Determination of anti-pitch geometry acceleration [1/3]

Size: px
Start display at page:

Download "Determination of anti-pitch geometry acceleration [1/3]"

Transcription

1 Determination of anti-pitch geometry acceleration [1/3] 1 of 39 Similar to anti-squat Opposite direction of D Alembert s forces. Front wheel forces and effective pivot locations

2 Determination of anti-pitch geometry acceleration [2/3] 2 of 39 It follows that the change in the front spring force is: where k f = front suspension stiffness. Similarly for the rear wheels.

3 Determination of anti-pitch geometry Pitch angle acceleration [3/3] 3 of 39 Zero pitch occurs when θ = 0, i.e. when the term in square brackets is zero. anti-squat and anti-pitch performance depends on the following vehicle properties suspension geometry, suspension stiffnesses (front and rear) and Tractive force distribution.

4 4 of 39 Lateral load transfer during cornering Notation and assumptions in the analysis are: G is the sprung mass centre of gravity; The transverse acceleration at G due to cornering is a ; The sprung mass rolls through the angle φ about the roll axis; The centrifugal (inertia) force on the sprung mass m s a acts horizontally through G; The gravity force on the sprung mass m s g acts vertically downwards through G; The inertia forces m uf a and m ur a act directly on the unsprung masses at the front and rear axles. Each transfers load only between its own pair of wheels. Steady-state cornering analysis

5 Load transfer due to the roll moment [1/2] Replace the two forces at G with the same forces at A plus a moment (the roll moment) M s about the roll axis, i.e 5 of 39 Assuming linear relationship between M φ and φ M φ = k s φ k s = total roll stiffness

6 Load transfer due to the roll moment [2/2] 6 of 39 k sf + k sr = k s Load transfer sin two axles are T f and T r are the front and rear track widths of the vehicle

7 Load transfer due to sprung mass The sprung mass is distributed to the roll centers at front and rear axles. inertia force 7 of 39 Centrifugal force distribution is Corresponding load transfers are

8 Load transfer due to the unsprung mass inertia forces 8 of 39 Total load transfer

9 9 of 39 Suspension components Need for compliance between unsprung and sprung mass. Requirements: Good isolation of the body(good ride) Soft response Inconsistent with roll resistance in cornering Roll stiffening using ant-roll bars Spring can hit limits Additional springs as bump stops Prevent high frequency vibration from being transmitted Use rubber bush connections Good road grip (Good handling) Hard response

10 10 of 39 Steel springs Semi-elliptic springs earliest developments in motor vehicle Robust and simple used for heavy applications Hotchkiss type- to provide both vertical compliance and lateral constraint for the wheel travel change in length of the spring produced by bump loading is accommodated by the swinging shackle Leaf spring design

11 11 of 39 Leaf spring analysis Wheel load F W, is vertical. F C is parallel to the shackle Two load member The stiffness (rate) of the spring is determined by the number, length, width and thickness of the leaves Angling of the shackle link used to give a variable rate When the angle θ < 90, the spring rate will increase (i.e. rising rate) with bump loading

12 12 of 39 Coil springs Light and compact form of compliance for weight and packaging constraints Little maintenance and provides Opportunity for co-axial mounting with a damper Variable rate springs produced either by varying the coil diameter and/or pitch of the coils along its length Disadvantages: Low levels of structural damping, there is a possibility of surging (resonance along the length of coils) Spring as a whole does not provide any lateral support for guiding the wheel motion.

13 13 of 39 Torsion bars Very simple form of spring and consequently very cheap The principle of operation is to convert the applied load F W into a torque F W R producing twist in the bar Stiffness related to diameter, length of the torsion bar and the torsion modulus of the material Principle of operation of a torsion bar spring

14 14 of 39 Hydro-pneumatic springs Spring is produced by a constant mass of gas (typically nitrogen) in a variable volume enclosure As the wheel deflects in bump, the piston moves upwards transmitting the motion to the fluid and compressing the gas via the flexible diaphragm The gas pressure increases as its volume decreases to produce a hardening spring characteristic Systems are complex (and expensive) and maintenance Basic diaphragm accumulator spring Principles of a hydro-pneumatic suspension spring

15 15 of 39 Anti-roll bars (stabilizer) Reduce body roll Ends of the U-shaped bar connected to the wheel supports and Central length of bar attached to body of the vehicle Attachment points need to be selected to ensure that bar is subjected to Torsional loading without bending Anti-roll bar layout

16 16 of 39 Anti-roll bars (stabilizer) Conditions: One wheels is lifted relative to the other, half the total anti-roll stiffness acts downwards on the wheel and the reaction on the vehicle body tends to resist body roll. If both wheels lift by the same amount the bar is not twisted and there is no transfer of load to the vehicle body. If the displacements of the wheels are mutually opposed (one wheel up and the other down by the same amount), the full effect of the anti-roll stiffness is produced. Total roll stiffness k rs is equal to the sum of the roll-stiffness produced by the suspension springs k r, sus and the roll stiffness of the anti-roll bars k r,ar, Roll bar contribution to total roll stiffness

17 17 of 39 Dampers types and characteristics Frequently called shock absorbers Main energy dissipators in a vehicle suspension Two types: dual tube, Mono tube. In mono tube Surplus fluid accommodated by gas pressurized free piston Damper types, (a) dual tube damper, (b) free-piston monotube damper

18 18 of 39 Dampers types and characteristics In dealing with road surface undulations in the bump direction (damper being compressed) relatively low levels of damping are required compared with the rebound motion (damper being extended) These requirements lead to damper characteristics which are asymmetrical when plotted on forcevelocity axes Ratios of 3:1 Damper characteristics

19 19 of 39 Dampers types and characteristics Damper designs are achieved by a combination of orifice flow and flows through spring-loaded one-way valves At low speeds orifices are effective At higher pressure valves open up lot of scope for shaping and fine tuning of damper characteristics Shaping of damper characteristics Typical curves for a three position (electronically) adjustable damper

20 Road surface roughness and vehicle excitation 20 of 39 Road surfaces have random profiles -> nondeterministic. Methods based on the Fourier transform Power spectral density S(n) of the height variations as a function of the spatial frequency n κ = the roughness coefficient

21 Road surface roughness and vehicle excitation 21 of 39 Substituting The variation of S( f ) for a vehicle traversing a poor minor road at 20 m/s is shown

22 Human response to whole body vibration 22 of 39 Human body complex assemblage of linear and nonlinear elements Range of body resonances - 1 to 900 Hz For a seated human 1 2 Hz (head neck) 4 8 Hz (thorax abdomen) Perception of vibration motions diminishes above 25 Hz and emerges as audible sound. Dual perception (vibration and sound) up to several hundred Hz is related to the term harshness

23 Human response to whole body vibration Motion sickness (kinetosis) low frequency, normally in ships ISO 2631 (ISO, 1978) and the equivalent British Standard BS 6841 (BSI, 1987) whole-body vibration from a supporting surface to either the feet of a standing person or the buttocks of a seated person The criteria are specified in terms of Direction of vibration input to the human torso Acceleration magnitude Frequency of excitation Exposure duration 23 of 39

24 Human response to whole body vibration 24 of 39 Most sensitive frequency range for vertical vibration is from 4 8 Hz corresponding to the thorax abdomen resonance most sensitive range for transverse vibration is from 1 to 2 Hz corresponding to head neck resonance ISO 2631 discomfort boundaries 0.1 to 0.63 Hz for motion sickness. most sensitive range is from 0.1 to Hz RCB Reduced Comfort Boundary Whole-body RCB vibration criteria, (a) RCB for vertical (z-axis) vibration (b) RCB for lateral (x and y axis vibration)

25 Analysis of vehicle response to road excitation 25 of 39 Most comprehensive of these has seven degrees of freedom Three degrees of freedom for the vehicle body (pitch, bounce and roll) Vertical degree of freedom at each of the four unsprung masses. This model allows the pitch, bounce and roll The suspension stiffness and damping rates are derived from the individual spring and damping units Full vehicle model

26 Analysis of vehicle response to road excitation 26 of 39 Much useful information can be derived from simpler vehicle models. The two most often used for passenger cars are the halfvehicle model and the quarter vehicle model. These have four and two degrees of freedom respectively. Reduced number of degrees of freedom In the case of the half vehicle model, roll information is lost and for the quarter vehicle model pitch information is also lost Half and quarter vehicle models, (a) half vehicle model, (b) quarter vehicle model

27 27 of 39 Response to road excitation Pitch and bounce characteristics Equivalent stiffness is calculated as Generalized co-ordinates are z and θ Notation for pitch bounce analysis

28 28 of 39 Response to road excitation Equations simplify as If B=0 the equations are uncoupled On a bump only pitching occurs not desired n, bounce n, pitch C A

29 29 of 39 Response to road excitation Roots of the equation are Distance of O 1 & O 2 (Oscillation centres)from G

30 30 of 39 Response to road excitation If inertia coupling ratio is O 1 and O 2 are at suspension centers it becomes a 2 DOF (2 mass) system (0.8 for sports cars,1.2 for some If w nf < wfront nr, T nf > T nr drive and on a cars) bump No coupling of front and rear suspensions Two equivalent masses one gets a feeling of in phase motion and minimal pitching better ride <

31 31 of 39 Suspension performance analysis Quarter car model Frequency ranges Low - 1 to 2 Hz resonance of sprung mass High Hz resonance of un-sprung or wheel hop Suspension designer has selection of characteristics and parameter values for suspension springs and dampers to achieve the desired suspension performance

32 32 of 39 Suspension performance analysis Lowest transmissibility (best ride) is produced with the softest suspension good road holding requires a hard suspension low transmissibility at the wheel-hop frequency and in the mid-frequency range between the two resonances r s = k t /k s (b) Road holding (a) ride Effect of suspension stiffness on sprung and unsprung mass transmissibilities, (a) sprung mass transmissibility, (b) unsprung mass transmissibility

33 33 of 39 Effect of Suspension Damping sprung and unsprung mass transmissibilities, (a) sprung mass transmissibility, (b) unsprung mass transmissibility Control of the sprung mass resonance requires high levels of damping, but results in poor isolation in the mid-frequency Wheel-hop resonance also requires high levels of damping for its control, but with the same penalties in the mid-frequency range 0.3 used for passenger cars

34 34 of 39 Refined non-linear analysis suspension spring and damper non-linearities, random road excitation assessment of ride, tyre force fluctuation and clearance space limitations highly non-linear analysis Requires simulations in the time domain ISO weighted acceleration response of the sprung mass denoted by the Discomfort Parameter D is evaluated ISO weighting characteristic for vertical vehicle body acceleration

35 37 of 39 Controllable suspensions Hydraulic Control Speed of response, bandwidth, up to 60 Hz high Actuator is driven by an on-board pump controlled by signals derived from transducers fitted to the sprung and unsprung masses. Signals are processed in a controller according to some control law to produce a controlled force at the actuator With practical limitations taken into account, ride can be improved by 20 30% for the same wheel travel and dynamic tire load when compared with a passive suspension Fully active suspension

36 38 of 39 Slow active controlled suspensions Low bandwidth (up to approximately 6 Hz). The aim of this form of suspension is to control the body mode to improve ride. Above its upper frequency limit it reverts to a conventional passive system which cannot be bettered for control of the wheel-hop mode. Such systems require much less power than the fully active system, with simpler forms of actuation. The potential performance gains are less than those for a fully active systems, but the viability is much improved. Slow active suspension

37 39 of 39 Another Controllable suspension Passive damper is replaced with a controllable one. Designed to produce a controlled force when called upon to dissipate energy and then switches to a notional zero damping state when called upon to supply energy. Performance potential of this suspension closely approaches that of a fully active system under certain conditions, but the hardware and operational costs of this type of suspension are considerably less Performance is impaired by changes in payload which alter the suspension working space : overcome by combining the controllable damper with some form of self-leveling system Semi-active suspension

Suspension and Steering Systems Operation. The Steering/Suspension System (Overview)

Suspension and Steering Systems Operation. The Steering/Suspension System (Overview) Suspension and Steering Systems Operation Below is an overview of the suspension and steering systems The Steering/Suspension System (Overview) "Suspension," when discussing cars, refers to the use of

More information

UNIT 1 INTRODUCTION TO AUTOMOBILE ENGINEERING

UNIT 1 INTRODUCTION TO AUTOMOBILE ENGINEERING UNIT 1 INTRODUCTION TO AUTOMOBILE ENGINEERING Introduction to Automobile Engineering Structure 1.1 Introduction Objectives 1.2 Definition 1.3 Classification of Vehicles 1.4 Layout of an Automobile Chassis

More information

Equivalent Spring Stiffness

Equivalent Spring Stiffness Module 7 : Free Undamped Vibration of Single Degree of Freedom Systems; Determination of Natural Frequency ; Equivalent Inertia and Stiffness; Energy Method; Phase Plane Representation. Lecture 13 : Equivalent

More information

SUSPENSION AND STEERING OVERVIEW

SUSPENSION AND STEERING OVERVIEW SUSPENSION SUSPENSION AND STEERING OVERVIEW The S40/V50 has a wide track and a long wheelbase for its relative size and weight. This gives the car stable and predictable driving characteristics. It also

More information

VariShock Adjustment and Tuning Guide - QuickSet 2

VariShock Adjustment and Tuning Guide - QuickSet 2 VariShock Adjustment and Tuning Guide - QuickSet 2 This guide covers adjustment features and tuning procedures for VariShock QuickSet 2, double-adjustable, shock absorbers. The information contained has

More information

Engineering Feasibility Study: Vehicle Shock Absorption System

Engineering Feasibility Study: Vehicle Shock Absorption System Engineering Feasibility Study: Vehicle Shock Absorption System Neil R. Kennedy AME40463 Senior Design February 28, 2008 1 Abstract The purpose of this study is to explore the possibilities for the springs

More information

rarecorvettes.com, joe@rarecorvettes.com, (831) 475-4442 Pacific Time Zone

rarecorvettes.com, joe@rarecorvettes.com, (831) 475-4442 Pacific Time Zone INTRODUCTION TO WHEEL ALIGNMENT A SHORT COURSE ON WHEEL ALIGNMENT, FRONT AND REAR PREPARED FOR THE N.C.R.S. NATIONAL CONVENTION JUNE 29 TO JULY 5, 2012 by: JOE CALCAGNO, RARE CORVETTES rarecorvettes.com,

More information

Slide 10.1. Basic system Models

Slide 10.1. Basic system Models Slide 10.1 Basic system Models Objectives: Devise Models from basic building blocks of mechanical, electrical, fluid and thermal systems Recognize analogies between mechanical, electrical, fluid and thermal

More information

Longitudinal and lateral dynamics

Longitudinal and lateral dynamics Longitudinal and lateral dynamics Lecturer dr. Arunas Tautkus Kaunas University of technology Powering the Future With Zero Emission and Human Powered Vehicles Terrassa 2011 1 Content of lecture Basic

More information

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the 11 FORCED OSCILLATIONS AND RESONANCE POINTER INSTRUMENTS Analogue ammeter and voltmeters, have CRITICAL DAMPING so as to allow the needle pointer to reach its correct position on the scale after a single

More information

Chapter 5 Shock Absorber Design

Chapter 5 Shock Absorber Design Chapter 5 Shock Absorber Design 5.1. Introduction The basic function of the shock absorber is to absorb and dissipate the impact kinetic energy to the extent that accelerations imposed upon the airframe

More information

Acceleration levels of dropped objects

Acceleration levels of dropped objects Acceleration levels of dropped objects cmyk Acceleration levels of dropped objects Introduction his paper is intended to provide an overview of drop shock testing, which is defined as the acceleration

More information

Clutch and Operation as a System

Clutch and Operation as a System Clutch and Operation as a System Dipl.-Ing. Matthias Zink Dipl.-Ing. René Shead Introduction New technologies and increasing demands for comfort, require increased total system thinking, also in the area

More information

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military

More information

3. X-REAS (Relative Absorber System)

3. X-REAS (Relative Absorber System) CH-57 3. X-REAS (Relative Absorber System) General The oil passages of the front and rear shock absorbers of the X-REAS are connected diagonally, with a center control absorber interposed. This ensures

More information

Parameter identification of a linear single track vehicle model

Parameter identification of a linear single track vehicle model Parameter identification of a linear single track vehicle model Edouard Davin D&C 2011.004 Traineeship report Coach: dr. Ir. I.J.M. Besselink Supervisors: prof. dr. H. Nijmeijer Eindhoven University of

More information

Selecting and Sizing Ball Screw Drives

Selecting and Sizing Ball Screw Drives Selecting and Sizing Ball Screw Drives Jeff G. Johnson, Product Engineer Thomson Industries, Inc. Wood Dale, IL 540-633-3549 www.thomsonlinear.com Thomson@thomsonlinear.com Fig 1: Ball screw drive is a

More information

Unit - 6 Vibrations of Two Degree of Freedom Systems

Unit - 6 Vibrations of Two Degree of Freedom Systems Unit - 6 Vibrations of Two Degree of Freedom Systems Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Introduction A two

More information

Cane Creek Double Barrel Instructions

Cane Creek Double Barrel Instructions Cane Creek Double Barrel Instructions Congratulations on your purchase of the Cane Creek Double Barrel (CCDB) rear shock. Developed in partnership with Öhlins Racing, the Double Barrel brings revolutionary

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

Modeling and Simulation of Heavy Truck with MWorks

Modeling and Simulation of Heavy Truck with MWorks Modeling and Simulation of Heavy Truck with MWorks Ying Sun, Wei Chen, Yunqing Zhang, Liping Chen CAD Center, Huazhong University of Science and Technology, China zhangyq@hust.edu.cn Abstract This paper

More information

Suspensions AUTOMOTIVE COMFORT AND CONTROL

Suspensions AUTOMOTIVE COMFORT AND CONTROL 1 Suspensions AUTOMOTIVE COMFORT AND CONTROL In this study unit, you ll learn about common automotive suspension systems, the components that make up these systems, and how the systems and components are

More information

STATIC STRUCTURAL ANALYSIS OF SUSPENSION ARM USING FINITE ELEMENT METHOD

STATIC STRUCTURAL ANALYSIS OF SUSPENSION ARM USING FINITE ELEMENT METHOD STATIC STRUCTURAL ANALYSIS OF SUSPENSION ARM USING FINITE ELEMENT METHOD Jagwinder Singh 1, Siddhartha Saha 2 1 Student, Mechanical Engineering, BBSBEC, Punjab, India 2 Assistant Professor, Mechanical

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is:

4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is: 4 SENSORS The modern technical world demands the availability of sensors to measure and convert a variety of physical quantities into electrical signals. These signals can then be fed into data processing

More information

Motorcycle accident reconstruction in VL Motion

Motorcycle accident reconstruction in VL Motion Motorcycle accident reconstruction in VL Motion Presenter Nicola Cofelice ESR 14 AGENDA 1 Motorcycle accident reconstruction - Overview 2 Research progress 3 What s next? copyright LMS International -

More information

There are four types of friction, they are 1).Static friction 2) Dynamic friction 3) Sliding friction 4) Rolling friction

There are four types of friction, they are 1).Static friction 2) Dynamic friction 3) Sliding friction 4) Rolling friction 2.3 RICTION The property by virtue of which a resisting force is created between two rough bodies that resists the sliding of one body over the other is known as friction. The force that always opposes

More information

Dynamic Analysis of the Dortmund University Campus Sky Train

Dynamic Analysis of the Dortmund University Campus Sky Train Dynamic Analysis of the Dortmund University Campus Sky Train Reinhold Meisinger Mechanical Engineering Department Nuremberg University of Applied Sciences Kesslerplatz 12, 90121 Nuremberg, Germany Abstract

More information

ACTIVE PARTNER OF CUSTOMERS

ACTIVE PARTNER OF CUSTOMERS ACTIVE PARTNER OF CUSTOMERS Destek develops and manufactures gas springs, dampers and position adjustment products for everything that needs to be lifted, lowered, moved, slowed down, controlled and set

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

More information

Sound absorption and acoustic surface impedance

Sound absorption and acoustic surface impedance Sound absorption and acoustic surface impedance CHRISTER HEED SD2165 Stockholm October 2008 Marcus Wallenberg Laboratoriet för Ljud- och Vibrationsforskning Sound absorption and acoustic surface impedance

More information

BNAM 2008 BERGEN BYBANE NOISE REDUCTION BY TRACK DESIGN. Reykjavik, august 2008. Arild Brekke, Brekke & Strand akustikk as, Norway

BNAM 2008 BERGEN BYBANE NOISE REDUCTION BY TRACK DESIGN. Reykjavik, august 2008. Arild Brekke, Brekke & Strand akustikk as, Norway BNAM 08 BERGEN BYBANE NOISE REDUCTION BY TRACK DESIGN Dr.ing Arild Brekke Brekke & Strand akustikk as Box 1024 Skøyen 0218 Oslo Email: arild.brekke@bs-akustikk.no Introduction BNAM 08 A city line now is

More information

FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

More information

Street-Lynx. Reilly MotorSports, Inc. Installation Manual

Street-Lynx. Reilly MotorSports, Inc. Installation Manual Street-Lynx By Reilly MotorSports, Inc. Installation Manual 1 1- Begin by removing your original rear suspension disconnect your brake lines, E-brake cables, and remove the driveshaft. To prevent fire

More information

Chapter 3. Track and Wheel Load Testing

Chapter 3. Track and Wheel Load Testing Chapter 3 Track and Wheel Load Testing This chapter describes the track, truck, and testing equipment that were used by the Transportation Technology Center, Inc. (TTCI) for collecting the data that was

More information

w o r k o G f E A x - p r S i t n c e Elegance and Strength BBR HiAm CONA Strand Stay Cable Damping Systems

w o r k o G f E A x - p r S i t n c e Elegance and Strength BBR HiAm CONA Strand Stay Cable Damping Systems e o b a l N e t w o r k l o G f E A x - p r S i t n c e 1 9 4 4 - s Elegance and Strength BBR HiAm CONA Strand Stay Cable Damping Systems 1 Cable vibration and damping Despite the wide use of cable-stayed

More information

ANALYTICAL METHODS FOR ENGINEERS

ANALYTICAL METHODS FOR ENGINEERS UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

More information

DT024 YEAR 4 GROUP ASSIGNMENT TUNING OF A VIBRATION ABSORBER FOR A SDOF SYSTEM. Table of Contents. 1 Introduction.. 2. 2 Damping in Structures...

DT024 YEAR 4 GROUP ASSIGNMENT TUNING OF A VIBRATION ABSORBER FOR A SDOF SYSTEM. Table of Contents. 1 Introduction.. 2. 2 Damping in Structures... ! DT024 YEAR 4 GROUP ASSIGNMENT TUNING OF A VIBRATION ABSORBER FOR A SDOF SYSTEM Table of Contents Section Page 1 Introduction.. 2 2 Damping in Structures... 3 3 Background Theory 11 4 Theoretical Modelling

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility

Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility Renuka V. S. & Abraham T Mathew Electrical Engineering Department, NIT Calicut E-mail : renuka_mee@nitc.ac.in,

More information

Alternative Linear Motion Systems. Iron Core Linear Motors

Alternative Linear Motion Systems. Iron Core Linear Motors Alternative Linear Motion Systems ME EN 7960 Precision Machine Design Topic 5 ME EN 7960 Precision Machine Design Alternative Linear Motion Systems 5-1 Iron Core Linear Motors Provide actuation forces

More information

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin

More information

PERPLEXING VARIABLE FREQUENCY DRIVE VIBRATION PROBLEMS. Brian Howes 1

PERPLEXING VARIABLE FREQUENCY DRIVE VIBRATION PROBLEMS. Brian Howes 1 PERPLEXING VARIABLE FREQUENCY DRIVE VIBRATION PROBLEMS Brian Howes 1 1 Beta Machinery Analysis Ltd., Calgary, AB, Canada, T3C 0J7 ABSTRACT Several unusual vibration problems have been seen recently that

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Chapter 4 DEFENSIVE DRIVING

Chapter 4 DEFENSIVE DRIVING Chapter 4 DEFENSIVE DRIVING Chapter 4 Table of Contents Chapter 4 DEFENSIVE DRIVING... 4-1 DEFENSIVE DRIVING... 4-3 Positioning The Bus... 4-3 When Making a Turn at an Intersection... 4-3 Making the perfect

More information

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved.

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved. Section 5. : Horn Physics Section 5. : Horn Physics By Martin J. King, 6/29/8 Copyright 28 by Martin J. King. All Rights Reserved. Before discussing the design of a horn loaded loudspeaker system, it is

More information

Front Height Adjustable Leveling Shocks

Front Height Adjustable Leveling Shocks Front Height Adjustable Leveling Shocks Before 5100 Series Leveling Shocks Installed After 5100 Series Leveling Shocks Installed Simple Facts: Why Bilstein 5100 Series Leveling Shocks are far superior

More information

Section A. GENERAL INFORMATION

Section A. GENERAL INFORMATION Section A. GENERAL INFORMATION I. Description The information and instructions for attaching the sidecar to the right-hand side of the motorcycle are contained in this handbook and must be carefully observed.

More information

Mine & IED Roller Solutions Route Clearance, Anti-Tank, Dismounted, Area Clearance

Mine & IED Roller Solutions Route Clearance, Anti-Tank, Dismounted, Area Clearance Mine & IED Roller Solutions Route Clearance, Anti-Tank, Dismounted, Area Clearance Mine & IED Rollers RCR-A Route Clearance Roller Advanced RCR-B Route Clearance Roller Basic Dismounted Protection Roller

More information

The use of Operating Deflection Shapes (ODS) to model the vibration of sanders and polishers HSL/2006/104. Project Leader: Author(s): Science Group:

The use of Operating Deflection Shapes (ODS) to model the vibration of sanders and polishers HSL/2006/104. Project Leader: Author(s): Science Group: Harpur Hill, Buxton Derbyshire, SK17 9JN T: +44 (0)1298 218000 F: +44 (0)1298 218590 W: www.hsl.gov.uk The use of Operating Deflection Shapes (ODS) to model the vibration of sanders and polishers HSL/2006/104

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

MEMS mirror for low cost laser scanners. Ulrich Hofmann

MEMS mirror for low cost laser scanners. Ulrich Hofmann MEMS mirror for low cost laser scanners Ulrich Hofmann Outline Introduction Optical concept of the LIDAR laser scanner MEMS mirror requirements MEMS mirror concept, simulation and design fabrication process

More information

Abaqus Technology Brief. Automobile Roof Crush Analysis with Abaqus

Abaqus Technology Brief. Automobile Roof Crush Analysis with Abaqus Abaqus Technology Brief Automobile Roof Crush Analysis with Abaqus TB-06-RCA-1 Revised: April 2007. Summary The National Highway Traffic Safety Administration (NHTSA) mandates the use of certain test procedures

More information

LINEAR MOTOR CONTROL IN ACTIVE SUSPENSION SYSTEMS

LINEAR MOTOR CONTROL IN ACTIVE SUSPENSION SYSTEMS LINEAR MOTOR CONTROL IN ACTIVE SUSPENSION SYSTEMS HONCŮ JAROSLAV, HYNIOVÁ KATEŘINA, STŘÍBRSKÝ ANTONÍN Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University Karlovo

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

OPTIMIZATION OF VEHICLE SUSPENSION SYSTEM USING GENETIC ALGORITHM

OPTIMIZATION OF VEHICLE SUSPENSION SYSTEM USING GENETIC ALGORITHM INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

High speed train vehicle dynamics. challenges and opportunities

High speed train vehicle dynamics. challenges and opportunities High speed train vehicle dynamics challenges and opportunities NSJT 2012 Rickard Persson On the agenda The vehicle The organization in a vehicle dynamics point of view Opportunity: Influence the track

More information

Research on Vehicle Dynamics Simulation for Driving Simulator Fang Tang a, Yanding Wei b, Xiaojun Zhou c, Zhuhui Luo d, Mingxiang Xie e, Peixin Li f

Research on Vehicle Dynamics Simulation for Driving Simulator Fang Tang a, Yanding Wei b, Xiaojun Zhou c, Zhuhui Luo d, Mingxiang Xie e, Peixin Li f Advanced Materials Research Vols. 308-310 (2011) pp 1946-1950 Online available since 2011/Aug/16 at www.scientific.net (2011) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.308-310.1946

More information

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

More information

THE SECRET OF FREE ENERGY FROM THE PENDULUM

THE SECRET OF FREE ENERGY FROM THE PENDULUM THE SECRET OF FREE ENERGY FROM THE PENDULUM Jovan Marjanovic M.Sc. in Electrical Engineering e-mail: jmarjanovic@hotmail.com Veljko Milkovic Research & Development Center VEMIRC May 05, 2011, Novi Sad,

More information

Modeling Mechanical Systems

Modeling Mechanical Systems chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

A descriptive definition of valve actuators

A descriptive definition of valve actuators A descriptive definition of valve actuators Abstract A valve actuator is any device that utilizes a source of power to operate a valve. This source of power can be a human being working a manual gearbox

More information

Chassis* design. *pronounced: chas e singular chas e z plural

Chassis* design. *pronounced: chas e singular chas e z plural Automotive design Chassis* design *pronounced: chas e singular chas e z plural Introduction Loads due to normal running conditions: Vehicle transverse on uneven ground. Manoeuver performed by driver. Five

More information

COUNTERBALANCE VALVES

COUNTERBALANCE VALVES COUNTERBALANCE VALVES Introduction They are modulating valves which allow free flow into the actuator and then block the reverse flow until they feel a pilot pressure inversely proportional to the load

More information

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for:

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for: HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR VIBRATION CONTROL OF STRUCTURES

DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR VIBRATION CONTROL OF STRUCTURES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2243 DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR

More information

Material taken from Fluid Power Circuits and Controls, John S. Cundiff, 2001

Material taken from Fluid Power Circuits and Controls, John S. Cundiff, 2001 Pressure Control Chapter 3 Material taken from Fluid Power Circuits and Controls, John S. Cundiff, 2001 Introduction Pressure control is a key element in the design of any circuit. Used correctly, it can

More information

Prepared by Graham from SuperPro August 2011

Prepared by Graham from SuperPro August 2011 Understanding di Steering and Wheel Alignment Angles Prepared by Graham from SuperPro August 2011 Remember:- Tyre Wear Patterns Tell The Technician A Story Provide Vital Information For Determining Final

More information

Practice Exam Three Solutions

Practice Exam Three Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

More information

MANITOU SWINGER REAR SHOCK OWNER S MANUAL P/N 042105

MANITOU SWINGER REAR SHOCK OWNER S MANUAL P/N 042105 MANITOU SWINGER REAR SHOCK OWNER S MANUAL P/N 042105 MANITOU SWINGER REAR SHOCK This Manitou Swinger SPV (Stable Platform Valve) shock is fully assembled and ready to be installed onto your bicycle. Special

More information

WINDER SYSTEMS GE Industrial Control Systems

WINDER SYSTEMS GE Industrial Control Systems WINDER SYSTEMS Systems Concepts Terminology GE Industrial Control Systems APPLICATION TECHNIQUES With a smooth metal surface material, a paper liner is sometimes wound with a coil. The paper is lightweight

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

LECTURE 28 to 29 ACCUMULATORS FREQUENTLY ASKED QUESTIONS

LECTURE 28 to 29 ACCUMULATORS FREQUENTLY ASKED QUESTIONS LECTURE 28 to 29 ACCUMULATORS FREQUENTLY ASKED QUESTIONS 1. Define an accumulator and explain its function A hydraulic accumulator is a device that stores the potential energy of an incompressible fluid

More information

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

More information

In-situ Load Testing to Evaluate New Repair Techniques

In-situ Load Testing to Evaluate New Repair Techniques In-situ Load Testing to Evaluate New Repair Techniques W.J. Gold 1 and A. Nanni 2 1 Assistant Research Engineer, Univ. of Missouri Rolla, Dept. of Civil Engineering 2 V&M Jones Professor, Univ. of Missouri

More information

LABORATORY TESTS OF ACTIVE SUSPENSION SYSTEM

LABORATORY TESTS OF ACTIVE SUSPENSION SYSTEM Journal of KONES Powertrain and Transport, Vol. 18, No. 1 2011 LABORATORY TESTS OF ACTIVE SUSPENSION SYSTEM Jaros aw Konieczny AGH University of Science and Technology, Department of Process Control Mickiewicz

More information

Motor Selection and Sizing

Motor Selection and Sizing Motor Selection and Sizing Motor Selection With each application, the drive system requirements greatly vary. In order to accommodate this variety of needs, Aerotech offers five types of motors. Motors

More information

Chapter 17: Springs. Fundamentals of Machine Elements, 3 rd ed. Schmid, Hamrock and Jacobson. 2014 CRC Press

Chapter 17: Springs. Fundamentals of Machine Elements, 3 rd ed. Schmid, Hamrock and Jacobson. 2014 CRC Press Chapter 17: Springs It must be confessed that the inventors of the mechanical arts have been much more useful to men than the inventors of syllogisms. Voltaire A collection of helical compression springs.

More information

Section 2.0 : Construction and Measurement of a Simple Test Transmission Line

Section 2.0 : Construction and Measurement of a Simple Test Transmission Line Section 2.0 : Construction and Measurement of a Simple Test Transmission Line After deciding to use a Focal 8V 4412 mid-bass driver for my first transmission line design, I started looking for a simple

More information

The Effects of Wheelbase and Track on Vehicle Dynamics. Automotive vehicles move by delivering rotational forces from the engine to

The Effects of Wheelbase and Track on Vehicle Dynamics. Automotive vehicles move by delivering rotational forces from the engine to The Effects of Wheelbase and Track on Vehicle Dynamics Automotive vehicles move by delivering rotational forces from the engine to wheels. The wheels push in the opposite direction of the motion of the

More information

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite 4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The

More information

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity. 1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

INTERACTION BETWEEN MOVING VEHICLES AND RAILWAY TRACK AT HIGH SPEED

INTERACTION BETWEEN MOVING VEHICLES AND RAILWAY TRACK AT HIGH SPEED INTERACTION BETWEEN MOVING VEHICLES AND RAILWAY TRACK AT HIGH SPEED Prof.Dr.Ir. C. Esveld Professor of Railway Engineering TU Delft, The Netherlands Dr.Ir. A.W.M. Kok Associate Professor of Railway Engineering

More information

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation. Prof. Dr. Hani Hagras

CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation. Prof. Dr. Hani Hagras 1 CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation Prof. Dr. Hani Hagras Robot Locomotion Robots might want to move in water, in the air, on land, in space.. 2 Most of the

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

Subminiature Load Cell Model 8417

Subminiature Load Cell Model 8417 w Technical Product Information Subminiature Load Cell 1. Introduction... 2 2. Preparing for use... 2 2.1 Unpacking... 2 2.2 Using the instrument for the first time... 2 2.3 Grounding and potential connection...

More information

DYNAMIC RESPONSE OF VEHICLE-TRACK COUPLING SYSTEM WITH AN INSULATED RAIL JOINT

DYNAMIC RESPONSE OF VEHICLE-TRACK COUPLING SYSTEM WITH AN INSULATED RAIL JOINT 11 th International Conference on Vibration Problems Z. Dimitrovová et al. (eds.) Lisbon, Portugal, 9-12 September 2013 DYNAMIC RESPONSE OF VEHICLE-TRACK COUPLING SYSTEM WITH AN INSULATED RAIL JOINT Ilaria

More information

WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

More information

Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection

Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection w Technical Product Information Precision Miniature Load Cell with Overload Protection 1. Introduction The load cells in the model 8431 and 8432 series are primarily designed for the measurement of force

More information

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

More information

ACTIVE SAFETY OF TRUCKS AND ROAD TRAINS WITH WIDE BASE SINGLE TYRES INSTEAD OF TWIN TYRES

ACTIVE SAFETY OF TRUCKS AND ROAD TRAINS WITH WIDE BASE SINGLE TYRES INSTEAD OF TWIN TYRES ACTIVE SAFETY OF TRUCKS AND ROAD TRAINS WITH WIDE BASE SINGLE TYRES INSTEAD OF TWIN TYRES Dr.-Ing. Klaus-Peter Glaeser Federal Highway Research Institute, BASt Germany Paper No. 497 1 ABSTRACT The development

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information