Computer Organization and Assembly Language. August 21, 2000

Computer Organization and Assembly Language. August 21, 2000 Computer Organization and Assembly Language August 21, 2000 CSC201 Section 002 Fall, 2000 Plans for Today Some Important Definitions Discussion of Course Structure Handouts and handins CSC201 Section Copyright

More information

CSC 2405: Computer Systems II

CSC 2405: Computer Systems II CSC 2405: Computer Systems II Spring 2013 (TR 8:30-9:45 in G86) Mirela Damian http://www.csc.villanova.edu/~mdamian/csc2405/ Introductions Mirela Damian Room 167A in the Mendel Science Building mirela.damian@villanova.edu

More information

Computer Architecture and Systems

Computer Architecture and Systems PhD Qualifier Exam, Spring 2013 Computer Architecture and Systems 1. (6 points) Consider a virtual memor system. (1) (2 points) Explain the difference between a virtual address and a phgsical address.

More information

Performance Basics; Computer Architectures

Performance Basics; Computer Architectures 8 Performance Basics; Computer Architectures 8.1 Speed and limiting factors of computations Basic floating-point operations, such as addition and multiplication, are carried out directly on the central

More information

The University of Nottingham

The University of Nottingham The University of Nottingham School of Computer Science A Level 1 Module, Autumn Semester 2007-2008 Computer Systems Architecture (G51CSA) Time Allowed: TWO Hours Candidates must NOT start writing their

More information

Price/performance Modern Memory Hierarchy

Price/performance Modern Memory Hierarchy Lecture 21: Storage Administration Take QUIZ 15 over P&H 6.1-4, 6.8-9 before 11:59pm today Project: Cache Simulator, Due April 29, 2010 NEW OFFICE HOUR TIME: Tuesday 1-2, McKinley Last Time Exam discussion

More information

Computer Architecture

Computer Architecture Computer Architecture Having studied numbers, combinational and sequential logic, and assembly language programming, we begin the study of the overall computer system. The term computer architecture is

More information

Pentium vs. Power PC Computer Architecture and PCI Bus Interface

Pentium vs. Power PC Computer Architecture and PCI Bus Interface Pentium vs. Power PC Computer Architecture and PCI Bus Interface CSE 3322 1 Pentium vs. Power PC Computer Architecture and PCI Bus Interface Nowadays, there are two major types of microprocessors in the

More information

The ARM11 Architecture

The ARM11 Architecture The ARM11 Architecture Ian Davey Payton Oliveri Spring 2009 CS433 Why ARM Matters Over 90% of the embedded market is based on the ARM architecture ARM Ltd. makes over $100 million USD annually in royalties

More information

Introducción. Diseño de sistemas digitales.1

Introducción. Diseño de sistemas digitales.1 Introducción Adapted from: Mary Jane Irwin ( www.cse.psu.edu/~mji ) www.cse.psu.edu/~cg431 [Original from Computer Organization and Design, Patterson & Hennessy, 2005, UCB] Diseño de sistemas digitales.1

More information

Chapter 1 Basic Concepts

Chapter 1 Basic Concepts Chapter 1 Basic Concepts 1.1 Welcome to Assembly Language 1 1.1.1 Good Questions to Ask 2 1.1.2 Assembly language Applications 5 1.1.3 Section Review 6 1.2 Virtual Machine Concept 7 1.2.1 History of PC

More information

CPU- Internal Structure

CPU- Internal Structure ESD-1 Elettronica dei Sistemi Digitali 1 CPU- Internal Structure Lesson 12 CPU Structure&Function Instruction Sets Addressing Modes Read Stallings s chapters: 11, 9, 10 esd-1-9:10:11-2002 1 esd-1-9:10:11-2002

More information

CHAPTER 4 MARIE: An Introduction to a Simple Computer

CHAPTER 4 MARIE: An Introduction to a Simple Computer CHAPTER 4 MARIE: An Introduction to a Simple Computer 4.1 Introduction 145 4.1.1 CPU Basics and Organization 145 4.1.2 The Bus 147 4.1.3 Clocks 151 4.1.4 The Input/Output Subsystem 153 4.1.5 Memory Organization

More information

Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 2 Basic Structure of Computers Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Functional Units Basic Operational Concepts Bus Structures Software

More information

Engineering 9859 CoE Fundamentals Computer Architecture

Engineering 9859 CoE Fundamentals Computer Architecture Engineering 9859 CoE Fundamentals Computer Architecture Instruction Set Principles Dennis Peters 1 Fall 2007 1 Based on notes from Dr. R. Venkatesan RISC vs. CISC Complex Instruction Set Computers (CISC)

More information

COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING

COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING 2013/2014 1 st Semester Sample Exam January 2014 Duration: 2h00 - No extra material allowed. This includes notes, scratch paper, calculator, etc.

More information

COMPUTER HARDWARE. Input- Output and Communication Memory Systems

COMPUTER HARDWARE. Input- Output and Communication Memory Systems COMPUTER HARDWARE Input- Output and Communication Memory Systems Computer I/O I/O devices commonly found in Computer systems Keyboards Displays Printers Magnetic Drives Compact disk read only memory (CD-ROM)

More information

ECE 0142 Computer Organization

ECE 0142 Computer Organization ECE 0142 Computer Organization Lecture 1 Introduction Professor Jun Yang Department of Electrical and Computer Engineering University of Pittsburgh 1 Logistics Course Material: http://www.pitt.edu/~juy9/142/142.html

More information

Lecture 1: Introduction to Microcomputers

Lecture 1: Introduction to Microcomputers Lecture 1: Introduction to Microcomputers Today s Topics What is a microcomputers? Why do we study microcomputers? Two basic types of microcomputer architectures Internal components of a microcomputers

More information

Q. Consider a dynamic instruction execution (an execution trace, in other words) that consists of repeats of code in this pattern:

Q. Consider a dynamic instruction execution (an execution trace, in other words) that consists of repeats of code in this pattern: Pipelining HW Q. Can a MIPS SW instruction executing in a simple 5-stage pipelined implementation have a data dependency hazard of any type resulting in a nop bubble? If so, show an example; if not, prove

More information

Architecture des Ordinateurs

Architecture des Ordinateurs Architecture des Ordinateurs Introduction paolo.ienne@epfl.ch EPFL I&C LAP Who s Who Lecturer: Paolo Ienne Student Assistants (labs) Responsible graduate assistants (labs): Grace Zgheib Ana Petkovska 2

More information

Lecture Topics. Pipelining in Processors. Pipelining and ISA ECE 486/586. Computer Architecture. Lecture # 10. Reference:

Lecture Topics. Pipelining in Processors. Pipelining and ISA ECE 486/586. Computer Architecture. Lecture # 10. Reference: Lecture Topics ECE 486/586 Computer Architecture Lecture # 10 Spring 2015 Pipelining Hazards and Stalls Reference: Effect of Stalls on Pipeline Performance Structural hazards Data Hazards Appendix C: Sections

More information

LSN 2 Computer Processors

LSN 2 Computer Processors LSN 2 Computer Processors Department of Engineering Technology LSN 2 Computer Processors Microprocessors Design Instruction set Processor organization Processor performance Bandwidth Clock speed LSN 2

More information

Simulation & Synthesis Using VHDL

Simulation & Synthesis Using VHDL Floating Point Multipliers: Simulation & Synthesis Using VHDL By: Raj Kumar Singh - B.E. (Hons.) Electrical & Electronics Shivananda Reddy - B.E. (Hons.) Electrical & Electronics BITS, PILANI Outline Introduction

More information

CPU Organization and Assembly Language

CPU Organization and Assembly Language COS 140 Foundations of Computer Science School of Computing and Information Science University of Maine October 2, 2015 Outline 1 2 3 4 5 6 7 8 Homework and announcements Reading: Chapter 12 Homework:

More information

Floating Point/Multicycle Pipelining in MIPS

Floating Point/Multicycle Pipelining in MIPS Floating Point/Multicycle Pipelining in MIPS Completion of MIPS EX stage floating point arithmetic operations in one or two cycles is impractical since it requires: A much longer CPU clock cycle, and/or

More information

Processing Unit Design

Processing Unit Design &CHAPTER 5 Processing Unit Design In previous chapters, we studied the history of computer systems and the fundamental issues related to memory locations, addressing modes, assembly language, and computer

More information

San José State University Computer Science Department CS 147, Section 03 Introduction to Computer Architecture Fall, 2015

San José State University Computer Science Department CS 147, Section 03 Introduction to Computer Architecture Fall, 2015 San José State University Computer Science Department CS 147, Section 03 Introduction to Computer Architecture Fall, 2015 Course and Contact Information Instructor: Kaushik Patra Office Location: DH 282

More information

Computer Organization and Architecture

Computer Organization and Architecture Computer Organization and Architecture Chapter 9 Computer Arithmetic Arithmetic & Logic Unit Performs arithmetic and logic operations on data everything that we think of as computing. Everything else in

More information

CHAPTER 4 MARIE: An Introduction to a Simple Computer

CHAPTER 4 MARIE: An Introduction to a Simple Computer CHAPTER 4 MARIE: An Introduction to a Simple Computer 4.1 Introduction 195 4.2 CPU Basics and Organization 195 4.2.1 The Registers 196 4.2.2 The ALU 197 4.2.3 The Control Unit 197 4.3 The Bus 197 4.4 Clocks

More information

COMPUTER ARCHITECTURE IMPORTANT QUESTIONS FOR PRACTICE

COMPUTER ARCHITECTURE IMPORTANT QUESTIONS FOR PRACTICE COMPUTER ARCHITECTURE IMPORTANT QUESTIONS FOR PRACTICE 1. How many bits wide memory address have to be if the computer had 16 MB of memory? (use the smallest value possible) 2. A digital computer has a

More information

#5. Show and the AND function can be constructed from two NAND gates.

#5. Show and the AND function can be constructed from two NAND gates. Study Questions for Digital Logic, Processors and Caches G22.0201 Fall 2009 ANSWERS Digital Logic Read: Sections 3.1 3.3 in the textbook. Handwritten digital lecture notes on the course web page. Study

More information

CS 350 COMPUTER ORGANIZATION AND ASSEMBLY LANGUAGE PROGRAMMING Week 5

CS 350 COMPUTER ORGANIZATION AND ASSEMBLY LANGUAGE PROGRAMMING Week 5 CS 350 COMPUTER ORGANIZATION AND ASSEMBLY LANGUAGE PROGRAMMING Week 5 Reading: Objectives: 1. D. Patterson and J. Hennessy, Chapter- 4 To understand load store architecture. Learn how to implement Load

More information

Using FPGA for Computer Architecture/Organization Education

Using FPGA for Computer Architecture/Organization Education Using FPGA for Computer Architecture/Organization Education Yamin Li and Wanming Chu Computer Architecture Laboratory Department of Computer Hardware University of Aizu Aizu-Wakamatsu, 965-80 Japan yamin@u-aizu.ac.jp,

More information

Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.

Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University cwliu@twins.ee.nctu.edu. Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Review Computers in mid 50 s Hardware was expensive

More information

5 Computer Organization

5 Computer Organization 5 Computer Organization 5.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three subsystems of a computer. Describe the

More information

Computer Organization and Components

Computer Organization and Components Computer Organization and Components IS5, fall 25 Lecture : Pipelined Processors ssociate Professor, KTH Royal Institute of Technology ssistant Research ngineer, University of California, Berkeley Slides

More information

CS 16: Assembly Language Programming for the IBM PC and Compatibles

CS 16: Assembly Language Programming for the IBM PC and Compatibles CS 16: Assembly Language Programming for the IBM PC and Compatibles First, a little about you Your name Have you ever worked with/used/played with assembly language? If so, talk about it Why are you taking

More information

CSE320 Final Exam Practice Questions

CSE320 Final Exam Practice Questions CSE320 Final Exam Practice Questions Single Cycle Datapath/ Multi Cycle Datapath Adding instructions Modify the datapath and control signals to perform the new instructions in the corresponding datapath.

More information

University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54

University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Fall 2005 Instructor Texts University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Lab: Section 1: OSS LL14 Tuesday

More information

COMPUTER ARCHITECTURE AND ORGANIZATION IN THE MODEL COMPUTER ENGINEERING CURRICULUM

COMPUTER ARCHITECTURE AND ORGANIZATION IN THE MODEL COMPUTER ENGINEERING CURRICULUM COMPUTER ARCHITECTURE AND ORGANIZATION IN THE MODEL COMPUTER ENGINEERING CURRICULUM Victor P. Nelson 1, Mitchell D. Theys 2, and Alan Clements 3 Abstract - In 1998, the Computer Society of the Institute

More information

MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1

MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1 MICROPROCESSOR A microprocessor incorporates the functions of a computer s central processing unit (CPU) on a single Integrated (IC), or at most a few integrated circuit. It is a multipurpose, programmable

More information

Assignment 2 Solutions Instruction Set Architecture, Performance, Spim, and Other ISAs

Assignment 2 Solutions Instruction Set Architecture, Performance, Spim, and Other ISAs Assignment 2 Solutions Instruction Set Architecture, Performance, Spim, and Other ISAs Alice Liang Apr 18, 2013 Unless otherwise noted, the following problems are from the Patterson & Hennessy textbook

More information

Computers Are Your Future Eleventh Edition

Computers Are Your Future Eleventh Edition Computers Are Your Future Eleventh Edition Chapter 2: Inside the System Unit Copyright 2011 Pearson Education, Inc. Publishing as Prentice Hall 1 All rights reserved. No part of this publication may be

More information

Faculty of Engineering Student Number:

Faculty of Engineering Student Number: Philadelphia University Student Name: Faculty of Engineering Student Number: Dept. of Computer Engineering Final Exam, First Semester: 2012/2013 Course Title: Microprocessors Date: 17/01//2013 Course No:

More information

Computer Architecture Syllabus of Qualifying Examination

Computer Architecture Syllabus of Qualifying Examination Computer Architecture Syllabus of Qualifying Examination PhD in Engineering with a focus in Computer Science Reference course: CS 5200 Computer Architecture, College of EAS, UCCS Created by Prof. Xiaobo

More information

SIM-PL: Software for teaching computer hardware at secondary schools in the Netherlands

SIM-PL: Software for teaching computer hardware at secondary schools in the Netherlands SIM-PL: Software for teaching computer hardware at secondary schools in the Netherlands Ben Bruidegom, benb@science.uva.nl AMSTEL Instituut Universiteit van Amsterdam Kruislaan 404 NL-1098 SM Amsterdam

More information

Basic Pipelining. B.Ramamurthy CS506

Basic Pipelining. B.Ramamurthy CS506 Basic Pipelining CS506 1 Introduction In a typical system speedup is achieved through parallelism at all levels: Multi-user, multitasking, multi-processing, multi-programming, multi-threading, compiler

More information

CHAPTER 7: The CPU and Memory

CHAPTER 7: The CPU and Memory CHAPTER 7: The CPU and Memory The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides

More information

ARM & IA-32. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

ARM & IA-32. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University ARM & IA-32 Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu ARM (1) ARM & MIPS similarities ARM: the most popular embedded core Similar basic set

More information

Chapter 5. Processing Unit Design

Chapter 5. Processing Unit Design Chapter 5 Processing Unit Design 5.1 CPU Basics A typical CPU has three major components: Register Set, Arithmetic Logic Unit, and Control Unit (CU). The register set is usually a combination of general-purpose

More information

Computer Systems Design and Architecture by V. Heuring and H. Jordan

Computer Systems Design and Architecture by V. Heuring and H. Jordan 1-1 Chapter 1 - The General Purpose Machine Computer Systems Design and Architecture Vincent P. Heuring and Harry F. Jordan Department of Electrical and Computer Engineering University of Colorado - Boulder

More information

Today s lecture is all about the System Unit, the Motherboard, and the Central Processing Unit, Oh My!

Today s lecture is all about the System Unit, the Motherboard, and the Central Processing Unit, Oh My! Today s lecture is all about the System Unit, the Motherboard, and the Central Processing Unit, Oh My! Or what s happening inside the computer? Computer Architecture CPU Input Memory a.k.a. RAM Output

More information

Introduction to ARCHITECTURE. Link to download slides. Goals and learning objectives. Goals and learning objectives

Introduction to ARCHITECTURE. Link to download slides. Goals and learning objectives. Goals and learning objectives Introduction to COMPUTER ARCHITECTURE Link to download slides Professor Mihai ROMANCA Course web page: http://etc.unitbv.ro/~romanca/c-arc/ (Or IESC -> DEC -> Members -> Romanca Mihai) Electronics and

More information

on an system with an infinite number of processors. Calculate the speedup of

on an system with an infinite number of processors. Calculate the speedup of 1. Amdahl s law Three enhancements with the following speedups are proposed for a new architecture: Speedup1 = 30 Speedup2 = 20 Speedup3 = 10 Only one enhancement is usable at a time. a) If enhancements

More information

Unit 5 Central Processing Unit (CPU)

Unit 5 Central Processing Unit (CPU) Unit 5 Central Processing Unit (CPU) Introduction Part of the computer that performs the bulk of data-processing operations is called the central processing unit (CPU). It consists of 3 major parts: Register

More information

a. Chapter 1: Exercises: =>

a. Chapter 1: Exercises: => Selected Solutions to Problem-Set #1 COE608: Computer Organization and Architecture Introduction, Instruction Set Architecture and Computer Arithmetic Chapters 1, 2 and 3 a. Chapter 1: Exercises: 1.1.1

More information

Exceptions in MIPS. know the exception mechanism in MIPS be able to write a simple exception handler for a MIPS machine

Exceptions in MIPS. know the exception mechanism in MIPS be able to write a simple exception handler for a MIPS machine 7 Objectives After completing this lab you will: know the exception mechanism in MIPS be able to write a simple exception handler for a MIPS machine Introduction Branches and jumps provide ways to change

More information

Computer Performance. Topic 3. Contents. Prerequisite knowledge Before studying this topic you should be able to:

Computer Performance. Topic 3. Contents. Prerequisite knowledge Before studying this topic you should be able to: 55 Topic 3 Computer Performance Contents 3.1 Introduction...................................... 56 3.2 Measuring performance............................... 56 3.2.1 Clock Speed.................................

More information

A4-R3: COMPUTER ORGANISATION

A4-R3: COMPUTER ORGANISATION A4-R3: COMPUTER ORGANISATION NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered in the TEAR-OFF ANSWER

More information

Spring 2008 Signoff: By 14 March, 2008 ECE Computer Architecture and Operating Systems. Lab Assignment 2 Pipelined MIPS

Spring 2008 Signoff: By 14 March, 2008 ECE Computer Architecture and Operating Systems. Lab Assignment 2 Pipelined MIPS Spring 2008 Signoff: By 14 March, 2008 ECE 3055 Computer Architecture and Operating Systems Lab Assignment 2 Pipelined MIPS For this assignment, you must go to lab hours held by a TA and have your assignment

More information

Computer Architecture. R. Poss

Computer Architecture. R. Poss Computer Architecture R. Poss 1 What is computer architecture? 2 Your ideas and expectations What is part of computer architecture, what is not? Who are computer architects, what is their job? What is

More information

Administrative Issues

Administrative Issues CSC 3210 Computer Organization and Programming Introduction and Overview Dr. Anu Bourgeois (modified by Yuan Long) Administrative Issues Required Prerequisites CSc 2010 Intro to CSc CSc 2310 Java Programming

More information

Computer Organization

Computer Organization Computer Organization and Architecture Designing for Performance Ninth Edition William Stallings International Edition contributions by R. Mohan National Institute of Technology, Tiruchirappalli PEARSON

More information

Introduction to Design of a Tiny Computer

Introduction to Design of a Tiny Computer Introduction to Design of a Tiny Computer (Background of LAB#4) Objective In this lab, we will build a tiny computer in Verilog. The execution results will be displayed in the HEX[3:0] of your board. Unlike

More information

5 Computer Organization

5 Computer Organization 5 Computer Organization 5.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, students should be able to: List the three subsystems of a computer. Describe

More information

Using the MIPS32 M4K Processor Core SRAM Interface in Microcontroller Applications

Using the MIPS32 M4K Processor Core SRAM Interface in Microcontroller Applications Using the MIPS32 M4K Processor Core SRAM Interface in Microcontroller Applications October 2007 MIPS Technologies, Inc. 1225 Charleston Road Mountain View, CA 94043 (650) 567-5000 2007 MIPS Technologies,

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 1 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 1 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 1 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering Instructor: Dr. Srinivas Shakkottai! Office 332C WEB! Office Hours: Wed 2:00PM-3:00

More information

A SystemC Transaction Level Model for the MIPS R3000 Processor

A SystemC Transaction Level Model for the MIPS R3000 Processor SETIT 2007 4 th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 25-29, 2007 TUNISIA A SystemC Transaction Level Model for the MIPS R3000 Processor

More information

Milwaukee School of Engineering MSOE 2013 CE-2800 Embedded Systems I

Milwaukee School of Engineering MSOE 2013 CE-2800 Embedded Systems I Milwaukee School of Engineering MSOE 2013 CE-2800 Embedded Systems I Description Required Materials Course Learning Outcomes This course presents a typical embedded microcontroller and assembly language

More information

Digital Systems. Syllabus 8/18/2010 1

Digital Systems. Syllabus 8/18/2010 1 Digital Systems Syllabus 1 Course Description: This course covers the design and implementation of digital systems. Topics include: combinational and sequential digital circuits, minimization methods,

More information

Page # Outline. Overview of Pipelining. What is pipelining? Classic 5 Stage MIPS Pipeline

Page # Outline. Overview of Pipelining. What is pipelining? Classic 5 Stage MIPS Pipeline Outline Overview of Venkatesh Akella EEC 270 Winter 2005 Overview Hazards and how to eliminate them? Performance Evaluation with Hazards Precise Interrupts Multicycle Operations MIPS R4000-8-stage pipelined

More information

Computer Organization

Computer Organization 5 Computer Organization 5.1 Foundations of Computer Science & Cengage Learning Objectives After studying this chapter, the student should be able to: List the three subsystems of a computer. Describe the

More information

1 / 40. Data Representation. January 9 14, 2013

1 / 40. Data Representation. January 9 14, 2013 1 / 40 Data Representation January 9 14, 2013 Quick logistical notes In class exercises Bring paper and pencil (or laptop) to each lecture! Goals: break up lectures, keep you engaged chance to work through

More information

2010-2011 Assessment for Master s Degree Program Fall 2010 - Spring 2011 Computer Science Dept. Texas A&M University - Commerce

2010-2011 Assessment for Master s Degree Program Fall 2010 - Spring 2011 Computer Science Dept. Texas A&M University - Commerce 2010-2011 Assessment for Master s Degree Program Fall 2010 - Spring 2011 Computer Science Dept. Texas A&M University - Commerce Program Objective #1 (PO1):Students will be able to demonstrate a broad knowledge

More information

Pipelining Review and Its Limitations

Pipelining Review and Its Limitations Pipelining Review and Its Limitations Yuri Baida yuri.baida@gmail.com yuriy.v.baida@intel.com October 16, 2010 Moscow Institute of Physics and Technology Agenda Review Instruction set architecture Basic

More information

Alexandria University

Alexandria University Alexandria University Faculty of Engineering Division of Communications & Electronics CSx35 Computer Architecture Sheet 3 1. A cache has the following parameters: b, block size given in numbers of words;

More information

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the

More information

Feature of 8086 Microprocessor

Feature of 8086 Microprocessor 8086 Microprocessor Introduction 8086 is the first 16 bit microprocessor which has 40 pin IC and operate on 5volt power supply. which has twenty address limes and works on two modes minimum mode and maximum.

More information

Unit 4: Performance & Benchmarking. Performance Metrics. This Unit. CIS 501: Computer Architecture. Performance: Latency vs.

Unit 4: Performance & Benchmarking. Performance Metrics. This Unit. CIS 501: Computer Architecture. Performance: Latency vs. This Unit CIS 501: Computer Architecture Unit 4: Performance & Benchmarking Metrics Latency and throughput Speedup Averaging CPU Performance Performance Pitfalls Slides'developed'by'Milo'Mar0n'&'Amir'Roth'at'the'University'of'Pennsylvania'

More information