Calculating EffectSizes


 Anastasia Foster
 1 years ago
 Views:
Transcription
1 Calculating EffectSizes David B. Wilson, PhD George Mason University August 2011 The Heart and Soul of Metaanalysis: The Effect Size Metaanalysis shifts focus from statistical significance to the direction and magnitude of effect Key to this is the effect size It is the dependent variable of metaanalysis Encodes research findings on a numerical scale Different types of effect sizes for different research situations Each type may have multiple methods of computation 1
2 Overview Main types of Effect Sizes Logic of the Standardized Mean Difference Methods of Computing the Standardized Mean Difference Logic of the Oddsratio and Riskratio Methods of Computing the Oddsratio Adjustments, such as for baseline differences Issues related to the variance estimate Most Common Effect Size Indexes Standardized mean difference (d or g) Group contrast (e.g., treatment versus control) Inherently continuous outcome construct Oddsratio and Riskratio (OR and RR) Group contrast (e.g., treatment versus control) Inherently dichotomous (binary) outcome construct Correlation coefficient (r ) Two inherently continuous constructs 2
3 Necessary Characteristics of Effect Sizes Numerical values produced must be comparable across studies Must be able to compute its standard error Must not be a direct function of sample size The Standardized Mean Difference Compares the means of two groups Standardized this difference 3
4 Visual Example of dtype Effect Size Small Sample Size Bias Adjustment d is slightly upwardly bias when based on small samples. This can be fixed with the adjustment below: It is common practice to apply this adjustment whenever using d. 4
5 Standard Error and Variance of d The standard error (and variance) of d is mostly a function of sample size: Methods of Computing d Lots of methods of computing d Goal is to reproduce what you would get with means, standard deviations, and sample sizes Some methods are straightforward 5
6 Computing d from a ttest Formula for d: Formula for t: Therefore: Computing d from a pvalue from a ttest An exact pvalue from a ttest can be convert into a tvalue, assuming you have the degreesoffreedom Then proceed as above 6
7 Computing d from dichotomous outcomes Some studies may report outcome dichotomously d can be estimated from these data Several methods Logit Cox Logit Probit Arcsine Logit method of computing d Logistic distribution similar to the normal distribution Logged oddsratios conform to the logistic distribution Standard deviation of the logistic distribution is Thus, we can rescale a logged OR into d Monte Carlo simulations suggest that this performs fairly well; some advantages to the Cox logit method (divide by 1.65) 7
8 More complicated estimates of d Can think of d as having two parts Numerator: mean difference Denominator: pooled standard deviation Trick is to get reasonable estimates of each Often have one but not the other Estimates of numerator of d Covariate adjusted means Difference in gain score means Unstandardized regression coefficient for treatment dummy 8
9 Estimates of denominator of d Gain score standard deviation Overall standard deviation for the outcome Standard error Oneway ANOVA Be care: don't just use any standard deviation laying around See Online Effect Size Calculator On CEBCP Website: On Campbell Website: 9
10 Logic of the OddsRatio and RiskRatio Oddsratio is the ratio of odds An odds is the probability of failure over the probability of success Riskratio is the ratio of risks A risk is simply the probability of failure An oddsratio or riskratio of 1 indicates no difference between the groups Oddsratio more difficult to interpret than riskratios Risk ratios are sensitive to base event rate; oddsratios are not Logic of the OddsRatio and RiskRatio Oddsratios and riskratios contrast two groups on dichotomous outcome I.e., a 2 by 2 frequency table where a, b, c, and d, are cell frequencies 10
11 Computing the OddsRatio and RiskRatio Oddsratio is computed as: Riskratio is computed as Computing the OddsRatio and RiskRatio The oddsratio can also be computed from the proportion successful in each group (p). Oddsratio is computed as: 11
12 Computing the Standard Error and Variance of the OddsRatio and Risk Ratio Standard error of the logged Oddsratio: Standard error of the logged Riskratio: Variance: Computing the OddsRatio from Other Data Only so many was you can report binary data Makes computing oddsratios and risk ratios relatively easy Generally have Full twobytwo table Percent of events (successes/failures) in each group Proportion of events (successes/failures) in each group Actual oddsratio or riskratio Convert dtype effect size Chisquare 12
13 Computing the OddsRatio from a χ 2 Oddsratio can be computed from a χ 2 if you have the overall event rate for the sample (total number of successes or failures) and the sample size in each group Computations reproduce the twobytwo table See online calculator or Lipsey/Wilson Practical Metaanalysis Appendix B Adjustments to Effect Size Hunter and Schmidt  Psychometric metaanalysis Measurement unreliability, invalidity Range restriction Artificial dichotomization Hunter and Schmidt adjustments generally not done in a Campbell or Cochrane review Pretest of outcome For quasiexperimental designs, may remove some bias Must still use posttest standard deviation in denominator Adds additional error (variance estimate should be bigger) Sensitivity analysis recommended 13
14 Issues Related to Variance Estimate Method of computing effect size may affect variance estimate For example d computed from dichotomous data numerator of d is adjusted for baseline or other covariates Study data may involve clusters Possible solution: rescale standard error from correct model provided in study (if available) where z is either a z or t test associate with the treatment effect from a complex statistical model. Questions? 14
15 P.O. Box 7004 St. Olavs plass 0130 Oslo, Norway 15
EffectSize Indices for Dichotomized Outcomes in MetaAnalysis
Psychological Methods Copyright 003 by the American Psychological Association, Inc. 003, Vol. 8, No. 4, 448 467 108989X/03/$1.00 DOI: 10.1037/108989X.8.4.448 EffectSize Indices for Dichotomized Outcomes
More informationMS 20070081RR Booil Jo. Supplemental Materials (to be posted on the Web)
MS 20070081RR Booil Jo Supplemental Materials (to be posted on the Web) Table 2 Mplus Input title: Table 2 Monte Carlo simulation using externally generated data. One level CACE analysis based on eqs.
More informationModule 4  Multiple Logistic Regression
Module 4  Multiple Logistic Regression Objectives Understand the principles and theory underlying logistic regression Understand proportions, probabilities, odds, odds ratios, logits and exponents Be
More informationOverview Classes. 123 Logistic regression (5) 193 Building and applying logistic regression (6) 263 Generalizations of logistic regression (7)
Overview Classes 123 Logistic regression (5) 193 Building and applying logistic regression (6) 263 Generalizations of logistic regression (7) 24 Loglinear models (8) 54 1517 hrs; 5B02 Building and
More informationEffect Size Calculation for experimental & quasiexperimental
Effect Size Calculation for experimental & quasiexperimental methods Jorge Garcia Hombrados & Hugh Waddington Our goal is to get from here... Source: Baird et al. 2011 Worms at work ... to here Our goal
More informationUnderstanding and Quantifying EFFECT SIZES
Understanding and Quantifying EFFECT SIZES Karabi Nandy, Ph.d. Assistant Adjunct Professor Translational Sciences Section, School of Nursing Department of Biostatistics, School of Public Health, University
More informationAnalysing Questionnaires using Minitab (for SPSS queries contact ) Graham.Currell@uwe.ac.uk
Analysing Questionnaires using Minitab (for SPSS queries contact ) Graham.Currell@uwe.ac.uk Structure As a starting point it is useful to consider a basic questionnaire as containing three main sections:
More informationLinda K. Muthén Bengt Muthén. Copyright 2008 Muthén & Muthén www.statmodel.com. Table Of Contents
Mplus Short Courses Topic 2 Regression Analysis, Eploratory Factor Analysis, Confirmatory Factor Analysis, And Structural Equation Modeling For Categorical, Censored, And Count Outcomes Linda K. Muthén
More informationData analysis process
Data analysis process Data collection and preparation Collect data Prepare codebook Set up structure of data Enter data Screen data for errors Exploration of data Descriptive Statistics Graphs Analysis
More informationINTRODUCTORY STATISTICS
INTRODUCTORY STATISTICS FIFTH EDITION Thomas H. Wonnacott University of Western Ontario Ronald J. Wonnacott University of Western Ontario WILEY JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore
More informationData Analysis, Research Study Design and the IRB
Minding the pvalues p and Quartiles: Data Analysis, Research Study Design and the IRB Don AllensworthDavies, MSc Research Manager, Data Coordinating Center Boston University School of Public Health IRB
More information11. Analysis of Casecontrol Studies Logistic Regression
Research methods II 113 11. Analysis of Casecontrol Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:
More informationDATA ANALYSIS. QEM Network HBCUUP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. Howard University
DATA ANALYSIS QEM Network HBCUUP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. Howard University Quantitative Research What is Statistics? Statistics (as a subject) is the science
More informationDeveloping Risk Adjustment Techniques Using the SAS@ System for Assessing Health Care Quality in the lmsystem@
Developing Risk Adjustment Techniques Using the SAS@ System for Assessing Health Care Quality in the lmsystem@ Yanchun Xu, Andrius Kubilius Joint Commission on Accreditation of Healthcare Organizations,
More informationChapter Eight: Quantitative Methods
Chapter Eight: Quantitative Methods RESEARCH DESIGN Qualitative, Quantitative, and Mixed Methods Approaches Third Edition John W. Creswell Chapter Outline Defining Surveys and Experiments Components of
More informationSAMPLE SIZE TABLES FOR LOGISTIC REGRESSION
STATISTICS IN MEDICINE, VOL. 8, 795802 (1989) SAMPLE SIZE TABLES FOR LOGISTIC REGRESSION F. Y. HSIEH* Department of Epidemiology and Social Medicine, Albert Einstein College of Medicine, Bronx, N Y 10461,
More informationMULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS
MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance
More informationLOGIT AND PROBIT ANALYSIS
LOGIT AND PROBIT ANALYSIS A.K. Vasisht I.A.S.R.I., Library Avenue, New Delhi 110 012 amitvasisht@iasri.res.in In dummy regression variable models, it is assumed implicitly that the dependent variable Y
More information1/27/2013. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2
PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 Introduce moderated multiple regression Continuous predictor continuous predictor Continuous predictor categorical predictor Understand
More informationWhen to Use a Particular Statistical Test
When to Use a Particular Statistical Test Central Tendency Univariate Descriptive Mode the most commonly occurring value 6 people with ages 21, 22, 21, 23, 19, 21  mode = 21 Median the center value the
More informationAuxiliary Variables in Mixture Modeling: 3Step Approaches Using Mplus
Auxiliary Variables in Mixture Modeling: 3Step Approaches Using Mplus Tihomir Asparouhov and Bengt Muthén Mplus Web Notes: No. 15 Version 8, August 5, 2014 1 Abstract This paper discusses alternatives
More informationDescriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
More informationThe Campbell Collaboration www.campbellcollaboration.org. Study content coding Effect size coding (next session)
Systema(c Review Methods Workshop Study Coding Sandra Jo Wilson Vanderbilt University Editor, Campbell Collabora9on Educa9on Coordina9ng Group Workshop Overview Levels of Study Coding Study eligibility
More informationCHAPTER 12 EXAMPLES: MONTE CARLO SIMULATION STUDIES
Examples: Monte Carlo Simulation Studies CHAPTER 12 EXAMPLES: MONTE CARLO SIMULATION STUDIES Monte Carlo simulation studies are often used for methodological investigations of the performance of statistical
More informationLogit Models for Binary Data
Chapter 3 Logit Models for Binary Data We now turn our attention to regression models for dichotomous data, including logistic regression and probit analysis. These models are appropriate when the response
More informationEXCEL Analysis TookPak [Statistical Analysis] 1. First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it:
EXCEL Analysis TookPak [Statistical Analysis] 1 First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it: a. From the Tools menu, choose AddIns b. Make sure Analysis
More informationSTATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 SigmaRestricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
More informationANALYSING LIKERT SCALE/TYPE DATA, ORDINAL LOGISTIC REGRESSION EXAMPLE IN R.
ANALYSING LIKERT SCALE/TYPE DATA, ORDINAL LOGISTIC REGRESSION EXAMPLE IN R. 1. Motivation. Likert items are used to measure respondents attitudes to a particular question or statement. One must recall
More informationBinary Logistic Regression
Binary Logistic Regression Main Effects Model Logistic regression will accept quantitative, binary or categorical predictors and will code the latter two in various ways. Here s a simple model including
More informationOrdinal Regression. Chapter
Ordinal Regression Chapter 4 Many variables of interest are ordinal. That is, you can rank the values, but the real distance between categories is unknown. Diseases are graded on scales from least severe
More informationOnline Appendix Assessing the Incidence and Efficiency of a Prominent Place Based Policy
Online Appendix Assessing the Incidence and Efficiency of a Prominent Place Based Policy By MATIAS BUSSO, JESSE GREGORY, AND PATRICK KLINE This document is a Supplemental Online Appendix of Assessing the
More informationWindowsBased MetaAnalysis Software. Package. Version 2.0
1 WindowsBased MetaAnalysis Software Package Version 2.0 The HunterSchmidt MetaAnalysis Programs Package includes six programs that implement all basic types of HunterSchmidt psychometric metaanalysis
More informationIntroduction to Statistical Computing in Microsoft Excel By Hector D. Flores; hflores@rice.edu, and Dr. J.A. Dobelman
Introduction to Statistical Computing in Microsoft Excel By Hector D. Flores; hflores@rice.edu, and Dr. J.A. Dobelman Statistics lab will be mainly focused on applying what you have learned in class with
More informationStatistical Analysis Using SPSS for Windows Getting Started (Ver. 2014/11/6) The numbers of figures in the SPSS_screenshot.pptx are shown in red.
Statistical Analysis Using SPSS for Windows Getting Started (Ver. 2014/11/6) The numbers of figures in the SPSS_screenshot.pptx are shown in red. 1. How to display English messages from IBM SPSS Statistics
More informationAdditional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
More informationGender Effects in the Alaska Juvenile Justice System
Gender Effects in the Alaska Juvenile Justice System Report to the Justice and Statistics Research Association by André Rosay Justice Center University of Alaska Anchorage JC 0306.05 October 2003 Gender
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More information200627  AC  Clinical Trials
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2014 200  FME  School of Mathematics and Statistics 715  EIO  Department of Statistics and Operations Research MASTER'S DEGREE
More informationUnivariate Regression
Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is
More informationStructural Equation Models for Comparing Dependent Means and Proportions. Jason T. Newsom
Structural Equation Models for Comparing Dependent Means and Proportions Jason T. Newsom How to Do a Paired ttest with Structural Equation Modeling Jason T. Newsom Overview Rationale Structural equation
More informationUsing An Ordered Logistic Regression Model with SAS Vartanian: SW 541
Using An Ordered Logistic Regression Model with SAS Vartanian: SW 541 libname in1 >c:\=; Data first; Set in1.extract; A=1; PROC LOGIST OUTEST=DD MAXITER=100 ORDER=DATA; OUTPUT OUT=CC XBETA=XB P=PROB; MODEL
More informationThe Proportional Odds Model for Assessing Rater Agreement with Multiple Modalities
The Proportional Odds Model for Assessing Rater Agreement with Multiple Modalities Elizabeth GarrettMayer, PhD Assistant Professor Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University 1
More informationAnalyzing Intervention Effects: Multilevel & Other Approaches. Simplest Intervention Design. Better Design: Have Pretest
Analyzing Intervention Effects: Multilevel & Other Approaches Joop Hox Methodology & Statistics, Utrecht Simplest Intervention Design R X Y E Random assignment Experimental + Control group Analysis: t
More informationExample: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.
Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation:  Feature vector X,  qualitative response Y, taking values in C
More informationThe CRM for ordinal and multivariate outcomes. Elizabeth GarrettMayer, PhD Emily Van Meter
The CRM for ordinal and multivariate outcomes Elizabeth GarrettMayer, PhD Emily Van Meter Hollings Cancer Center Medical University of South Carolina Outline Part 1: Ordinal toxicity model Part 2: Efficacy
More informationSPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011
SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011 Statistical techniques to be covered Explore relationships among variables Correlation Regression/Multiple regression Logistic regression Factor analysis
More informationIBM SPSS Missing Values 22
IBM SPSS Missing Values 22 Note Before using this information and the product it supports, read the information in Notices on page 23. Product Information This edition applies to version 22, release 0,
More informationStudy Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
More informationindividualdifferences
1 Simple ANalysis Of Variance (ANOVA) Oftentimes we have more than two groups that we want to compare. The purpose of ANOVA is to allow us to compare group means from several independent samples. In general,
More informationGMAC. Executive Education: Predicting Student Success in 22 Executive MBA Programs
GMAC Executive Education: Predicting Student Success in 22 Executive MBA Programs Kara M. Owens GMAC Research Reports RR0702 February 1, 2007 Abstract This study examined common admission requirements
More informationBusiness Analytics. Methods, Models, and Decisions. James R. Evans : University of Cincinnati PEARSON
Business Analytics Methods, Models, and Decisions James R. Evans : University of Cincinnati PEARSON Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London
More informationSimple Random Sampling
Source: Frerichs, R.R. Rapid Surveys (unpublished), 2008. NOT FOR COMMERCIAL DISTRIBUTION 3 Simple Random Sampling 3.1 INTRODUCTION Everyone mentions simple random sampling, but few use this method for
More informationChapter 15 Multiple Choice Questions (The answers are provided after the last question.)
Chapter 15 Multiple Choice Questions (The answers are provided after the last question.) 1. What is the median of the following set of scores? 18, 6, 12, 10, 14? a. 10 b. 14 c. 18 d. 12 2. Approximately
More informationStatistical Models in R
Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 16233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova
More informationImproving the Performance of Data Mining Models with Data Preparation Using SAS Enterprise Miner Ricardo Galante, SAS Institute Brasil, São Paulo, SP
Improving the Performance of Data Mining Models with Data Preparation Using SAS Enterprise Miner Ricardo Galante, SAS Institute Brasil, São Paulo, SP ABSTRACT In data mining modelling, data preparation
More informationBasic Statistical and Modeling Procedures Using SAS
Basic Statistical and Modeling Procedures Using SAS OneSample Tests The statistical procedures illustrated in this handout use two datasets. The first, Pulse, has information collected in a classroom
More informationTips for surviving the analysis of survival data. Philip TwumasiAnkrah, PhD
Tips for surviving the analysis of survival data Philip TwumasiAnkrah, PhD Big picture In medical research and many other areas of research, we often confront continuous, ordinal or dichotomous outcomes
More informationDoes Financial Sophistication Matter in Retirement Preparedness of U.S Households? Evidence from the 2010 Survey of Consumer Finances
Does Financial Sophistication Matter in Retirement Preparedness of U.S Households? Evidence from the 2010 Survey of Consumer Finances Kyoung Tae Kim, The Ohio State University 1 Sherman D. Hanna, The Ohio
More informationCrash Course on Basic Statistics
Crash Course on Basic Statistics Marina Wahl, marina.w4hl@gmail.com University of New York at Stony Brook November 6, 2013 2 Contents 1 Basic Probability 5 1.1 Basic Definitions...........................................
More informationSection Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini
NEW YORK UNIVERSITY ROBERT F. WAGNER GRADUATE SCHOOL OF PUBLIC SERVICE Course Syllabus Spring 2016 Statistical Methods for Public, Nonprofit, and Health Management Section Format Day Begin End Building
More informationII. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
More informationChapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS
Chapter Seven Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS Section : An introduction to multiple regression WHAT IS MULTIPLE REGRESSION? Multiple
More informationT O P I C 1 2 Techniques and tools for data analysis Preview Introduction In chapter 3 of Statistics In A Day different combinations of numbers and types of variables are presented. We go through these
More informationData Analysis in SPSS. February 21, 2004. If you wish to cite the contents of this document, the APA reference for them would be
Data Analysis in SPSS Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 354870348 Heather Claypool Department of Psychology Miami University
More informationCan Annuity Purchase Intentions Be Influenced?
Can Annuity Purchase Intentions Be Influenced? Jodi DiCenzo, CFA, CPA Behavioral Research Associates, LLC Suzanne Shu, Ph.D. UCLA Anderson School of Management Liat Hadar, Ph.D. The Arison School of Business,
More informationLOGISTIC REGRESSION ANALYSIS
LOGISTIC REGRESSION ANALYSIS C. Mitchell Dayton Department of Measurement, Statistics & Evaluation Room 1230D Benjamin Building University of Maryland September 1992 1. Introduction and Model Logistic
More informationData Preparation and Statistical Displays
Reservoir Modeling with GSLIB Data Preparation and Statistical Displays Data Cleaning / Quality Control Statistics as Parameters for Random Function Models Univariate Statistics Histograms and Probability
More informationCalculating VaR. Capital Market Risk Advisors CMRA
Calculating VaR Capital Market Risk Advisors How is VAR Calculated? Sensitivity Estimate Models  use sensitivity factors such as duration to estimate the change in value of the portfolio to changes in
More informationRARITAN VALLEY COMMUNITY COLLEGE ACADEMIC COURSE OUTLINE MATH 111H STATISTICS II HONORS
RARITAN VALLEY COMMUNITY COLLEGE ACADEMIC COURSE OUTLINE MATH 111H STATISTICS II HONORS I. Basic Course Information A. Course Number and Title: MATH 111H Statistics II Honors B. New or Modified Course:
More informationIntegrating Financial Statement Modeling and Sales Forecasting
Integrating Financial Statement Modeling and Sales Forecasting John T. Cuddington, Colorado School of Mines Irina Khindanova, University of Denver ABSTRACT This paper shows how to integrate financial statement
More informationIntroduction to Regression and Data Analysis
Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it
More informationQUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NONPARAMETRIC TESTS
QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NONPARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.
More informationUsing MS Excel to Analyze Data: A Tutorial
Using MS Excel to Analyze Data: A Tutorial Various data analysis tools are available and some of them are free. Because using data to improve assessment and instruction primarily involves descriptive and
More informationOn the Practice of Dichotomization of Quantitative Variables
Psychological Methods Copyright 2002 by the American Psychological Association, Inc. 2002, Vol. 7, No. 1, 19 40 1082989X/02/$5.00 DOI: 10.1037//1082989X.7.1.19 On the Practice of Dichotomization of Quantitative
More informationSample Size Estimation and Power Analysis
yumi Shintani, Ph.D., M.P.H. Sample Size Estimation and Power nalysis March 2008 yumi Shintani, PhD, MPH Department of Biostatistics Vanderbilt University 1 researcher conducted a study comparing the effect
More informationUNDERSTANDING ANALYSIS OF COVARIANCE (ANCOVA)
UNDERSTANDING ANALYSIS OF COVARIANCE () In general, research is conducted for the purpose of explaining the effects of the independent variable on the dependent variable, and the purpose of research design
More informationMORTGAGE LENDER PROTECTION UNDER INSURANCE ARRANGEMENTS Irina Genriha Latvian University, Tel. +371 26387099, email: irina.genriha@inbox.
MORTGAGE LENDER PROTECTION UNDER INSURANCE ARRANGEMENTS Irina Genriha Latvian University, Tel. +371 2638799, email: irina.genriha@inbox.lv Since September 28, when the crisis deepened in the first place
More informationDescription. Textbook. Grading. Objective
EC151.02 Statistics for Business and Economics (MWF 8:008:50) Instructor: Chiu Yu Ko Office: 462D, 21 Campenalla Way Phone: 26093 Email: kocb@bc.edu Office Hours: by appointment Description This course
More informationCHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS
Examples: Regression And Path Analysis CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS Regression analysis with univariate or multivariate dependent variables is a standard procedure for modeling relationships
More informationQuantitative Methods for Finance
Quantitative Methods for Finance Module 1: The Time Value of Money 1 Learning how to interpret interest rates as required rates of return, discount rates, or opportunity costs. 2 Learning how to explain
More informationSample Size Planning, Calculation, and Justification
Sample Size Planning, Calculation, and Justification Theresa A Scott, MS Vanderbilt University Department of Biostatistics theresa.scott@vanderbilt.edu http://biostat.mc.vanderbilt.edu/theresascott Theresa
More informationMultivariate Logistic Regression
1 Multivariate Logistic Regression As in univariate logistic regression, let π(x) represent the probability of an event that depends on p covariates or independent variables. Then, using an inv.logit formulation
More informationChris Slaughter, DrPH. GI Research Conference June 19, 2008
Chris Slaughter, DrPH Assistant Professor, Department of Biostatistics Vanderbilt University School of Medicine GI Research Conference June 19, 2008 Outline 1 2 3 Factors that Impact Power 4 5 6 Conclusions
More informationEARLY VS. LATE ENROLLERS: DOES ENROLLMENT PROCRASTINATION AFFECT ACADEMIC SUCCESS? 200708
EARLY VS. LATE ENROLLERS: DOES ENROLLMENT PROCRASTINATION AFFECT ACADEMIC SUCCESS? 200708 PURPOSE Matthew Wetstein, Alyssa Nguyen & Brianna Hays The purpose of the present study was to identify specific
More informationTwo Correlated Proportions (McNemar Test)
Chapter 50 Two Correlated Proportions (Mcemar Test) Introduction This procedure computes confidence intervals and hypothesis tests for the comparison of the marginal frequencies of two factors (each with
More information
Lee A. Becker. Effect Size (ES) 2000 Lee A. Becker
Lee A. Becker Effect Size (ES) 2000 Lee A. Becker I. Overview II. Effect Size Measures for Two Independent Groups 1. Standardized difference between two groups.
More informationIntroduction to Quantitative Methods
Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................
More informationStatistics Graduate Courses
Statistics Graduate Courses STAT 7002Topics in StatisticsBiological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.
More informationTHE HYBRID CARTLOGIT MODEL IN CLASSIFICATION AND DATA MINING. Dan Steinberg and N. Scott Cardell
THE HYBID CATLOGIT MODEL IN CLASSIFICATION AND DATA MINING Introduction Dan Steinberg and N. Scott Cardell Most datamining projects involve classification problems assigning objects to classes whether
More informationLogistic (RLOGIST) Example #7
Logistic (RLOGIST) Example #7 SUDAAN Statements and Results Illustrated EFFECTS UNITS option EXP option SUBPOPX REFLEVEL Input Data Set(s): SAMADULTED.SAS7bdat Example Using 2006 NHIS data, determine for
More informationDirections for using SPSS
Directions for using SPSS Table of Contents Connecting and Working with Files 1. Accessing SPSS... 2 2. Transferring Files to N:\drive or your computer... 3 3. Importing Data from Another File Format...
More informationSPSS Notes (SPSS version 15.0)
SPSS Notes (SPSS version 15.0) Annie Herbert Salford Royal Hospitals NHS Trust July 2008 Contents Page Getting Started 1 1 Opening SPSS 1 2 Layout of SPSS 2 2.1 Windows 2 2.2 Saving Files 3 3 Creating
More informationCalculating the Probability of Returning a Loan with Binary Probability Models
Calculating the Probability of Returning a Loan with Binary Probability Models Associate Professor PhD Julian VASILEV (email: vasilev@uevarna.bg) Varna University of Economics, Bulgaria ABSTRACT The
More informationMathematics within the Psychology Curriculum
Mathematics within the Psychology Curriculum Statistical Theory and Data Handling Statistical theory and data handling as studied on the GCSE Mathematics syllabus You may have learnt about statistics and
More informationPackage compute.es. February 19, 2015
Type Package Title Compute Effect Sizes Version 0.24 Date 20140916 Author AC Del Re Maintainer AC Del Re Package compute.es February 19, 2015 Description This package contains several
More informationLogistic Regression. http://faculty.chass.ncsu.edu/garson/pa765/logistic.htm#sigtests
Logistic Regression http://faculty.chass.ncsu.edu/garson/pa765/logistic.htm#sigtests Overview Binary (or binomial) logistic regression is a form of regression which is used when the dependent is a dichotomy
More informationEBM Cheat Sheet Measurements Card
EBM Cheat Sheet Measurements Card Basic terms: Prevalence = Number of existing cases of disease at a point in time / Total population. Notes: Numerator includes old and new cases Prevalence is crosssectional
More informationMeasures of Central Tendency and Variability: Summarizing your Data for Others
Measures of Central Tendency and Variability: Summarizing your Data for Others 1 I. Measures of Central Tendency: Allow us to summarize an entire data set with a single value (the midpoint). 1. Mode :
More informationA Hybrid Modeling Platform to meet Basel II Requirements in Banking Jeffery Morrision, SunTrust Bank, Inc.
A Hybrid Modeling Platform to meet Basel II Requirements in Banking Jeffery Morrision, SunTrust Bank, Inc. Introduction: The Basel Capital Accord, ready for implementation in force around 2006, sets out
More informationMissing data in randomized controlled trials (RCTs) can
EVALUATION TECHNICAL ASSISTANCE BRIEF for OAH & ACYF Teenage Pregnancy Prevention Grantees May 2013 Brief 3 Coping with Missing Data in Randomized Controlled Trials Missing data in randomized controlled
More information