Revision of ring theory

Size: px
Start display at page:

Download "Revision of ring theory"

Transcription

1 CHAPTER 1 Revision of ring theory 1.1. Basic definitions and examples In this chapter we will revise and extend some of the results on rings that you have studied on previous courses. A ring is an algebraic object in which we can operate in a similar way as we do with integers. Inside the set Z of integers we can perform operations of addition, substraction and multiplication, but in general Z is not closed under division; for instance the quotient 3/2 is not an integer. Addition and multiplication have a series of well known properties; the abstraction of those properties is what constitutes the formal notion of ring. DEFINITION A ring is a nonempty set R together with two operations, a sum + and a product satisfying the following properties: Sum Product S1 Associativity: (a + b)+c = a +(b + c) for all a, b, c R, S2 Commutativity: a + b = b + a for all a, b R, S3 Zero: There is an element 0 R such that a +0=a =0+a for each a R, S4 Inverses: For each a R there is an element a R such that a +( a) =0. In what follows we will always write a b to denote a +( b). REMARK. These properties simply mean that (R, +) is an abelian group. P1 Associativity: a(bc) =(ab)c for all a, b, c R, P2 Unit: There is an element 1 R such that 1a = a1 =a for all a R, REMARK. This properties mean that (R, ) is a multiplicative monoid. P3 Distributivity: For all a, b, c R, a(b + c) = ab + ac, (a + b)c = ac + bc. Some rings satisfy an additional property for the product: P4 Commutativity: ab = ba for all a, b R. When this extra property is satisfied, we will say that R is a commutative ring. In this course, we will be mostly interested on commutative rings, although we will occasionally deal with some noncommutative examples. EXAMPLE R = {0} with the trivial operations. This is called the trivial ring, and is the only ring for which one has 1=0. In all what follows, we will assume our rings to be nontrivial, i.e. 0 = 1. EXAMPLE The integers Z with the usual addition and multiplication. EXAMPLE The fields of rational numbers Q, real numbers R or complex numbers C, or in general any field F. 1

2 2 1. REVISION OF RING THEORY EXAMPLE The rings of integers modulo n, Z/nZ (sometimes also denoted by Z n ) consisting of the set {a a Z} = {0, 1,...,n 1}, where a is the residue class of a modulo n, so a = {a = rn r Z}. Addition and multiplication are defined as a + b := a + b, ab := ab EXAMPLE Let R be any ring, and define R[x] to be the set of all polynomials a 0 + a 1 x + + a n x n where the coefficients a i are elements of the ring R. Then R[x] is a ring with addition and multiplication defined in the usual way (check as an exercise!). The ring R[x] is called the polynomial ring in one variable with coefficients in R. EXAMPLE The polynomial ring in n variables with coefficients in R, denoted by R[x 1,...,x n ] and defined inductively by R[x 1,...,x n ]:=R[x 1,...,x n 1 ][x n ]. EXAMPLE The ring M n (R) of n n matrices (a i,j ) i,j=1,...,n with coefficients a i,j in R, and the usual matrix addition and multiplication. EXAMPLE The power set ring. Let X be a set, and let P(X) ={Y Y X} the set of all subsets of X. On P(X) consider the operations: Y + Z := Y Z =(Y Z) \ (Y Z) the symmetric difference as addition, YZ := Y Z the intersection as a product. With this operations P(X) becomes a ring with zero element 0= and unit element 1=X. EXAMPLE Let V be a vector space, consider the set End(V ):={f : V V f is a linear map}, then End(V ) is a ring with pointwise addition (f +g)(v) :=f(v)+ g(v) and multiplication given by composition f g(v) :=f(g(v)), where the zero element is the constant map 0(v) =0and the unit element is the identity map Id(v) =v. REMARK. The ring of endomorphisms of a vector space is nothing but a matrix ring in disguise. We will state more precisely what we mean by this once we talk about ring isomorphisms. EXAMPLE Consider the set C(R) :={f : R R f continuous function} of real-valued continuous functions. The C(R) is a ring with pointwise addition (f +g)(x) := f(x)+g(x) and multiplication (fg)(x) :=f(x)+g(x). REMARK. One might wonder whether one could define a different ring structure on C(R) by replacing pointwise multiplication by composition as a product. Unlike it happened in the case of linear map, this operation does not turn C(R) into a ring. EXAMPLE Let X be a set and R be a ring. In a similar fashion to the previous example, the set X R of all R-valued maps f : X R on X becomes naturally a ring with pointwise addition and multiplication. EXAMPLE Quaternion algebras. Let F be a field (of characteristic different from 2), and let α, β F. The quaternion algebra α F β is defined as the set {a + bi + cj + dk a, b, c, d F} with standard sum and product defined by the rules ij = k = ji, i 2 = α, j 2 = β. If F is a subfield of the real numbers, α F β can also be described as the subring a + b α c β + d αβ of M 2 (C) consisting of matrices of the form c β d αβ a b, where α a, b, c, d F. EXAMPLE The ring of power series with real coefficients R[[x]] := a n x n a n R n. n 0 In general one can construct the ring of formal power series R[[x]] with coefficients in any ring R.

3 1.2. SUBRINGS, IDEALS AND QUOTIENT RINGS 3 EXAMPLE Let G be a group, R a ring, the group ring R[G] is defined as R[G] := x G a xx a x R x, a x =0for all x except a finite number = {f : G R f has a finite support}. The addition and product are defined (in the functional notation) as follows: (f + g)(x) :=f(x)+g(x), (fg)(x) :=(f g)(x) = y G f(y)g(y 1 x). The product in R[G] receives the name of convolution product of functions. REMARK. Note that in this case the convolution product actually defines a different ring structure in the set of functions f : G R than the pointwise product, so this example is actually different from Example ; for instance, if R is a commutative ring then G R (with the pointwise product) is also commutative, whereas the group ring R[G] will be noncommutative whenever G is Subrings, ideals and quotient rings Let R be a ring, we look at subsets of R which are in fact themselves rings in their own right when we restrict to them the sum and product of R. More precisely, we say that S is a subring of R if: (i) 1 R S, (ii) S is an additive subgroup of R. In other words, whenever a, b S, one has a b S. (iii) S is closed under the product of R, in other words, S is a multiplicative submonoid of R, i.e. for all a, b S one has ab S. We will write S R to denote that S is a subring of R. EXAMPLES (1) Z Q R C. (2) The trivial ring {0} is NOT a subring of Z, as 1 / {0}. (3) For any ring R, one has R R[x], where R consists of all constant polynomials in R[x]. (4) The rings of matrices M n (R) contain several interesting subrings. Some examples are The ring D n (R) of diagonal matrices. The ring U n (R) of upper-triangular matrices. The ring L n (R) of lower-triangular matrices. (5) If {S i } i I is a family of rings such that S i R for all i I, then i I S i R. (6) Let X R be a subset of a ring R, define [X] := {S R X S} the intersection of all subrings of R containing X. Then [X] is a subring of R, called the subring generated by X. EXERCISE Show that [X] can be identified with the set of all sums of the form ±x1 x n where x i X {1}. We move now to the key notion of ideal. Ideals are certain subsets of rings that play a similar role to that of normal subgroups in group theory, in the sense they allow us to build quotients of rings. Also, knowing the ideals of a ring in full detail often lead to a complete description of all the modules, so understanding ideals is a fundamental topic of this course. DEFINITION Let R be a commutative ring. A subset I R of R is said to be an ideal of R if it has the following properties: I1 Additive closure: I (R, +) is an additive subgroup of R, i.e. I = is nonempty and for all a, b I one has a b I. I2 Absorbency: For all r R and for all a I one has ra = ar I.

4 4 1. REVISION OF RING THEORY When I is an ideal of R we will write I R. REMARK In the previous definition we are assuming that R is commutative. For noncommutative rings one has to be more careful and distinguish among the notions of left, right and two-sided ideals. EXAMPLES (1) 0:={0} R the zero ideal, which is an ideal for every ring R. (2) RR the total ideal, also an ideal for every ring. The ideals I which are different from the total ideal are called proper ideals. (3) Let R be a ring, I,JR ideals, then I JR and I+J := {i + j i I, j J} R are ideals of R, respectively called the intersection and the sum of I and J. I + J I J I J I J is the greatest ideal (with respect to the inclusion ordering) contained in both I and J, whilst I + J is the least ideal containing both I and J. (4) If {I α } α A is a family of ideals of R, then α A I α R is also an ideal of R. (5) If I 1,...,I n are ideals of R, define I I n := {i i n i j I j }, then I I n R is also an ideal of R. (6) Let R be a ring, and a R an element of R, and define (a) =Ra := {ra r R}. Then (a) R is an ideal, called the principal ideal generated by a. More generally, if a 1,...,a n R are elements of R, then the set Ra Ra n = {r 1 a r n a n r i R} is an ideal of R, called the ideal generated by a 1,...,a n. (7) Particular examples of principal ideals are the trivial ideal 0 = (0) and the total ideal R = (1). If R = Z, the principal ideal generated by 2 is the set (2) = {2n n Z} of even numbers. Let R be a ring and I R an ideal. For each a R we define the coset of a with respect to I as the set a = a + I := {a + i i I}. Since I is an additive subgroup of R, and (R, +) is a commutative subgroup, I is normal in R, and thus the set R/I = {a a R} is an additive group with addition defined by a + b := a + b, i.e. (a + I)+(b + I) :=(a + b)+i. The absorbency property of an ideal also ensures that the product of cosets ab = ab is well defined, endowing the set R/I with a ring structure. In particular, the zero and unit elements of R/I are 0 and 1, respectively. EXAMPLES (1) R/0 =R, (2) R/R =0, (3) Z/(n) =Z/nZ = Z n Ring homomorphisms DEFINITION Let R and S be rings; a map f : R S is said to be a ring homomorphism (or ring morphism for short) if (1) f(1) = 1,

5 1.3. RING HOMOMORPHISMS 5 (2) f(a + b) =f(a)+f(b) for all a, b R, (3) f(ab) =f(a)f(b) for all a, b R. If f is injective we say it is a monomorphism, if it is surjective it is called an epimorphism, and if it is a bijection it is called an isomorphism. In this case we say that R is isomorphic to S and write R = S. DEFINITION Let f : R S be a ring morphism. We define the image of f as the set Im(f) :=f(r) ={f(r) r R} S, and the kernel of f as the set Ker(f) :=f 1 (0) = {r R f(r) =0} R. LEMMA Let R and S be rings, and f : R S be a ring homomorphism, then the following properties hold: (1) Im(f) S is a subring of S, (2) Ker(f) R is an ideal of R. PROOF. (1). 1 S = f(1 R ), and hence 1 S Im(f). If s 1,s 2 Im(f) then there are r 1,r 2 R such that f(r 1 )=s 1,f(r 2 )=s 2, but then using that f is a ring morphism one has s 1 s 2 = f(r 1 ) f(r 2 )=f(r 1 r 2 ) Im(f), s 1 s 2 = f(r 1 )f(r 2 )=f(r 1 r 2 ) Im(f), thus Im(f) S subring. (2). f(0 R )=0 S, so 0 R Ker(f), and thus Ker(f) =. Now, if a, b Ker(f), one has f(a b) =f(a) f(b) =0 0=0, hence a b Ker(f), so Ker(f) is an additive subgroup of R. Now, for any a Ker(f), and for any r R one has f(ra) =f(r)f(a) =f(r)0 = 0, thus ra Ker(f), and consequently Ker(f) R is an ideal of R. THEOREM (First isomorphism theorem). Let R and S be rings, and f : R S be a ring homomorphism, then the mapping f(r) r = r +Ker(f) provides an isomorphism R/ Ker(f) = Im(f). PROOF. Let a = a +Ker(f) R/ Ker(f) for a R. One has a = b a b Ker(f) f(a b) =0 f(a) =f(b), so the application π : R/ Ker(f) Im(f) given by π(a) :=f(a) is well defined and injective. Now, if b Im(f) then there is some a R such that b = f(a), and thus b = π(a); henceforth, π is surjective, and so it is a bijection. Now, π((1)) = f(1) = 1, and for any a, b R one has π(a b) =π(a b) =f(a b) =f(a) f(b) =π(a) π(b), π(ab) =π(ab) =f(ab) =f(a)f(b) =π(a)π(b), hence, π is a ring homomorphism, and since it is bijective we have a ring isomorphism R/ Ker(f) = Im(f). EXAMPLES (1) The identity map Id : R R is a ring isomorphism. If S R is a subring, the inclusion map i S : S R is a ring monomorphism.

6 6 1. REVISION OF RING THEORY (2) The complex conjugation map σ : C C defined by σ(z) =z is a ring isomorphism. (3) Let I R be an ideal of R, The canonical projection π I : R R/I is defined by π ( r) := r = r + I. It is easy to see that π I is a ring homomorphism, π I (a) =0 a =0 a + I = I a I, so Ker(π I )=I. For any a R/I we can write a = π I (a), thus π I is an epimorphism, and hence Im(π I )=R/I. The statement of the first isomorphism theorem in this particular case is just a tautology, saying that R/I is isomorphic to itself. (4) For any n 2, the ring Z n = Z/nZ is the image of the canonical projection π n : Z Z/(n) =Z n. (5) Let R S subring, and a S. We define the evaluation map e a : R[x] S by p(x) p(a), i.e. if p(x) = r 0 + r 1 x +, +r n x n then e a (p(x)) = r 0 + r 1 a +, +r n a n S. The evaluation map is a ring homomorphism for which we have Im(e a )={p(a) p R[x]} = ri a i r i R = R[a] S, Ker(e a )={p(x) R[x] p(a) =0}. Note that, if we assume that a R, one has p(x) Ker(e a ) p(a) =0 (x a) p(x) p(x) =(x a)r(x) In this case one gets p(x) ((x a)). Im(e a ) = R[x]/ Ker(e a )=R/((x a)) = R. LEMMA Let f : R S and g : S T be ring homomorphisms. Then the composition g f : R T is also a ring homomorphism. PROOF. The proof is immediate and follows from applying repeatedly that f and g are homomorphisms: (g f)(0) = g(f(0)) = g(0) = 0. (g f)(a + b) = g(f(a + b)) = g(f(a)+f(b)) = g(f(a)) + g(f(b)) = (g f)(a)+(g f)(b). (g f)(1) = g(f(1)) = g(1) = 1. (g f)(ab) = g(f(ab)) = g(f(a)f(b)) = g(f(a))g(f(b)) = (g f)(a) (g f)(b). THEOREM (Second isomorphism theorem). Let R be a ring, I R an ideal, S R a subring; then the following properties hold: (1) S + I R is a subring of R, (2) I S + I is an ideal of S + I, (3) S I S is an ideal of S, (4) There is a ring isomorphism PROOF. (1). Let s 1,s 2 S, i 1,i 2 I, then S + I I = S S I (s 1 + i 1 ) (s 2 + i 2 )=(s 1 s 2 )+(i 1 i 2 ) S + I, and thus S + I is an additive subgroup of R. Similarly, (s 1 + i 1 )(s 2 + i 2 )=s 1 s 2 +(s 1 i 2 + i 1 s 2 + i 1 i 2 ) S + I,

7 1.3. RING HOMOMORPHISMS 7 and 1 S S + I, so S + I is a submonoid of S, and hence S + I R is a subring. (2). The I is additively closed because it is a subgroup of R; moreover, since S + I R the absorbency property for I with respect to S + I is immediate. Hence, I S + I is an ideal of S + I. (3). As both I and S are additive subgroups of R, S I is also additively closed, and since it S I S, is is an additive subgroup of S. For the absorbency, let x S I, s S; since x I and s S R, absorbency property for I tells us that xs I. Also, as x S, s S and S is a subring, we get xs S, and thus sx S I. This proves that S I is an ideal of S. (4). Consider the map ϕ : S (S + I)/I given by ϕ(s) =s = s + I. Since ϕ can be seen as the composition of the inclusion S S + I with the canonical projection S + I (S + I)/I, and the composition of ring morphisms is a ring morphism by the previous lemma, we get the ϕ is a ring morphism. Now, for any s + i (S + I)/I, we have ϕ(s) =s, but since (s + i) s = i I we have s = s + i, and thus ϕ(s) =s + i. Hence ϕ is surjective, i.e. Im ϕ =(S + I)/I. Moreover, one has Ker ϕ = {s S ϕ(s) =0} = {s S s =0} = {s S s I} = S I, so applying the first isomorphism theorem to the morphism ϕ we obtain the result. THEOREM (Third isomorphism theorem). Let R be a ring, I J R ideals of R, then J/I is an ideal of R/I and moreover R/I J/I = R/J. PROOF. It is immediate to check that J/I is an ideal of R/I. consider the map ϕ : R/I R/J given by ϕ(x + I) :=x + J. Assume that x + I = x + I, i.e. x x I; as I J, one gets x x J, so x + J = x + J; and thus ϕ is well defined. The mapping ϕ is also obviously surjective. Now, for the kernel of ϕ we have Ker ϕ = {x + I R/I ϕ(x + I) =0} = {x + I R/I x + J} = {x + I R/I x J} = J/I, and the desired result follows from the first isomorphism theorem. COROLLARY (Correspondence theorem). Let R be a ring and I R an ideal of R; the map S S/I defines a correspondence between the set of subrings of R containing I and the set of subrings of R/I. Similarly, the map J J/I gives a correspondence between the set of ideals of R containing I and the set of ideals of R/I. REMARK Note that in principle we cannot state that different ideals of R containing I will give rise to different ideals in the quotient ring. The only bit we can be sure of is that all ideals of R/I will be of the form J/I for some J.

Chapter 13: Basic ring theory

Chapter 13: Basic ring theory Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring

More information

4.1 Modules, Homomorphisms, and Exact Sequences

4.1 Modules, Homomorphisms, and Exact Sequences Chapter 4 Modules We always assume that R is a ring with unity 1 R. 4.1 Modules, Homomorphisms, and Exact Sequences A fundamental example of groups is the symmetric group S Ω on a set Ω. By Cayley s Theorem,

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

26 Ideals and Quotient Rings

26 Ideals and Quotient Rings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 26 Ideals and Quotient Rings In this section we develop some theory of rings that parallels the theory of groups discussed

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I. Ronald van Luijk, 2012 Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

More information

Group Fundamentals. Chapter 1. 1.1 Groups and Subgroups. 1.1.1 Definition

Group Fundamentals. Chapter 1. 1.1 Groups and Subgroups. 1.1.1 Definition Chapter 1 Group Fundamentals 1.1 Groups and Subgroups 1.1.1 Definition A group is a nonempty set G on which there is defined a binary operation (a, b) ab satisfying the following properties. Closure: If

More information

COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:

COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication: COMMUTATIVE RINGS Definition: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative

More information

Introduction to Modern Algebra

Introduction to Modern Algebra Introduction to Modern Algebra David Joyce Clark University Version 0.0.6, 3 Oct 2008 1 1 Copyright (C) 2008. ii I dedicate this book to my friend and colleague Arthur Chou. Arthur encouraged me to write

More information

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

Factoring of Prime Ideals in Extensions

Factoring of Prime Ideals in Extensions Chapter 4 Factoring of Prime Ideals in Extensions 4. Lifting of Prime Ideals Recall the basic AKLB setup: A is a Dedekind domain with fraction field K, L is a finite, separable extension of K of degree

More information

Notes on Algebraic Structures. Peter J. Cameron

Notes on Algebraic Structures. Peter J. Cameron Notes on Algebraic Structures Peter J. Cameron ii Preface These are the notes of the second-year course Algebraic Structures I at Queen Mary, University of London, as I taught it in the second semester

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

NOTES ON CATEGORIES AND FUNCTORS

NOTES ON CATEGORIES AND FUNCTORS NOTES ON CATEGORIES AND FUNCTORS These notes collect basic definitions and facts about categories and functors that have been mentioned in the Homological Algebra course. For further reading about category

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

r(x + y) =rx + ry; (r + s)x = rx + sx; r(sx) =(rs)x; 1x = x

r(x + y) =rx + ry; (r + s)x = rx + sx; r(sx) =(rs)x; 1x = x Chapter 4 Module Fundamentals 4.1 Modules and Algebras 4.1.1 Definitions and Comments A vector space M over a field R is a set of objects called vectors, which can be added, subtracted and multiplied by

More information

3. Prime and maximal ideals. 3.1. Definitions and Examples.

3. Prime and maximal ideals. 3.1. Definitions and Examples. COMMUTATIVE ALGEBRA 5 3.1. Definitions and Examples. 3. Prime and maximal ideals Definition. An ideal P in a ring A is called prime if P A and if for every pair x, y of elements in A\P we have xy P. Equivalently,

More information

it is easy to see that α = a

it is easy to see that α = a 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

More information

SMALL SKEW FIELDS CÉDRIC MILLIET

SMALL SKEW FIELDS CÉDRIC MILLIET SMALL SKEW FIELDS CÉDRIC MILLIET Abstract A division ring of positive characteristic with countably many pure types is a field Wedderburn showed in 1905 that finite fields are commutative As for infinite

More information

Finite dimensional C -algebras

Finite dimensional C -algebras Finite dimensional C -algebras S. Sundar September 14, 2012 Throughout H, K stand for finite dimensional Hilbert spaces. 1 Spectral theorem for self-adjoint opertors Let A B(H) and let {ξ 1, ξ 2,, ξ n

More information

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of

More information

5. Linear algebra I: dimension

5. Linear algebra I: dimension 5. Linear algebra I: dimension 5.1 Some simple results 5.2 Bases and dimension 5.3 Homomorphisms and dimension 1. Some simple results Several observations should be made. Once stated explicitly, the proofs

More information

Group Theory. Contents

Group Theory. Contents Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation

More information

9. Quotient Groups Given a group G and a subgroup H, under what circumstances can we find a homomorphism φ: G G ', such that H is the kernel of φ?

9. Quotient Groups Given a group G and a subgroup H, under what circumstances can we find a homomorphism φ: G G ', such that H is the kernel of φ? 9. Quotient Groups Given a group G and a subgroup H, under what circumstances can we find a homomorphism φ: G G ', such that H is the kernel of φ? Clearly a necessary condition is that H is normal in G.

More information

GROUP ALGEBRAS. ANDREI YAFAEV

GROUP ALGEBRAS. ANDREI YAFAEV GROUP ALGEBRAS. ANDREI YAFAEV We will associate a certain algebra to a finite group and prove that it is semisimple. Then we will apply Wedderburn s theory to its study. Definition 0.1. Let G be a finite

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

Group Theory. Chapter 1

Group Theory. Chapter 1 Chapter 1 Group Theory Most lectures on group theory actually start with the definition of what is a group. It may be worth though spending a few lines to mention how mathematicians came up with such a

More information

EXERCISES FOR THE COURSE MATH 570, FALL 2010

EXERCISES FOR THE COURSE MATH 570, FALL 2010 EXERCISES FOR THE COURSE MATH 570, FALL 2010 EYAL Z. GOREN (1) Let G be a group and H Z(G) a subgroup such that G/H is cyclic. Prove that G is abelian. Conclude that every group of order p 2 (p a prime

More information

GROUPS ACTING ON A SET

GROUPS ACTING ON A SET GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for

More information

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9 Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

More information

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ] 1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

More information

MATH 101A: ALGEBRA I PART B: RINGS AND MODULES

MATH 101A: ALGEBRA I PART B: RINGS AND MODULES MATH 101A: ALGEBRA I PART B: RINGS AND MODULES In the unit on rings, I explained category theory and general rings at the same time. Then I talked mostly about commutative rings. In the unit on modules,

More information

Galois Theory III. 3.1. Splitting fields.

Galois Theory III. 3.1. Splitting fields. Galois Theory III. 3.1. Splitting fields. We know how to construct a field extension L of a given field K where a given irreducible polynomial P (X) K[X] has a root. We need a field extension of K where

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

More information

3 1. Note that all cubes solve it; therefore, there are no more

3 1. Note that all cubes solve it; therefore, there are no more Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

More information

Matrix Representations of Linear Transformations and Changes of Coordinates

Matrix Representations of Linear Transformations and Changes of Coordinates Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under

More information

Section IV.21. The Field of Quotients of an Integral Domain

Section IV.21. The Field of Quotients of an Integral Domain IV.21 Field of Quotients 1 Section IV.21. The Field of Quotients of an Integral Domain Note. This section is a homage to the rational numbers! Just as we can start with the integers Z and then build the

More information

Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold:

Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold: Linear Algebra A vector space (over R) is an ordered quadruple (V, 0, α, µ) such that V is a set; 0 V ; and the following eight axioms hold: α : V V V and µ : R V V ; (i) α(α(u, v), w) = α(u, α(v, w)),

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Algebraic Geometry. Keerthi Madapusi

Algebraic Geometry. Keerthi Madapusi Algebraic Geometry Keerthi Madapusi Contents Chapter 1. Schemes 5 1. Spec of a Ring 5 2. Schemes 11 3. The Affine Communication Lemma 13 4. A Criterion for Affineness 15 5. Irreducibility and Connectedness

More information

FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set

FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,

More information

Unique Factorization

Unique Factorization Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

More information

MA106 Linear Algebra lecture notes

MA106 Linear Algebra lecture notes MA106 Linear Algebra lecture notes Lecturers: Martin Bright and Daan Krammer Warwick, January 2011 Contents 1 Number systems and fields 3 1.1 Axioms for number systems......................... 3 2 Vector

More information

INTRODUCTORY SET THEORY

INTRODUCTORY SET THEORY M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

More information

ZORN S LEMMA AND SOME APPLICATIONS

ZORN S LEMMA AND SOME APPLICATIONS ZORN S LEMMA AND SOME APPLICATIONS KEITH CONRAD 1. Introduction Zorn s lemma is a result in set theory that appears in proofs of some non-constructive existence theorems throughout mathematics. We will

More information

Factorization Algorithms for Polynomials over Finite Fields

Factorization Algorithms for Polynomials over Finite Fields Degree Project Factorization Algorithms for Polynomials over Finite Fields Sajid Hanif, Muhammad Imran 2011-05-03 Subject: Mathematics Level: Master Course code: 4MA11E Abstract Integer factorization is

More information

GENERATING SETS KEITH CONRAD

GENERATING SETS KEITH CONRAD GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors

More information

MATH PROBLEMS, WITH SOLUTIONS

MATH PROBLEMS, WITH SOLUTIONS MATH PROBLEMS, WITH SOLUTIONS OVIDIU MUNTEANU These are free online notes that I wrote to assist students that wish to test their math skills with some problems that go beyond the usual curriculum. These

More information

4. CLASSES OF RINGS 4.1. Classes of Rings class operator A-closed Example 1: product Example 2:

4. CLASSES OF RINGS 4.1. Classes of Rings class operator A-closed Example 1: product Example 2: 4. CLASSES OF RINGS 4.1. Classes of Rings Normally we associate, with any property, a set of objects that satisfy that property. But problems can arise when we allow sets to be elements of larger sets

More information

6. Fields I. 1. Adjoining things

6. Fields I. 1. Adjoining things 6. Fields I 6.1 Adjoining things 6.2 Fields of fractions, fields of rational functions 6.3 Characteristics, finite fields 6.4 Algebraic field extensions 6.5 Algebraic closures 1. Adjoining things The general

More information

ADDITIVE GROUPS OF RINGS WITH IDENTITY

ADDITIVE GROUPS OF RINGS WITH IDENTITY ADDITIVE GROUPS OF RINGS WITH IDENTITY SIMION BREAZ AND GRIGORE CĂLUGĂREANU Abstract. A ring with identity exists on a torsion Abelian group exactly when the group is bounded. The additive groups of torsion-free

More information

11 Ideals. 11.1 Revisiting Z

11 Ideals. 11.1 Revisiting Z 11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

More information

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 16

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 16 INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 16 RAVI VAKIL Contents 1. Valuation rings (and non-singular points of curves) 1 1.1. Completions 2 1.2. A big result from commutative algebra 3 Problem sets back.

More information

Introduction to Finite Fields (cont.)

Introduction to Finite Fields (cont.) Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

More information

A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number

A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number Number Fields Introduction A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number field K = Q(α) for some α K. The minimal polynomial Let K be a number field and

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

Elements of Abstract Group Theory

Elements of Abstract Group Theory Chapter 2 Elements of Abstract Group Theory Mathematics is a game played according to certain simple rules with meaningless marks on paper. David Hilbert The importance of symmetry in physics, and for

More information

fg = f g. 3.1.1. Ideals. An ideal of R is a nonempty k-subspace I R closed under multiplication by elements of R:

fg = f g. 3.1.1. Ideals. An ideal of R is a nonempty k-subspace I R closed under multiplication by elements of R: 30 3. RINGS, IDEALS, AND GRÖBNER BASES 3.1. Polynomial rings and ideals The main object of study in this section is a polynomial ring in a finite number of variables R = k[x 1,..., x n ], where k is an

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

2. Let H and K be subgroups of a group G. Show that H K G if and only if H K or K H.

2. Let H and K be subgroups of a group G. Show that H K G if and only if H K or K H. Math 307 Abstract Algebra Sample final examination questions with solutions 1. Suppose that H is a proper subgroup of Z under addition and H contains 18, 30 and 40, Determine H. Solution. Since gcd(18,

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

CONSEQUENCES OF THE SYLOW THEOREMS

CONSEQUENCES OF THE SYLOW THEOREMS CONSEQUENCES OF THE SYLOW THEOREMS KEITH CONRAD For a group theorist, Sylow s Theorem is such a basic tool, and so fundamental, that it is used almost without thinking, like breathing. Geoff Robinson 1.

More information

Abstract Algebra Cheat Sheet

Abstract Algebra Cheat Sheet Abstract Algebra Cheat Sheet 16 December 2002 By Brendan Kidwell, based on Dr. Ward Heilman s notes for his Abstract Algebra class. Notes: Where applicable, page numbers are listed in parentheses at the

More information

r + s = i + j (q + t)n; 2 rs = ij (qj + ti)n + qtn.

r + s = i + j (q + t)n; 2 rs = ij (qj + ti)n + qtn. Chapter 7 Introduction to finite fields This chapter provides an introduction to several kinds of abstract algebraic structures, particularly groups, fields, and polynomials. Our primary interest is in

More information

Math 231b Lecture 35. G. Quick

Math 231b Lecture 35. G. Quick Math 231b Lecture 35 G. Quick 35. Lecture 35: Sphere bundles and the Adams conjecture 35.1. Sphere bundles. Let X be a connected finite cell complex. We saw that the J-homomorphism could be defined by

More information

MODULES OVER A PID KEITH CONRAD

MODULES OVER A PID KEITH CONRAD MODULES OVER A PID KEITH CONRAD Every vector space over a field K that has a finite spanning set has a finite basis: it is isomorphic to K n for some n 0. When we replace the scalar field K with a commutative

More information

Math 223 Abstract Algebra Lecture Notes

Math 223 Abstract Algebra Lecture Notes Math 223 Abstract Algebra Lecture Notes Steven Tschantz Spring 2001 (Apr. 23 version) Preamble These notes are intended to supplement the lectures and make up for the lack of a textbook for the course

More information

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers

More information

THE DIMENSION OF A VECTOR SPACE

THE DIMENSION OF A VECTOR SPACE THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field

More information

ALGEBRA HW 5 CLAY SHONKWILER

ALGEBRA HW 5 CLAY SHONKWILER ALGEBRA HW 5 CLAY SHONKWILER 510.5 Let F = Q(i). Prove that x 3 and x 3 3 are irreducible over F. Proof. If x 3 is reducible over F then, since it is a polynomial of degree 3, it must reduce into a product

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

So let us begin our quest to find the holy grail of real analysis.

So let us begin our quest to find the holy grail of real analysis. 1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

More information

Ideal Class Group and Units

Ideal Class Group and Units Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

More information

Chapter 7: Products and quotients

Chapter 7: Products and quotients Chapter 7: Products and quotients Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 7: Products

More information

The cover SU(2) SO(3) and related topics

The cover SU(2) SO(3) and related topics The cover SU(2) SO(3) and related topics Iordan Ganev December 2011 Abstract The subgroup U of unit quaternions is isomorphic to SU(2) and is a double cover of SO(3). This allows a simple computation of

More information

Geometric Transformations

Geometric Transformations Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted

More information

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

More information

GROUP ACTIONS KEITH CONRAD

GROUP ACTIONS KEITH CONRAD GROUP ACTIONS KEITH CONRAD 1. Introduction The symmetric groups S n, alternating groups A n, and (for n 3) dihedral groups D n behave, by their very definition, as permutations on certain sets. The groups

More information

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS

ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS John A. Beachy Northern Illinois University 2014 ii J.A.Beachy This is a supplement to Abstract Algebra, Third Edition by John A. Beachy and William D. Blair

More information

T ( a i x i ) = a i T (x i ).

T ( a i x i ) = a i T (x i ). Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

More information

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS Bull Austral Math Soc 77 (2008), 31 36 doi: 101017/S0004972708000038 COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS IGOR V EROVENKO and B SURY (Received 12 April 2007) Abstract We compute

More information

Commutative Algebra Notes Introduction to Commutative Algebra Atiyah & Macdonald

Commutative Algebra Notes Introduction to Commutative Algebra Atiyah & Macdonald Commutative Algebra Notes Introduction to Commutative Algebra Atiyah & Macdonald Adam Boocher 1 Rings and Ideals 1.1 Rings and Ring Homomorphisms A commutative ring A with identity is a set with two binary

More information

CLUSTER ALGEBRAS AND CATEGORIFICATION TALKS: QUIVERS AND AUSLANDER-REITEN THEORY

CLUSTER ALGEBRAS AND CATEGORIFICATION TALKS: QUIVERS AND AUSLANDER-REITEN THEORY CLUSTER ALGEBRAS AND CATEGORIFICATION TALKS: QUIVERS AND AUSLANDER-REITEN THEORY ANDREW T. CARROLL Notes for this talk come primarily from two sources: M. Barot, ICTP Notes Representations of Quivers,

More information

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS IGOR V. EROVENKO AND B. SURY ABSTRACT. We compute commutativity degrees of wreath products A B of finite abelian groups A and B. When B

More information

Assignment 8: Selected Solutions

Assignment 8: Selected Solutions Section 4.1 Assignment 8: Selected Solutions 1. and 2. Express each permutation as a product of disjoint cycles, and identify their parity. (1) (1,9,2,3)(1,9,6,5)(1,4,8,7)=(1,4,8,7,2,3)(5,9,6), odd; (2)

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory

Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN Part II: Group Theory No rights reserved. Any part of this work can be reproduced or transmitted in any form or by any means. Version: 1.1 Release: Jan 2013

More information

Row Ideals and Fibers of Morphisms

Row Ideals and Fibers of Morphisms Michigan Math. J. 57 (2008) Row Ideals and Fibers of Morphisms David Eisenbud & Bernd Ulrich Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion

More information

Arithmetic complexity in algebraic extensions

Arithmetic complexity in algebraic extensions Arithmetic complexity in algebraic extensions Pavel Hrubeš Amir Yehudayoff Abstract Given a polynomial f with coefficients from a field F, is it easier to compute f over an extension R of F than over F?

More information

ACTA UNIVERSITATIS APULENSIS No 15/2008 PRODUCTS OF MULTIALGEBRAS AND THEIR FUNDAMENTAL ALGEBRAS. Cosmin Pelea

ACTA UNIVERSITATIS APULENSIS No 15/2008 PRODUCTS OF MULTIALGEBRAS AND THEIR FUNDAMENTAL ALGEBRAS. Cosmin Pelea ACTA UNIVERSITATIS APULENSIS No 15/2008 PRODUCTS OF MULTIALGEBRAS AND THEIR FUNDAMENTAL ALGEBRAS Cosmin Pelea Abstract. An important tool in the hyperstructure theory is the fundamental relation. The factorization

More information

Galois representations with open image

Galois representations with open image Galois representations with open image Ralph Greenberg University of Washington Seattle, Washington, USA May 7th, 2011 Introduction This talk will be about representations of the absolute Galois group

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

More information

Cyclotomic Extensions

Cyclotomic Extensions Chapter 7 Cyclotomic Extensions A cyclotomic extension Q(ζ n ) of the rationals is formed by adjoining a primitive n th root of unity ζ n. In this chapter, we will find an integral basis and calculate

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

Algebra of the 2x2x2 Rubik s Cube

Algebra of the 2x2x2 Rubik s Cube Algebra of the 2x2x2 Rubik s Cube Under the direction of Dr. John S. Caughman William Brad Benjamin. Introduction As children, many of us spent countless hours playing with Rubiks Cube. At the time it

More information