You can solve a right triangle if you know either of the following: Two side lengths One side length and one acute angle measure


 Jeffery Mosley
 2 years ago
 Views:
Transcription
1 Solving a Right Triangle A trigonometric ratio is a ratio of the lengths of two sides of a right triangle. Every right triangle has one right angle, two acute angles, one hypotenuse, and two legs. To solve a right triangle means to determine the measures of all six parts. You can solve a right triangle if you know either of the following: Two side lengths One side length and one acute angle measure As you learned in Lesson 9.5, you can use the side lengths of a right triangle to find trig ratios for the acute angles of the triangle. As you will see in this lesson, once you know the sine, the cosine, or the tangent of an acute angle, you can use a calculator to find the measure of the angle.
2 Solving a Right Triangle A trigonometric ratio is a ratio of the lengths of two sides of a right triangle. Every right triangle has one right angle, two acute angles, one hypotenuse, and two legs. To solve a right triangle means to determine the measures of all six parts. You can solve a right triangle if you know either of the following: Two side lengths One side length and one acute angle measure In general, for an acute angle A: if sin A = x, then sine 1 x = m A. if cos A = y, then cos 1 y = m A. if tan A = z, then tan 1 z = m A.
3 Solving a Right Triangle SOLVE the right triangle. Round decimals to the nearest tenth. R 2 c SOLUTION: Step 1 find the missing side. T 3 S Begin by using the Pythagorean Theorem to find the length of the hypotenuse. (hypotenuse) 2 = (leg) 2 + (leg) 2 c 2 = c 2 = c 2 = 13 c = R 2 opp. T 3 c hyp. adj. S
4 Solving a Right Triangle SOLVE the right triangle. Round decimals to the nearest tenth. R SOLUTION: Step 2 find the first missing. Then use a calculator to find the measure of S: For the TI30xa classroom calculator: 2 T 3 c 3.6 S 2 3 ( 2nd ( TAN For the TI30xs recommended calculator: 2nd TAN this just appears ( 2 3 m S 33.7 ( Enter R 2 opp. T 3 c hyp. adj. S
5 Solving a Right Triangle SOLVE the right triangle. Round decimals to the nearest tenth. R SOLUTION: Step 3 find the last 2 c missing. T 3 S Finally, because R and S are complements, you can write: m R = 90  m S = 56.3 (conclusion) The side lengths of the triangle are 2, 3, and 13, or about 3.6. The angle measurements are 90, about 33.7, and about 56.3.
6 Solving a Right Triangle Solve the right triangle. Round decimals to the nearest tenth. SOLUTION: Step 1 Use trigonometric ratios to find the values of g and h. sin H = sin 25º = º opp. hyp. opp. hyp. = 13(0.4226º) = h 13 h h 13 cos H = cos 25º º = = 13(0.9063º) adj. hyp. adj. hyp. g 13 g = g 13 h G J g 13 25º H 5.5 h 11.8 g
7 Solving a Right Triangle Solve the right triangle. Round decimals to the nearest tenth. SOLUTION: Step 2 Use the Triangle Sum Theorem to find m G. G Because H and G are complements, you can write: m G = 90  m H = = 65 h J 13 g 25º H (conclusion) The side lengths of the triangle are about 5.5, about 11.8, and 13. The angle measurements are 90, 65, and 25.
8 Trigonometric Ratios for 45º Find the sine, the cosine, and the tangent of 45º. SOLUTION Because all such triangles are similar, you can make calculations simple by choosing 1 as the length of each leg. From the 45º45º90º Triangle Theorem, it follows that the length of the hypotenuse is 2. opp. sin 45º = = 1 2 = hyp. 2 2 cos 45º adj. = = 1 2 = hyp. 2 2 opp. tan 45º = = 1 = 1 adj hyp. 45º
9 Finding Trigonometric Ratios The sine or cosine of an acute angle is always less than 1. The reason is that these trigonometric ratios involve the ratio of a leg of a right triangle to the hypotenuse. The length of a leg of a right triangle is always less than the length of its hypotenuse, so the ratio of these lengths is always less than one. Because the tangent of an acute angle involves the ratio of one leg to another leg, the tangent of an angle can be less than 1, equal to 1, or greater than 1.
10 Finding Trigonometric Ratios The sine or cosine of an acute angle is always less than 1. The reason is that these trigonometric ratios involve the ratio of a leg of a right triangle to the hypotenuse. The length of a leg of a right triangle is always less than the length of its hypotenuse, so the ratio of these lengths is always less than one. Because the tangent of an acute angle involves the ratio of one leg to another leg, the tangent of an angle can be less than 1, equal to 1, or greater than 1. TRIGONOMETRIC IDENTITIES A trigonometric identity is an equation involving trigonometric ratios that is true for all acute angles. The following are two examples of identities: (sin A) 2 + (cos A) 2 = 1 tan A = sin A cos A A c b B C a
11 Using Trigonometric Ratios in Real Life Suppose you stand and look up at a point in the distance, such as the top of the tree. The angle that your line of sight makes with a line drawn horizontally is called the angle of elevation.
12 Indirect Measurement FORESTRY You are measuring the height of a Sitka spruce tree in Alaska. You stand 45 feet from the base of a tree. You measure the angle of elevation from a point on the ground to the top of the tree to be 59. To estimate the height of the tree, you can write a trigonometric ratio that involves the height h and the known length of 45 feet. tan 59 = opposite adjacent tan 59 = opposite h 45 adjacent 45 tan 59 = h 45(1.6643) h 74.9 h Write ratio. Substitute. Multiply each side by 45. Use a calculator or table to find tan 59. Simplify. The tree is about 75 feet tall.
13 Estimating a Distance ESCALATORS The escalator at the Wilshire/Vermont Metro Rail Station in Los Angeles rises 76 feet at a 30 angle. To find the distance d a person travels on the escalator stairs, you can write a trigonometric ratio that involves the hypotenuse and the known leg length of 76 feet. sin 30 = opposite hypotenuse Write ratio for sine of 30. short leg = 76 Whoa! This is a triangle!!! hypotenuse = 76(2) What is d? d 76 ft 30 d = 152 Simplify. A person travels 152 feet on the escalator stairs.
14 Estimating a Distance ESCALATORS The escalator at the Wilshire/Vermont Metro Rail Station in Los Angeles rises 76 feet at a 30 angle. To find the distance d a person travels on the escalator stairs, you can write a trigonometric ratio that involves the hypotenuse and the known leg length of 76 feet. sin 30 = opposite hypotenuse Write ratio for sine of 30. sin 30 = 76 opposite hypotenuse d Substitute. d sin 30 = d = sin 30 d = Multiply each side by d. Divide each side by sin 30. Substitute 0.5 for sin d 76 ft d = 152 Simplify. A person travels 152 feet on the escalator stairs.
Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree.
Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree. 42. The sum of the measures of the angles of a triangle is 180. Therefore, The sine of an angle
More information41 Right Triangle Trigonometry
Find the exact values of the six trigonometric functions of θ. 1. The length of the side opposite θ is 8 is 18., the length of the side adjacent to θ is 14, and the length of the hypotenuse 3. The length
More informationy = rsin! (opp) x = z cos! (adj) sin! = y z = The Other Trig Functions
MATH 7 Right Triangle Trig Dr. Neal, WKU Previously, we have seen the right triangle formulas x = r cos and y = rsin where the hypotenuse r comes from the radius of a circle, and x is adjacent to and y
More information41 Right Triangle Trigonometry
Find the exact values of the six trigonometric functions of θ. 3. The length of the side opposite θ is 9, the length of the side adjacent to θ is 4, and the length of the hypotenuse is. 7. The length of
More information41 Right Triangle Trigonometry
Find the measure of angle θ. Round to the nearest degree, if necessary. 31. Because the lengths of the sides opposite θ and the hypotenuse are given, the sine function can be used to find θ. 35. Because
More informationUnit 2: Right Triangle Trigonometry RIGHT TRIANGLE RELATIONSHIPS
Unit 2: Right Triangle Trigonometry This unit investigates the properties of right triangles. The trigonometric ratios sine, cosine, and tangent along with the Pythagorean Theorem are used to solve right
More information11 Trigonometric Functions of Acute Angles
Arkansas Tech University MATH 10: Trigonometry Dr. Marcel B. Finan 11 Trigonometric Functions of Acute Angles In this section you will learn (1) how to find the trigonometric functions using right triangles,
More informationB a. This means that if the measures of two of the sides of a right triangle are known, the measure of the third side can be found.
The Pythagorean Theorem One special kind of triangle is a right triangle a triangle with one interior angle of 90º. B A Note: In a polygon (like a triangle), the vertices (and corresponding angles) are
More informationTypes of Angles acute right obtuse straight Types of Triangles acute right obtuse hypotenuse legs
MTH 065 Class Notes Lecture 18 (4.5 and 4.6) Lesson 4.5: Triangles and the Pythagorean Theorem Types of Triangles Triangles can be classified either by their sides or by their angles. Types of Angles An
More informationGeometry Notes RIGHT TRIANGLE TRIGONOMETRY
Right Triangle Trigonometry Page 1 of 15 RIGHT TRIANGLE TRIGONOMETRY Objectives: After completing this section, you should be able to do the following: Calculate the lengths of sides and angles of a right
More information2.1 The Tangent Ratio
2.1 The Tangent Ratio In this Unit, we will study Right Angled Triangles. Right angled triangles are triangles which contain a right angle which measures 90 (the little box in the corner means that angle
More information4.3 & 4.8 Right Triangle Trigonometry. Anatomy of Right Triangles
4.3 & 4.8 Right Triangle Trigonometry Anatomy of Right Triangles The right triangle shown at the right uses lower case a, b and c for its sides with c being the hypotenuse. The sides a and b are referred
More informationRight Triangle Trigonometry
Right Triangle Trigonometry MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: evaluate trigonometric functions of acute angles, use
More informationBasic Trigonometry, Significant Figures, and Rounding  A Quick Review
Basic Trigonometry, Significant Figures, and Rounding  A Quick Review (Free of Charge and Not for Credit) by Professor Patrick L. Glon, P.E. Basic Trigonometry, Significant Figures, and Rounding A Quick
More informationMA Lesson 19 Summer 2016 Angles and Trigonometric Functions
DEFINITIONS: An angle is defined as the set of points determined by two rays, or halflines, l 1 and l having the same end point O. An angle can also be considered as two finite line segments with a common
More informationSimilarity, Right Triangles, and Trigonometry
Instruction Goal: To provide opportunities for students to develop concepts and skills related to trigonometric ratios for right triangles and angles of elevation and depression Common Core Standards Congruence
More informationSection 9.4 Trigonometric Functions of any Angle
Section 9. Trigonometric Functions of any Angle So far we have only really looked at trigonometric functions of acute (less than 90º) angles. We would like to be able to find the trigonometric functions
More information7.1 Apply the Pythagorean Theorem
7.1 Apply the Pythagorean Theorem Obj.: Find side lengths in right triangles. Key Vocabulary Pythagorean triple  A Pythagorean triple is a set of three positive integers a, b, and c that satisfy the equation
More informationIntermediate Algebra with Trigonometry. J. Avery 4/99 (last revised 11/03)
Intermediate lgebra with Trigonometry J. very 4/99 (last revised 11/0) TOPIC PGE TRIGONOMETRIC FUNCTIONS OF CUTE NGLES.................. SPECIL TRINGLES............................................ 6 FINDING
More informationRight Triangles and SOHCAHTOA: Finding the Measure of an Angle Given any Two Sides (ONLY for ACUTE TRIANGLES Why?)
Name Period Date Right Triangles and SOHCAHTOA: Finding the Measure of an Angle Given any Two Sides (ONLY for ACUTE TRIANGLES Why?) Preliminary Information: SOH CAH TOA is an acronym to represent the following
More informationG E O M E T R Y CHAPTER 9 RIGHT TRIANGLES AND TRIGONOMETRY. Notes & Study Guide
G E O M E T R Y CHAPTER 9 RIGHT TRIANGLES AND TRIGONOMETRY Notes & Study Guide 2 TABLE OF CONTENTS SIMILAR RIGHT TRIANGLES... 3 THE PYTHAGOREAN THEOREM... 4 SPECIAL RIGHT TRIANGLES... 5 TRIGONOMETRIC RATIOS...
More informationAny two right triangles, with one other angle congruent, are similar by AA Similarity. This means that their side lengths are.
Lesson 1 Trigonometric Functions 1. I CAN state the trig ratios of a right triangle 2. I CAN explain why any right triangle yields the same trig values 3. I CAN explain the relationship of sine and cosine
More informationRight Triangle Trigonometry Test Review
Class: Date: Right Triangle Trigonometry Test Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the length of the missing side. Leave your answer
More informationTrigonometry (Chapters 4 5) Sample Test #1 First, a couple of things to help out:
First, a couple of things to help out: Page 1 of 24 Use periodic properties of the trigonometric functions to find the exact value of the expression. 1. cos 2. sin cos sin 2cos 4sin 3. cot cot 2 cot Sin
More informationUnit 7: Right Triangles and Trigonometry Lesson 7.1 Use Inequalities in a Triangle Lesson 5.5 from textbook
Unit 7: Right Triangles and Trigonometry Lesson 7.1 Use Inequalities in a Triangle Lesson 5.5 from textbook Objectives Use the triangle measurements to decide which side is longest and which angle is largest.
More informationPythagorean Theorem: 9. x 2 2
Geometry Chapter 8  Right Triangles.7 Notes on Right s Given: any 3 sides of a Prove: the is acute, obtuse, or right (hint: use the converse of Pythagorean Theorem) If the (longest side) 2 > (side) 2
More informationFunctions  Inverse Trigonometry
10.9 Functions  Inverse Trigonometry We used a special function, one of the trig functions, to take an angle of a triangle and find the side length. Here we will do the opposite, take the side lengths
More information4.1 Converse of the Pyth TH and Special Right Triangles
Name Per 4.1 Converse of the Pyth TH and Special Right Triangles CONVERSE OF THE PYTHGOREN THEOREM Can be used to check if a figure is a right triangle. If triangle., then BC is a Eample 1: Tell whether
More informationRight Triangles Test Review
Class: Date: Right Triangles Test Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the length of the missing side. The triangle is not drawn
More informationUsing Trigonometry to Find Missing Sides of Right Triangles
Using Trigonometry to Find Missing Sides of Right Triangles A. Using a Calculator to Compute Trigonometric Ratios 1. Introduction: Find the following trigonometric ratios by using the definitions of sin(),
More informationPreAlgebra Interactive Chalkboard Copyright by The McGrawHill Companies, Inc. Send all inquiries to:
PreAlgebra Interactive Chalkboard Copyright by The McGrawHill Companies, Inc. Send all inquiries to: GLENCOE DIVISION Glencoe/McGrawHill 8787 Orion Place Columbus, Ohio 43240 Click the mouse button
More informationMidChapter Quiz: Lessons 41 through 44
Find the exact values of the six trigonometric functions of θ. Find the value of x. Round to the nearest tenth if necessary. 1. The length of the side opposite is 24, the length of the side adjacent to
More informationExtra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam.
Extra Credit Assignment Lesson plan The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. The extra credit assignment is to create a typed up lesson
More informationName Period Right Triangles and Trigonometry Section 9.1 Similar right Triangles
Name Period CHAPTER 9 Right Triangles and Trigonometry Section 9.1 Similar right Triangles Objectives: Solve problems involving similar right triangles. Use a geometric mean to solve problems. Ex. 1 Use
More informationTrigonometry. Week 1 Right Triangle Trigonometry
Trigonometry Introduction Trigonometry is the study of triangle measurement, but it has expanded far beyond that. It is not an independent subject of mathematics. In fact, it depends on your knowledge
More informationRIGHT TRIANGLE TRIGONOMETRY
RIGHT TRIANGLE TRIGONOMETRY The word Trigonometry can be broken into the parts Tri, gon, and metry, which means Three angle measurement, or equivalently Triangle measurement. Throughout this unit, we will
More informationRight Triangles LongTerm Memory Review Review 1
Review 1 1. Is the statement true or false? If it is false, rewrite it to make it true. A right triangle has two acute angles. 2 2. The Pythagorean Theorem for the triangle shown would be a b c. Fill in
More informationas a fraction and as a decimal to the nearest hundredth.
Express each ratio as a fraction and as a decimal to the nearest hundredth. 1. sin A The sine of an angle is defined as the ratio of the opposite side to the hypotenuse. So, 2. tan C The tangent of an
More informationMATH 10 COMMON TRIGONOMETRY CHAPTER 2. is always opposite side b.
MATH 10 OMMON TRIGONOMETRY HAPTER 2 (11 Days) Day 1 Introduction to the Tangent Ratio Review: How to set up your triangles: Angles are always upper case ( A,, etc.) and sides are always lower case (a,b,c).
More informationVectors are quantities that have both a direction and a magnitude (size).
Scalars & Vectors Vectors are quantities that have both a direction and a magnitude (size). Ex. km, 30 ο north of east Examples of Vectors used in Physics Displacement Velocity Acceleration Force Scalars
More informationLaw of Sines. Definition of the Law of Sines:
Law of Sines So far we have been using the trigonometric functions to solve right triangles. However, what happens when the triangle does not have a right angle? When solving oblique triangles we cannot
More informationSimilar Right Triangles
9.1 Similar Right Triangles Goals p Solve problems involving similar right triangles formed b the altitude drawn to the hpotenuse of a right triangle. p Use a geometric mean to solve problems. THEOREM
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 110 B) 120 C) 60 D) 150
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Convert the angle to decimal degrees and round to the nearest hundredth of a degree. ) 56
More informationInverse Trigonometric Functions
Inverse Trigonometric Functions I. Four Facts About Functions and Their Inverse Functions:. A function must be onetoone (an horizontal line intersects it at most once) in order to have an inverse function..
More informationCreated by Ethan Fahy
Created by Ethan Fahy To proceed to the next slide click the button. Next NCTM: Use trigonometric relationships to determine lengths and angle measures. NCTM: Use geometric ideas to solve problems in,
More informationUNIT 8 RIGHT TRIANGLES NAME PER. I can define, identify and illustrate the following terms
UNIT 8 RIGHT TRIANGLES NAME PER I can define, identify and illustrate the following terms leg of a right triangle short leg long leg radical square root hypotenuse Pythagorean theorem Special Right Triangles
More informationTeaching & Learning Plans. Plan 8: Introduction to Trigonometry. Junior Certificate Syllabus
Teaching & Learning Plans Plan 8: Introduction to Trigonometry Junior Certificate Syllabus The Teaching & Learning Plans are structured as follows: Aims outline what the lesson, or series of lessons, hopes
More informationPreCalculus II. 4.3 Right Angle Trigonometry
PreCalculus II 4.3 Right Angle Trigonometry y P=(x,y) y P=(x,y) 1 1 y x x x We construct a right triangle by dropping a line segment from point P perpendicular to the xaxis. So now we can view as the
More informationChapter 8. Right Triangles
Chapter 8 Right Triangles Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the
More information104 Angles of Elevation and Depression. Do Now Lesson Presentation Exit Ticket
Do Now Lesson Presentation Exit Ticket Do Now #15 1. Identify the pairs of alternate interior angles. 2 and 7; 3 and 6 2. Use your calculator to find tan 30 to the nearest hundredth. 0.58 3. Solve. Round
More information2. Right Triangle Trigonometry
2. Right Triangle Trigonometry 2.1 Definition II: Right Triangle Trigonometry 2.2 Calculators and Trigonometric Functions of an Acute Angle 2.3 Solving Right Triangles 2.4 Applications 2.5 Vectors: A Geometric
More informationTrigonometry. An easy way to remember trigonometric properties is:
Trigonometry It is possible to solve many force and velocity problems by drawing vector diagrams. However, the degree of accuracy is dependent upon the exactness of the person doing the drawing and measuring.
More informationStudent Academic Learning Services Page 1 of 6 Trigonometry
Student Academic Learning Services Page 1 of 6 Trigonometry Purpose Trigonometry is used to understand the dimensions of triangles. Using the functions and ratios of trigonometry, the lengths and angles
More informationTrigonometry on Right Triangles. Elementary Functions. Similar Triangles. Similar Triangles
Trigonometry on Right Triangles Trigonometry is introduced to students in two different forms, as functions on the unit circle and as functions on a right triangle. The unit circle approach is the most
More informationSkills Practice Simplifying Radical Expressions. Lesson Simplify c 2 d x 4 y m 5 n
111 Simplify. Skills Practice Simplifying Radical Expressions 1. 28 2. 40 3. 72 4. 99 5. 2 10 6. 5 60 7. 3 5 5 8. 6 4 24 Lesson 111 9. 2 3 3 15 10. 16b 4 11. 81c 2 d 4 12. 40x 4 y 6 13. 75m 5 n 2 5 14.
More informationθ. The angle is denoted in two ways: angle θ
1.1 Angles, Degrees and Special Triangles (1 of 24) 1.1 Angles, Degrees and Special Triangles Definitions An angle is formed by two rays with the same end point. The common endpoint is called the vertex
More information4.1 Radian and Degree Measure
Date: 4.1 Radian and Degree Measure Syllabus Objective: 3.1 The student will solve problems using the unit circle. Trigonometry means the measure of triangles. Terminal side Initial side Standard Position
More informationopposite side adjacent side sec A = hypotenuse opposite side adjacent side = a b
Trigonometry Angles & Circular Functions: Solving Right Triangles Trigonometric Functions in a Right Triangle We have already looked at the trigonometric functions from the perspective of the unit circle.
More informationGeometry Mathematics Curriculum Guide Unit 6 Trig & Spec. Right Triangles 2016 2017
Unit 6: Trigonometry and Special Right Time Frame: 14 Days Primary Focus This topic extends the idea of triangle similarity to indirect measurements. Students develop properties of special right triangles,
More informationParallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.
CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes
More informationInverse Trigonometric Functions
SECTION 4.7 Inverse Trigonometric Functions Copyright Cengage Learning. All rights reserved. Learning Objectives 1 2 3 4 Find the exact value of an inverse trigonometric function. Use a calculator to approximate
More informationPHYSICS 151 Notes for Online Lecture #6
PHYSICS 151 Notes for Online Lecture #6 Vectors  A vector is basically an arrow. The length of the arrow represents the magnitude (value) and the arrow points in the direction. Many different quantities
More informationa c Pythagorean Theorem: a 2 + b 2 = c 2
Section 2.1: The Pythagorean Theorem The Pythagorean Theorem is a formula that gives a relationship between the sides of a right triangle The Pythagorean Theorem only applies to RIGHT triangles. A RIGHT
More informationRight Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring
Page 1 9 Trigonometry of Right Triangles Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring 90. The side opposite to the right angle is the longest
More informationIntroduction Assignment
PRECALCULUS 11 Introduction Assignment Welcome to PREC 11! This assignment will help you review some topics from a previous math course and introduce you to some of the topics that you ll be studying
More informationPythagorean Theorem & Trigonometric Ratios
Algebra 20122013 Pythagorean Theorem & Trigonometric Ratios Name: Teacher: Pd: Table of Contents DAY 1: SWBAT: Calculate the length of a side a right triangle using the Pythagorean Theorem Pgs: 14 HW:
More informationLesson Plan Teacher: G Johnson Date: September 20, 2012.
Lesson Plan Teacher: G Johnson Date: September 20, 2012. Subject: Mathematics Class: 11L Unit: Trigonometry Duration: 1hr: 40mins Topic: Using Pythagoras Theorem to solve trigonometrical problems Previous
More information4.4 Right Triangle Trigonometry
4.4 Right Triangle Trigonometry Trigonometry is introduced to students in two different forms, as functions on the unit circle and as functions on a right triangle. The unit circle approach is the most
More informationLaw of Cosines. If the included angle is a right angle then the Law of Cosines is the same as the Pythagorean Theorem.
Law of Cosines In the previous section, we learned how the Law of Sines could be used to solve oblique triangles in three different situations () where a side and two angles (SAA) were known, () where
More information4) The length of one diagonal of a rhombus is 12 cm. The measure of the angle opposite that diagonal is 60º. What is the perimeter of the rhombus?
Name Date Period MM2G1. Students will identify and use special right triangles. MM2G1a. Determine the lengths of sides of 3060 90 triangles. MM2G1b. Determine the lengths of sides of 4545 90 triangles.
More information1 Math 116 Supplemental Textbook (Pythagorean Theorem)
1 Math 116 Supplemental Textbook (Pythagorean Theorem) 1.1 Pythagorean Theorem 1.1.1 Right Triangles Before we begin to study the Pythagorean Theorem, let s discuss some facts about right triangles. The
More informationAnswer Key. Lesson 7.1. Study Guide
Answer Key Lesson 7.1 Study Guide 1. leg; 30 2. hypotenuse; 3 Ï } 13 3. hypotenuse; 52 4. leg; 20 Ï } 6 5. leg; 5 Ï } 3 6. hypotenuse; 39 7. 1452 yd 2 8. 540 mi 2 9. 5, 12, 13; 130 cm 10. 7, 24, 25; 96
More informationExit Ticket: Angle of Elevation and Depression 1. Find the angle of elevation of the sun when a 6meter flagpole casts a 17meter shadow.
Exit Ticket: Angle of Elevation and Depression Exit Ticket: See below 1. Find the angle of elevation of the sun when a 6meter flagpole casts a 17meter shadow. 2. After flying at an altitude of 575 meters,
More information1. Introduction circular deﬁnition Remark 1 inverse trigonometric functions
1. Introduction In Lesson 2 the six trigonometric functions were defined using angles determined by points on the unit circle. This is frequently referred to as the circular definition of the trigonometric
More informationEnrichment The Physics of Soccer Recall from Lesson 71 that the formula for the maximum height h h v 0 2 sin 2
71 The Physics of Soccer Recall from Lesson 71 that the formula for the maximum height h h v 0 2 sin 2 of a projectile is 2g, where is the measure of the angle of elevation in degrees, v 0 is the initial
More informationSolutions to Exercises, Section 5.1
Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle
More informationSolutions of Right Triangles with Practical Applications
Trigonometry Module T09 Solutions of Right Triangles with Practical pplications Copyright This publication The Northern lberta Institute of Technology 2002. ll Rights Reserved. LST REVISED December, 2008
More information6) Which of the following is closest to the length of the diagonal of a square that has sides that are 60 feet long?
1) The top of an 18foot ladder touches the side of a building 14 feet above the ground. Approximately how far from the base of the building should the bottom of the ladder be placed? 4.0 feet 8.0 feet
More informationTrigonometry I. MathsStart. Topic 5
MathsStart (NOTE Feb 0: This is the old version of MathsStart. New books will be created during 0 and 04) Topic 5 Trigonometry I h 0 45 50 m x MATHS LEARNING CENTRE Level, Hub Central, North Terrace Campus
More informationUsing the Quadrant. Protractor. Eye Piece. You can measure angles of incline from 0º ( horizontal ) to 90º (vertical ). Ignore measurements >90º.
Using the Quadrant Eye Piece Protractor Handle You can measure angles of incline from 0º ( horizontal ) to 90º (vertical ). Ignore measurements 90º. Plumb Bob ø
More informationN33. Trigonometry Preview Assignment. Part 1: Right Triangles. x = FMP1O NAME:
x= 4. Trigonometry Preview ssignment FMP1O NME: B) Label all the sides of each right triangle (Hypotenuse, djacent, Opposite). 1. 2. N33 ) Find the measure of each unknown angle (variable) in the triangle.
More information9 Right Triangle Trigonometry
www.ck12.org CHAPTER 9 Right Triangle Trigonometry Chapter Outline 9.1 THE PYTHAGOREAN THEOREM 9.2 CONVERSE OF THE PYTHAGOREAN THEOREM 9.3 USING SIMILAR RIGHT TRIANGLES 9.4 SPECIAL RIGHT TRIANGLES 9.5
More informationRight Triangles and SOHCAHTOA: Finding the Length of a Side Given One Side and One Angle
Right Triangles and SOHCAHTOA: Finding the Length of a Side Given One Side and One Angle Preliminar Information: is an acronm to represent the following three trigonometric ratios or formulas: opposite
More informationGive an expression that generates all angles coterminal with the given angle. Let n represent any integer. 9) 179
Trigonometry Chapters 1 & 2 Test 1 Name Provide an appropriate response. 1) Find the supplement of an angle whose measure is 7. Find the measure of each angle in the problem. 2) Perform the calculation.
More informationRight Triangle Trigonometry
Right Triangle Trigonometry Lori Jordan, (LoriJ) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive
More informationThe Primary Trigonometric Ratios Word Problems
The Primary Trigonometric Ratios Word Problems. etermining the measures of the sides and angles of right triangles using the primary ratios When we want to measure the height of an inaccessible object
More informationSimilarity & Right triangles
Similarity & Right triangles General Mathematics preliminary Name: Mw Tracey HughesButters us (c) Mathtastic Learning 2011 us 1 CAPACITY MATRIX GENERAL MATHEMATICS TOPIC: Measurement 3 & 4 Similarity
More informationAngles of Elevation and Depression
LESSON 6 Angles of Elevation and D sion LESSON 6 Angles of Elevation and Depression Now we get a chance to apply all of our newly acquired skills to reallife applications, otherwise known as word problems.
More information1) Convert 13 32' 47" to decimal degrees. Round your answer to four decimal places.
PRECLCULUS FINL EXM, PRCTICE UNIT ONE TRIGONOMETRIC FUNCTIONS ) Convert ' 47" to decimal degrees. Round your answer to four decimal places. ) Convert 5.6875 to degrees, minutes, and seconds. Round to the
More informationFLC Ch 1 & 3.1. A ray AB, denoted, is the union of and all points on such that is between and. The endpoint of the ray AB is A.
Math 335 Trigonometry Sec 1.1: Angles Definitions A line is an infinite set of points where between any two points, there is another point on the line that lies between them. Line AB, A line segment is
More informationRight Triangles 4 A = 144 A = 16 12 5 A = 64
Right Triangles If I looked at enough right triangles and experimented a little, I might eventually begin to notice a relationship developing if I were to construct squares formed by the legs of a right
More informationSolution Guide for Chapter 6: The Geometry of Right Triangles
Solution Guide for Chapter 6: The Geometry of Right Triangles 6. THE THEOREM OF PYTHAGORAS E. Another demonstration: (a) Each triangle has area ( ). ab, so the sum of the areas of the triangles is 4 ab
More informationSection 63 DoubleAngle and HalfAngle Identities
63 DoubleAngle and HalfAngle Identities 47 Section 63 DoubleAngle and HalfAngle Identities DoubleAngle Identities HalfAngle Identities This section develops another important set of identities
More information76 The Law of Sines
76 The Law of Sines So far, we have learned how to use geometric mean, Pythagorean Theorem, properties of 306090 and 454590 triangles, and Soh, Cah, Toa to solve triangles. The Law of Sines is used
More informationCHAPTER 8: ACUTE TRIANGLE TRIGONOMETRY
CHAPTER 8: ACUTE TRIANGLE TRIGONOMETRY Specific Expectations Addressed in the Chapter Explore the development of the sine law within acute triangles (e.g., use dynamic geometry software to determine that
More informationHS Mathematics Item Specification C1 TO
Task Model 1 Multiple Choice, single correct response GSRT.C.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of acute
More information9.1 Trigonometric Identities
9.1 Trigonometric Identities r y x θ x y θ r sin (θ) = y and sin (θ) = y r r so, sin (θ) =  sin (θ) and cos (θ) = x and cos (θ) = x r r so, cos (θ) = cos (θ) And, Tan (θ) = sin (θ) =  sin (θ)
More information13.3 Special Right Triangles
Name lass Date 13.3 Special Right Triangles Essential Question: What do you know about the side lengths and the trigonometric ratios in special right triangles? Eplore 1 Investigating an Isosceles Right
More informationTrigonometry Lesson Objectives
Trigonometry Lesson Unit 1: RIGHT TRIANGLE TRIGONOMETRY Lengths of Sides Evaluate trigonometric expressions. Express trigonometric functions as ratios in terms of the sides of a right triangle. Use the
More informationVolume and Surface Area of a Sphere
Volume and Surface rea of a Sphere Reteaching 111 Math ourse, Lesson 111 The relationship between the volume of a cylinder, the volume of a cone, and the volume of a sphere is a special one. If the heights
More information