Section 7.2 Quadratic Applications

Size: px
Start display at page:

Download "Section 7.2 Quadratic Applications"

Transcription

1 Section 7.2 Quadratic Applications Now that you are familiar with solving quadratic equations it is time to learn how to apply them to certain situations. That s right, it s time for word problems. The applications that most frequently use quadratic equations are from geometry, though we ll also explore some situations in physics related to falling objects and gravity. QUADRATICS IN GEOMETRY The area of a rectangle is found by the product of its length and width: Area = Length Width. We could also write it as Length Width = Area. An example of applying this area formula to algebra can be found in the diagram on the right. This diagram suggests that we know the area (48 in. 2 ) but not the length (x + 2) or width (x). We can find the values of the length and width by using the formula. Length Width = Area: Legend: x = the width x + 2 = the length (x + 2) x = 48 This is a quadratic equation, but it s not yet equal to 0. x 2 + 2x = 48 x 2 + 2x 48 = 0 (x + 8)(x 6) = 0 Distribute x and then move 48 to the other side. Factor the trinomial (if possible; if not possible, use the quadratic formula.) x + 8 = 0 or x 6 = 0 Each factor could equal 0. x = - 8 or x = 6 We get two solutions, but the width, x, could never be - 8 (the side of rectangle can t be negative), so the only answer is x = 6: The legend says that x represents the width and x + 2 represents the length. So, the width is 6 inches and the length is 8 inches. Quadratic Applications page 7.2-1

2 Within that last problem of the sides of a rectangle is a word problem waiting to happen. You may want to do a quick review of Sections 3.2 and 3.3 to refresh your memory about setting up the legend (Section 3.2), drawing a diagram and recognizing a formula and solving the equation and writing a sentence (Section 3.3). That problem on the previous page might have been written like this: Rebecca wants to make a decorative wooden frame that has an area of 48 square inches (48 in 2 ). She also wants the length to be two more inches than the width. What should the dimensions (length and width) of the rectangle be? From Sections 3.2 and 3.3 we learned these important steps to solving a word problem: (1) decide how many unknown values there are... this problem has two unknowns; (2) if there are two or more unknown values, identify a sentence of comparison in this problem we have... the length (is) two more inches than the width; (3) set up the legend; Let x = the second thing mentioned... Let x = the width (4) use the comparison for the rest of the legend... x + 2 = the length (5) draw and label a diagram (like the one shown on the previous page); you may want to set up a chart; (6) identify a formula related to the problem and the diagram... Length Width = Area; (7) solve the equation generated by the formula... (x + 2) x = 48 (8) write a sentence answering the question... The width is 6 in. and the length is 8 in. Example 1: Procedure: James wants a rectangular garden to have an area of 60 square feet. He wants the width to be 4 feet less than the length. What should be the dimensions of the rectangle? Follow the guidelines above for this new rectangle. Legend: Let x = the length x 4 = the width Formula: Length Width = Area x(x!4) = 60 x 2!4x = 60 x 2!4x 60 = 0 (x 10)(x + 6) = 0 x 10 = 0 or x + 6 = 0 x = 10 or x = - 6 x Area is 60 ft. 2 x!4 x = 10 only because the side cannot be - 6 So, the length is 10 feet and the width is 6 feet. Quadratic Applications page 7.2-2

3 Exercise 1 Follow the guidelines outlined on the previous page to solve each application situation. SHOW ALL WORK, INCLUDING THE LEGEND AND A DIAGRAM. a) Sandy s bedroom is in the shape of a rectangle that has an area of 120 square feet. The width is two feet less than the length. Find the dimensions of Sandy s bedroom. b) Desio s backyard patio is in the shape of a rectangle and has an area of 36 square yards. The length is 1 yard more than twice the width. Find the dimensions of Desio s backyard patio. Quadratic Applications page 7.2-3

4 RIGHT TRIANGLES Another common shape in geometry is the right triangle. Every right triangle has a corner angle (which measures 90 ). This corner angle is called a right angle. In a right triangle, we call the two sides that form the right angle the legs of the triangle; the third side is called the hypotenuse, as shown in the diagram. The area of a right triangle is found by considering half of a rectangle. When a rectangle is cut in half by a diagonal, a line drawn from corner to corner, two right triangles are formed. The area of each right triangle formed is half the area of the original rectangle; in other words, the formula for the area of a right triangle is 1 2 Length Width = Area (of triangle) If the triangle is found on its own (without being half of a rectangle), then the area of the right triangle is one-half the product of the legs: 1 2 leg leg = Area Example 2: Ibrahaim, a professional landscaper, is creating a garden with a series of small patios, each in the shape of a right triangle. One right triangle, which has an area of 24 square feet, is designed so that the longer leg is 2 feet more than the shorter leg. How long is each leg of the right triangle? Procedure: Write the legend, draw and label the diagram, identify the formula, and... Quadratic Applications page 7.2-4

5 Exercise 2 Solve each application situation. Show all work. a) LaTanya s lawn is in the shape of a right triangle. The area of the lawn is 20 square yards. If the shorter leg of that triangle is 3 yards less than the longer leg, what are the lengths of the legs of the triangular lawn? b) Eduardo works in the remodeling division at a modern art museum. One of his jobs is to keep the different metal sculptures painted and in good condition. One outdoor sculpture has the shape of a large right triangle. Eduardo needs to know the area of the triangle so that he can figure out how much paint it will need. He finds out that the area he needs to paint is 10 square feet. If the longer leg is 3 feet less than twice the shorter leg, what are the lengths of the two legs? Quadratic Applications page 7.2-5

6 THE PYTHAGOREAN THEOREM The Pythagorean Theorem states that, in every right triangle: leg 2 + leg 2 = hypotenuse 2. Using the measures in the diagram, at right, the Pythagorean Theorem says, a 2 + b 2 = c 2. As an example, a right triangle that has legs of length 3 inches and 4 inches will have to a hypotenuse that is 5 inches long. (This is referred to as a right triangle.) We can demonstrate the Pythagorean Theorem using these sides: = = = 25 True! The nature of a right triangle is that the hypotenuse is always the longest of the three sides in a right triangle. (The two legs will always be shorter than the hypotenuse.) Here is a simple application involving the Pythagorean Theorem. Example 3: The hypotenuse of a right triangle is 10 inches. The longer leg is 2 inches more than the shorter leg. What are the lengths of the two legs? Procedure: Write the legend, draw and label the diagram, identify the formula, and... Quadratic Applications page 7.2-6

7 Exercise 3 Solve each application situation. Show all work. a) Shay s garden is in the shape of a right triangle. The hypotenuse is 15 feet, and the longer leg is 3 feet more than the shorter leg. What are the lengths of the two legs? b) The longer leg of a right triangle is 7 inches more than the shorter leg, and the hypotenuse 8 inches more than the shorter leg. What are the lengths of the three sides of the triangle? Quadratic Applications page 7.2-7

8 Answers to each Exercise Section 7.2 Exercise 1: a) The dimensions of Sandy s bedroom are 10 feet wide and 12 feet long. b) The dimensions of Desio s patio are 4 yards wide and 9 yards long. Exercise 2: a) The lengths of the legs of LaTanya s triangular lawn are 8 yards and 5 yards. b) The lengths of the legs of the triangle are 4 feet and 5 feet. Exercise 3: a) The lengths of the legs of Shay s triangular garden are 9 feet and 12 feet. b) The lengths of the sides of the triangle are 5 inches, 12 inches and 13 inches. Quadratic Applications page 7.2-8

9 Section 7.2 Focus Exercises Follow the guidelines outlined in Section 7.2 to solve each application situation. SHOW ALL WORK, INCLUDING THE LEGEND AND A DIAGRAM. SHOW ALL WORK ON YOUR OWN PAPER. 1. An artist has created a book of prints of her abstract work. The book, itself, is a work of art in that each rectangular page is a different size; the artist requires that the dimensions of each page be so that the width is always 2 inches less than the length. One page has an area of 48 square inches. Find the dimensions of that page. 2. A rectangular picture window has an area of 21 square feet. The length is one foot less than twice the width. Find the dimensions of the picture window. 3. A rectangular roof has an area of 60 square yards. The width is 1 yard less than half of the length. Find the dimensions of the roof. Quadratic Applications page 7.2-9

10 4. A stained glass window is in the shape of a right triangle. The whole window has an area of 30 square feet. The smaller leg is 4 feet less than the longer leg. What are the lengths of the two legs of the triangle? 5. A public vegetable garden is divided up in different shapes for those who wish to grow vegetables there. Mitch s piece is in the shape of a right triangle and has an area of 40 square feet. The longer leg is 6 feet less than twice the shorter leg. What are the lengths of the two legs of that triangle? 6. A right triangle s longer leg is 2 inches more than twice the shorter leg, and the hypotenuse is 1 inch more than the longer leg. Find the dimensions of the right triangle. 7. A right triangle s hypotenuse is 4 feet more than three times the shorter leg, and the longer leg is 1 foot less than the hypotenuse. Find the dimensions of the right triangle. Quadratic Applications page

Applications of the Pythagorean Theorem

Applications of the Pythagorean Theorem 9.5 Applications of the Pythagorean Theorem 9.5 OBJECTIVE 1. Apply the Pythagorean theorem in solving problems Perhaps the most famous theorem in all of mathematics is the Pythagorean theorem. The theorem

More information

MATH 90 CHAPTER 6 Name:.

MATH 90 CHAPTER 6 Name:. MATH 90 CHAPTER 6 Name:. 6.1 GCF and Factoring by Groups Need To Know Definitions How to factor by GCF How to factor by groups The Greatest Common Factor Factoring means to write a number as product. a

More information

Quadratics - Rectangles

Quadratics - Rectangles 9.7 Quadratics - Rectangles Objective: Solve applications of quadratic equations using rectangles. An application of solving quadratic equations comes from the formula for the area of a rectangle. The

More information

7.2 Quadratic Equations

7.2 Quadratic Equations 476 CHAPTER 7 Graphs, Equations, and Inequalities 7. Quadratic Equations Now Work the Are You Prepared? problems on page 48. OBJECTIVES 1 Solve Quadratic Equations by Factoring (p. 476) Solve Quadratic

More information

Characteristics of the Four Main Geometrical Figures

Characteristics of the Four Main Geometrical Figures Math 40 9.7 & 9.8: The Big Four Square, Rectangle, Triangle, Circle Pre Algebra We will be focusing our attention on the formulas for the area and perimeter of a square, rectangle, triangle, and a circle.

More information

Sect 6.7 - Solving Equations Using the Zero Product Rule

Sect 6.7 - Solving Equations Using the Zero Product Rule Sect 6.7 - Solving Equations Using the Zero Product Rule 116 Concept #1: Definition of a Quadratic Equation A quadratic equation is an equation that can be written in the form ax 2 + bx + c = 0 (referred

More information

Geometry and Measurement

Geometry and Measurement The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

COMPETENCY TEST SAMPLE TEST. A scientific, non-graphing calculator is required for this test. C = pd or. A = pr 2. A = 1 2 bh

COMPETENCY TEST SAMPLE TEST. A scientific, non-graphing calculator is required for this test. C = pd or. A = pr 2. A = 1 2 bh BASIC MATHEMATICS COMPETENCY TEST SAMPLE TEST 2004 A scientific, non-graphing calculator is required for this test. The following formulas may be used on this test: Circumference of a circle: C = pd or

More information

Square Roots and the Pythagorean Theorem

Square Roots and the Pythagorean Theorem 4.8 Square Roots and the Pythagorean Theorem 4.8 OBJECTIVES 1. Find the square root of a perfect square 2. Use the Pythagorean theorem to find the length of a missing side of a right triangle 3. Approximate

More information

MATH 100 PRACTICE FINAL EXAM

MATH 100 PRACTICE FINAL EXAM MATH 100 PRACTICE FINAL EXAM Lecture Version Name: ID Number: Instructor: Section: Do not open this booklet until told to do so! On the separate answer sheet, fill in your name and identification number

More information

Student Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes)

Student Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes) Student Outcomes Students give an informal derivation of the relationship between the circumference and area of a circle. Students know the formula for the area of a circle and use it to solve problems.

More information

Veterans Upward Bound Algebra I Concepts - Honors

Veterans Upward Bound Algebra I Concepts - Honors Veterans Upward Bound Algebra I Concepts - Honors Brenda Meery Kaitlyn Spong Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org Chapter 6. Factoring CHAPTER

More information

Area and Perimeter. Name: Class: Date: Short Answer

Area and Perimeter. Name: Class: Date: Short Answer Name: Class: Date: ID: A Area and Perimeter Short Answer 1. The squares on this grid are 1 centimeter long and 1 centimeter wide. Outline two different figures with an area of 12 square centimeters and

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

Hiker. A hiker sets off at 10am and walks at a steady speed for 2 hours due north, then turns and walks for a further 5 hours due west.

Hiker. A hiker sets off at 10am and walks at a steady speed for 2 hours due north, then turns and walks for a further 5 hours due west. Hiker A hiker sets off at 10am and walks at a steady speed for hours due north, then turns and walks for a further 5 hours due west. If he continues at the same speed, what s the earliest time he could

More information

Calculating Perimeter

Calculating Perimeter Calculating Perimeter and Area Formulas are equations used to make specific calculations. Common formulas (equations) include: P = 2l + 2w perimeter of a rectangle A = l + w area of a square or rectangle

More information

Nonlinear Systems and the Conic Sections

Nonlinear Systems and the Conic Sections C H A P T E R 11 Nonlinear Systems and the Conic Sections x y 0 40 Width of boom carpet Most intense sonic boom is between these lines t a cruising speed of 1,40 miles per hour, the Concorde can fly from

More information

Teacher Page Key. Geometry / Day # 13 Composite Figures 45 Min.

Teacher Page Key. Geometry / Day # 13 Composite Figures 45 Min. Teacher Page Key Geometry / Day # 13 Composite Figures 45 Min. 9-1.G.1. Find the area and perimeter of a geometric figure composed of a combination of two or more rectangles, triangles, and/or semicircles

More information

Tennessee Department of Education

Tennessee Department of Education Tennessee Department of Education Task: Pool Patio Problem Algebra I A hotel is remodeling their grounds and plans to improve the area around a 20 foot by 40 foot rectangular pool. The owner wants to use

More information

Geometry: Classifying, Identifying, and Constructing Triangles

Geometry: Classifying, Identifying, and Constructing Triangles Geometry: Classifying, Identifying, and Constructing Triangles Lesson Objectives Teacher's Notes Lesson Notes 1) Identify acute, right, and obtuse triangles. 2) Identify scalene, isosceles, equilateral

More information

Lesson 18 Pythagorean Triples & Special Right Triangles

Lesson 18 Pythagorean Triples & Special Right Triangles Student Name: Date: Contact Person Name: Phone Number: Teas Assessment of Knowledge and Skills Eit Level Math Review Lesson 18 Pythagorean Triples & Special Right Triangles TAKS Objective 6 Demonstrate

More information

10-3 Area of Parallelograms

10-3 Area of Parallelograms 0-3 Area of Parallelograms MAIN IDEA Find the areas of parallelograms. NYS Core Curriculum 6.A.6 Evaluate formulas for given input values (circumference, area, volume, distance, temperature, interest,

More information

Factoring Polynomials

Factoring Polynomials UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

More information

Inv 1 5. Draw 2 different shapes, each with an area of 15 square units and perimeter of 16 units.

Inv 1 5. Draw 2 different shapes, each with an area of 15 square units and perimeter of 16 units. Covering and Surrounding: Homework Examples from ACE Investigation 1: Questions 5, 8, 21 Investigation 2: Questions 6, 7, 11, 27 Investigation 3: Questions 6, 8, 11 Investigation 5: Questions 15, 26 ACE

More information

Pre-Algebra Lesson 6-1 to 6-3 Quiz

Pre-Algebra Lesson 6-1 to 6-3 Quiz Pre-lgebra Lesson 6-1 to 6-3 Quiz Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Find the area of the triangle. 17 ft 74 ft Not drawn to scale a. 629 ft

More information

PowerScore Test Preparation (800) 545-1750

PowerScore Test Preparation (800) 545-1750 Question 1 Test 1, Second QR Section (version 2) Two triangles QA: x QB: y Geometry: Triangles Answer: Quantity A is greater 1. The astute student might recognize the 0:60:90 and 45:45:90 triangle right

More information

Geometry Notes RIGHT TRIANGLE TRIGONOMETRY

Geometry Notes RIGHT TRIANGLE TRIGONOMETRY Right Triangle Trigonometry Page 1 of 15 RIGHT TRIANGLE TRIGONOMETRY Objectives: After completing this section, you should be able to do the following: Calculate the lengths of sides and angles of a right

More information

Solving Geometric Applications

Solving Geometric Applications 1.8 Solving Geometric Applications 1.8 OBJECTIVES 1. Find a perimeter 2. Solve applications that involve perimeter 3. Find the area of a rectangular figure 4. Apply area formulas 5. Apply volume formulas

More information

TEST A CHAPTER 6, EQUATIONS, INEQUALITIES, PROBLEM SOLVING. 1. Factor x 2-5x + 6. 2. Factor x 2-4x - 5.

TEST A CHAPTER 6, EQUATIONS, INEQUALITIES, PROBLEM SOLVING. 1. Factor x 2-5x + 6. 2. Factor x 2-4x - 5. TEST A CHAPTER 6, EQUATIONS, INEQUALITIES, PROBLEM SOLVING. Factor x 2-5x + 6. 2. Factor x 2-4x - 5. 3. Solve: (x + 2)(x - 3) = 0 x(x - 3)(x + 4) = 0 4. Solve by factoring: x 2 + x + 2 = 0. 5. Solve by

More information

How To Solve Factoring Problems

How To Solve Factoring Problems 05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

More information

MATH 110 Landscape Horticulture Worksheet #4

MATH 110 Landscape Horticulture Worksheet #4 MATH 110 Landscape Horticulture Worksheet #4 Ratios The math name for a fraction is ratio. It is just a comparison of one quantity with another quantity that is similar. As a Landscape Horticulturist,

More information

PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.

PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the

More information

Circumference Pi Regular polygon. Dates, assignments, and quizzes subject to change without advance notice.

Circumference Pi Regular polygon. Dates, assignments, and quizzes subject to change without advance notice. Name: Period GPreAP UNIT 14: PERIMETER AND AREA I can define, identify and illustrate the following terms: Perimeter Area Base Height Diameter Radius Circumference Pi Regular polygon Apothem Composite

More information

MAIN IDEA The rectangle at the right has an area of 20 square units. The distance around the rectangle is 5 + 4 + 5 + 4, or 18 units.

MAIN IDEA The rectangle at the right has an area of 20 square units. The distance around the rectangle is 5 + 4 + 5 + 4, or 18 units. 1-9 Algebra: Area Formulas MAIN IDEA The rectangle at the right has an area of 20 square units. The distance around the rectangle is 5 + 4 + 5 + 4, or 1. Find the areas of rectangles and squares. New Vocabulary

More information

Geometry Notes PERIMETER AND AREA

Geometry Notes PERIMETER AND AREA Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

More information

Factoring and Applications

Factoring and Applications Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

More information

The GED math test gives you a page of math formulas that

The GED math test gives you a page of math formulas that Math Smart 643 The GED Math Formulas The GED math test gives you a page of math formulas that you can use on the test, but just seeing the formulas doesn t do you any good. The important thing is understanding

More information

SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property

SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property 498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1

More information

Area and Circumference

Area and Circumference 4.4 Area and Circumference 4.4 OBJECTIVES 1. Use p to find the circumference of a circle 2. Use p to find the area of a circle 3. Find the area of a parallelogram 4. Find the area of a triangle 5. Convert

More information

4.5 Some Applications of Algebraic Equations

4.5 Some Applications of Algebraic Equations 4.5 Some Applications of Algebraic Equations One of the primary uses of equations in algebra is to model and solve application problems. In fact, much of the remainder of this book is based on the application

More information

Right Triangles 4 A = 144 A = 16 12 5 A = 64

Right Triangles 4 A = 144 A = 16 12 5 A = 64 Right Triangles If I looked at enough right triangles and experimented a little, I might eventually begin to notice a relationship developing if I were to construct squares formed by the legs of a right

More information

1. The volume of the object below is 186 cm 3. Calculate the Length of x. (a) 3.1 cm (b) 2.5 cm (c) 1.75 cm (d) 1.25 cm

1. The volume of the object below is 186 cm 3. Calculate the Length of x. (a) 3.1 cm (b) 2.5 cm (c) 1.75 cm (d) 1.25 cm Volume and Surface Area On the provincial exam students will need to use the formulas for volume and surface area of geometric solids to solve problems. These problems will not simply ask, Find the volume

More information

Mathematical Modeling and Optimization Problems Answers

Mathematical Modeling and Optimization Problems Answers MATH& 141 Mathematical Modeling and Optimization Problems Answers 1. You are designing a rectangular poster which is to have 150 square inches of tet with -inch margins at the top and bottom of the poster

More information

1.1 Practice Worksheet

1.1 Practice Worksheet Math 1 MPS Instructor: Cheryl Jaeger Balm 1 1.1 Practice Worksheet 1. Write each English phrase as a mathematical expression. (a) Three less than twice a number (b) Four more than half of a number (c)

More information

2nd Semester Geometry Final Exam Review

2nd Semester Geometry Final Exam Review Class: Date: 2nd Semester Geometry Final Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of an amusement park created a circular

More information

Calculating Area, Perimeter and Volume

Calculating Area, Perimeter and Volume Calculating Area, Perimeter and Volume You will be given a formula table to complete your math assessment; however, we strongly recommend that you memorize the following formulae which will be used regularly

More information

SECTION 1-6 Quadratic Equations and Applications

SECTION 1-6 Quadratic Equations and Applications 58 Equations and Inequalities Supply the reasons in the proofs for the theorems stated in Problems 65 and 66. 65. Theorem: The complex numbers are commutative under addition. Proof: Let a bi and c di be

More information

Roofing and Right Triangles Lesson Plan

Roofing and Right Triangles Lesson Plan Roofing and Right Triangles Lesson Plan Concept/principle to be demonstrated: The Pythagorean Theorem is used extensively in designing and building structures. This lesson demonstrates the relationship

More information

Law of Cosines. If the included angle is a right angle then the Law of Cosines is the same as the Pythagorean Theorem.

Law of Cosines. If the included angle is a right angle then the Law of Cosines is the same as the Pythagorean Theorem. Law of Cosines In the previous section, we learned how the Law of Sines could be used to solve oblique triangles in three different situations () where a side and two angles (SAA) were known, () where

More information

MATH 21. College Algebra 1 Lecture Notes

MATH 21. College Algebra 1 Lecture Notes MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

More information

Algebra Geometry Glossary. 90 angle

Algebra Geometry Glossary. 90 angle lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

More information

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular. CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes

More information

SURFACE AREA AND VOLUME

SURFACE AREA AND VOLUME SURFACE AREA AND VOLUME In this unit, we will learn to find the surface area and volume of the following threedimensional solids:. Prisms. Pyramids 3. Cylinders 4. Cones It is assumed that the reader has

More information

Pythagorean Theorem: 9. x 2 2

Pythagorean Theorem: 9. x 2 2 Geometry Chapter 8 - Right Triangles.7 Notes on Right s Given: any 3 sides of a Prove: the is acute, obtuse, or right (hint: use the converse of Pythagorean Theorem) If the (longest side) 2 > (side) 2

More information

Perimeter, Area, and Volume

Perimeter, Area, and Volume Perimeter, Area, and Volume Perimeter of Common Geometric Figures The perimeter of a geometric figure is defined as the distance around the outside of the figure. Perimeter is calculated by adding all

More information

Mathematics as Reasoning Students will use reasoning skills to determine the best method for maximizing area.

Mathematics as Reasoning Students will use reasoning skills to determine the best method for maximizing area. Title: A Pen for Penny Brief Overview: This unit is a reinforcement of the concepts of area and perimeter of rectangles. Methods for maximizing area while perimeter remains the same are also included.

More information

Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials

Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials Quarter I: Special Products and Factors and Quadratic Equations Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials Time Frame: 20 days Time Frame: 3 days Content Standard:

More information

PART 3 MODULE 8 PROBLEMS INVOLVING AREA

PART 3 MODULE 8 PROBLEMS INVOLVING AREA PART 3 MODULE 8 PROBLEMS INVOLVING AREA We will be examining a variety of real-world problems that can be solved by referring to familiar facts from elementary geometry. These problems will usually require

More information

12) 13) 14) (5x)2/3. 16) x5/8 x3/8. 19) (r1/7 s1/7) 2

12) 13) 14) (5x)2/3. 16) x5/8 x3/8. 19) (r1/7 s1/7) 2 DMA 080 WORKSHEET # (8.-8.2) Name Find the square root. Assume that all variables represent positive real numbers. ) 6 2) 8 / 2) 9x8 ) -00 ) 8 27 2/ Use a calculator to approximate the square root to decimal

More information

Tallahassee Community College PERIMETER

Tallahassee Community College PERIMETER Tallahassee Community College 47 PERIMETER The perimeter of a plane figure is the distance around it. Perimeter is measured in linear units because we are finding the total of the lengths of the sides

More information

MATD 0390 - Intermediate Algebra Review for Pretest

MATD 0390 - Intermediate Algebra Review for Pretest MATD 090 - Intermediate Algebra Review for Pretest. Evaluate: a) - b) - c) (-) d) 0. Evaluate: [ - ( - )]. Evaluate: - -(-7) + (-8). Evaluate: - - + [6 - ( - 9)]. Simplify: [x - (x - )] 6. Solve: -(x +

More information

2.3 Maximum and Minimum Applications

2.3 Maximum and Minimum Applications Section.3 155.3 Maximum and Minimum Applications Maximizing (or minimizing) is an important technique used in various fields of study. In business, it is important to know how to find the maximum profit

More information

Area of Parallelograms (pages 546 549)

Area of Parallelograms (pages 546 549) A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular

More information

Geometry Unit 6 Areas and Perimeters

Geometry Unit 6 Areas and Perimeters Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose

More information

Basic Lesson: Pythagorean Theorem

Basic Lesson: Pythagorean Theorem Basic Lesson: Pythagorean Theorem Basic skill One leg of a triangle is 10 cm and other leg is of 24 cm. Find out the hypotenuse? Here we have AB = 10 and BC = 24 Using the Pythagorean Theorem AC 2 = AB

More information

How To Draw A Similar Figure From A Different Perspective

How To Draw A Similar Figure From A Different Perspective Chapter 6 Similarity of Figures 6.1 Similar Polygons 6.2 Determining if two Polygons are Similar 6.3 Drawing Similar Polygons 6.4 Similar Triangles 21 Name: 6.1 Similar Polygons A. What makes something

More information

Time needed: each worksheet will take approximately 1 hour to complete

Time needed: each worksheet will take approximately 1 hour to complete Pythagoras Theorem Teacher s Notes Subject: Mathematics Topic: Pythagoras theorem Level: Pre-intermediate, intermediate Time needed: each worksheet will take approximately 1 hour to complete Learning objectives:

More information

How To Solve The Pythagorean Triangle

How To Solve The Pythagorean Triangle Name Period CHAPTER 9 Right Triangles and Trigonometry Section 9.1 Similar right Triangles Objectives: Solve problems involving similar right triangles. Use a geometric mean to solve problems. Ex. 1 Use

More information

GAP CLOSING. Volume and Surface Area. Intermediate / Senior Student Book

GAP CLOSING. Volume and Surface Area. Intermediate / Senior Student Book GAP CLOSING Volume and Surface Area Intermediate / Senior Student Book Volume and Surface Area Diagnostic...3 Volumes of Prisms...6 Volumes of Cylinders...13 Surface Areas of Prisms and Cylinders...18

More information

Sample Problems. Practice Problems

Sample Problems. Practice Problems Lecture Notes Quadratic Word Problems page 1 Sample Problems 1. The sum of two numbers is 31, their di erence is 41. Find these numbers.. The product of two numbers is 640. Their di erence is 1. Find these

More information

given by the formula s 16t 2 v 0 t s 0. We use this formula in the next example. Because the time must be positive, we have t 2.64 seconds.

given by the formula s 16t 2 v 0 t s 0. We use this formula in the next example. Because the time must be positive, we have t 2.64 seconds. 7 (9-0) Chapter 9 Quadratic Equations and Quadratic Functions where x is the number of years since 1980 and y is the amount of emission in thousands of metric tons (Energy Information Administration, www.eia.doe.gov).

More information

Grade 5 Work Sta on Perimeter, Area, Volume

Grade 5 Work Sta on Perimeter, Area, Volume Grade 5 Work Sta on Perimeter, Area, Volume #ThankATeacher #TeacherDay #TeacherApprecia onweek 6. 12. Folder tab label: RC 3 TEKS 5(4)(H) Perimeter, Area, and Volume Cover: Reporting Category 3 Geometry

More information

CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder.

CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder. TEST A CHAPTER 8, GEOMETRY 1. A rectangular plot of ground is to be enclosed with 180 yd of fencing. If the plot is twice as long as it is wide, what are its dimensions? 2. A 4 cm by 6 cm rectangle has

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

Pythagorean Theorem: Proof and Applications

Pythagorean Theorem: Proof and Applications Pythagorean Theorem: Proof and Applications Kamel Al-Khaled & Ameen Alawneh Department of Mathematics and Statistics, Jordan University of Science and Technology IRBID 22110, JORDAN E-mail: [email protected],

More information

Chapter 4: Area, Perimeter, and Volume. Geometry Assessments

Chapter 4: Area, Perimeter, and Volume. Geometry Assessments Chapter 4: Area, Perimeter, and Volume Geometry Assessments Area, Perimeter, and Volume Introduction The performance tasks in this chapter focus on applying the properties of triangles and polygons to

More information

Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring

Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring Page 1 9 Trigonometry of Right Triangles Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring 90. The side opposite to the right angle is the longest

More information

2006 Geometry Form A Page 1

2006 Geometry Form A Page 1 2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches

More information

Year 9 mathematics test

Year 9 mathematics test Ma KEY STAGE 3 Year 9 mathematics test Tier 6 8 Paper 1 Calculator not allowed First name Last name Class Date Please read this page, but do not open your booklet until your teacher tells you to start.

More information

MATH STUDENT BOOK. 6th Grade Unit 8

MATH STUDENT BOOK. 6th Grade Unit 8 MATH STUDENT BOOK 6th Grade Unit 8 Unit 8 Geometry and Measurement MATH 608 Geometry and Measurement INTRODUCTION 3 1. PLANE FIGURES 5 PERIMETER 5 AREA OF PARALLELOGRAMS 11 AREA OF TRIANGLES 17 AREA OF

More information

MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

More information

How To Find The Area Of A Shape

How To Find The Area Of A Shape 9 Areas and Perimeters This is is our next key Geometry unit. In it we will recap some of the concepts we have met before. We will also begin to develop a more algebraic approach to finding areas and perimeters.

More information

43 Perimeter and Area

43 Perimeter and Area 43 Perimeter and Area Perimeters of figures are encountered in real life situations. For example, one might want to know what length of fence will enclose a rectangular field. In this section we will study

More information

Area, Perimeter, Volume and Pythagorean Theorem Assessment

Area, Perimeter, Volume and Pythagorean Theorem Assessment Area, Perimeter, Volume and Pythagorean Theorem Assessment Name: 1. Find the perimeter of a right triangle with legs measuring 10 inches and 24 inches a. 34 inches b. 60 inches c. 120 inches d. 240 inches

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Santa Monica College COMPASS Geometry Sample Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the area of the shaded region. 1) 5 yd 6 yd

More information

6.4 Factoring Polynomials

6.4 Factoring Polynomials Name Class Date 6.4 Factoring Polynomials Essential Question: What are some ways to factor a polynomial, and how is factoring useful? Resource Locker Explore Analyzing a Visual Model for Polynomial Factorization

More information

1-6 Two-Dimensional Figures. Name each polygon by its number of sides. Then classify it as convex or concave and regular or irregular.

1-6 Two-Dimensional Figures. Name each polygon by its number of sides. Then classify it as convex or concave and regular or irregular. Stop signs are constructed in the shape of a polygon with 8 sides of equal length The polygon has 8 sides A polygon with 8 sides is an octagon All sides of the polygon are congruent and all angles are

More information

Pythagoras Theorem. Page I can... 1... identify and label right-angled triangles. 2... explain Pythagoras Theorem. 4... calculate the hypotenuse

Pythagoras Theorem. Page I can... 1... identify and label right-angled triangles. 2... explain Pythagoras Theorem. 4... calculate the hypotenuse Pythagoras Theorem Page I can... 1... identify and label right-angled triangles 2... eplain Pythagoras Theorem 4... calculate the hypotenuse 5... calculate a shorter side 6... determine whether a triangle

More information

COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2

COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2 COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level This study guide is for students trying to test into College Algebra. There are three levels of math study guides. 1. If x and y 1, what

More information

Perimeter is the length of the boundary of a two dimensional figure.

Perimeter is the length of the boundary of a two dimensional figure. Section 2.2: Perimeter and Area Perimeter is the length of the boundary of a two dimensional figure. The perimeter of a circle is called the circumference. The perimeter of any two dimensional figure whose

More information

Lesson 1: Introducing Circles

Lesson 1: Introducing Circles IRLES N VOLUME Lesson 1: Introducing ircles ommon ore Georgia Performance Standards M9 12.G..1 M9 12.G..2 Essential Questions 1. Why are all circles similar? 2. What are the relationships among inscribed

More information

Area and Volume Equations

Area and Volume Equations Area and Volume Equations MODULE 16? ESSENTIAL QUESTION How can you use area and volume equations to solve real-world problems? LESSON 16.1 Area of Quadrilaterals 6.8.B, 6.8.D LESSON 16. Area of Triangles

More information

Heron s Formula. Key Words: Triangle, area, Heron s formula, angle bisectors, incenter

Heron s Formula. Key Words: Triangle, area, Heron s formula, angle bisectors, incenter Heron s Formula Lesson Summary: Students will investigate the Heron s formula for finding the area of a triangle. The lab has students find the area using three different methods: Heron s, the basic formula,

More information

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left. The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

More information

Pizza! Pizza! Assessment

Pizza! Pizza! Assessment Pizza! Pizza! Assessment 1. A local pizza restaurant sends pizzas to the high school twelve to a carton. If the pizzas are one inch thick, what is the volume of the cylindrical shipping carton for the

More information

Trigonometry for AC circuits

Trigonometry for AC circuits Trigonometry for AC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

TEKS TAKS 2010 STAAR RELEASED ITEM STAAR MODIFIED RELEASED ITEM

TEKS TAKS 2010 STAAR RELEASED ITEM STAAR MODIFIED RELEASED ITEM 7 th Grade Math TAKS-STAAR-STAAR-M Comparison Spacing has been deleted and graphics minimized to fit table. (1) Number, operation, and quantitative reasoning. The student represents and uses numbers in

More information

Practice Test Answer and Alignment Document Mathematics: Geometry Performance Based Assessment - Paper

Practice Test Answer and Alignment Document Mathematics: Geometry Performance Based Assessment - Paper The following pages include the answer key for all machine-scored items, followed by the rubrics for the hand-scored items. - The rubrics show sample student responses. Other valid methods for solving

More information

Perimeter. 14ft. 5ft. 11ft.

Perimeter. 14ft. 5ft. 11ft. Perimeter The perimeter of a geometric figure is the distance around the figure. The perimeter could be thought of as walking around the figure while keeping track of the distance traveled. To determine

More information