How To Solve A Sequential Mca Problem

Size: px
Start display at page:

Download "How To Solve A Sequential Mca Problem"

Transcription

1 Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 6 Sequential Monte Carlo methods II February 3, 2012

2 Changes in HA1 Problem 4(c) in HA1 has been modified: You do NOT have to provide any confidence interval for the variance V(P (V 1 ) + P (V 2 )) and the standard deviation D(P (V 1 ) + P (V 2 )). Provide only point estimates of these quantities.

3 Plan of today s lecture 1 Last time: Sequential MC problems 2

4 We are here 1 Last time: Sequential MC problems 2

5 Last time: Sequential MC problems In the sequential MC framework, we aim at sequentially estimating sequences (τ n ) n 0 of expectations τ n = E fn (φ(x 0:n )) = φ(x 0:n )f n (x 0:n ) dx 0:n ( ) X n over spaces X n of increasing dimension, where the densities (f n ) are known up to normalizing constants only, i.e., for every n 0, where c n is an unknown constant. f n (x 0:n ) = z n(x 0:n ) c n,

6 Last time: Markov chains Some applications involved the notion of Markov chains: A Markov chain on X R d is a family of random variables (= stochastic process) (X k ) k 0 taking values in X such that P(X k+1 A X 0, X 1,..., X k ) = P(X k+1 A X k ). The density q of the distribution of X k+1 given X k = x is called the transition density of (X k ). Consequently, P(X k+1 A X k = x k ) = q(x k+1 x k ) dx k+1. As a first example we considered an AR(1) process: X 0 = 0, X k+1 = αx k + ɛ k+1, where α is a constant and (ɛ k ) are i.i.d. variables. A

7 Last time: Markov chains (cont.) The following theorem provides the joint density f n (x 0, x 1,..., x n ) of X 0, X 1,..., X n. Theorem Let (X k ) be Markov with X 0 χ. Then for n > 0, n 1 f n (x 0, x 1,..., x n ) = χ(x 0 ) q(x k+1 x k ). k=0 Corollary (The Chapman-Kolmogorov equation) Let (X k ) be Markov. Then for n > 1, f n (x n x 0 ) = ( n 1 k=0 q(x k+1 x k ) ) dx 1 dx n 1.

8 Last time: Rare event analysis (REA) for Markov chains Let (X k ) be a Markov chain. Assume that we want to compute, for n = 0, 1, 2,... τ n = E(φ(X 0:n ) X 0:n A) = = A A f n (x 0:n ) φ(x 0:n ) P(X 0:n A) dx 0:n φ(x 0:n ) χ(x 0) n 1 k=0 q(x k+1 x k ) dx 0:n, P(X 0:n A) where A is a possibly rare event and P(X 0:n A) is generally unknown. We thus face a sequential MC problem ( ) with { z n (x 0:n ) χ(x 0 ) n 1 k=0 q(x k+1 x k ), c n P(X 0:n A).

9 Last time: Estimation in general HMMs Graphically: Y k 1 Y k Y k+1 (Observations)... X k 1 X k X k+1... (Markov chain) Y k X k = x k g(y k x k ) X k+1 X k = x k q(x k+1 x k ) X 0 χ(x 0 ) (Observation density) (Transition density) (Initial distribution)

10 Last time: Estimation in general HMMs In an HMM, the smoothing distribution f n (x 0:n y 0:n ) is the conditional distribution of a set X 0:n of hidden states given Y 0:n = y 0:n. Theorem (Smoothing distribution) where f n (x 0:n y 0:n ) = χ(x 0)g(y 0 x 0 ) n k=1 g(y k x k )q(x k x k 1 ), L n (y 0:n ) L n (y 0:n ) = density of the observations y 0:n n = χ(x 0 )g(y 0 x 0 ) g(y k x k )q(x k x k 1 ) dx 0 dx n. k=1

11 Last time: Estimation in general HMMs Assume that we want to compute, online for n = 0, 1, 2,... τ n = E(φ(X 0:n ) Y 0:n = y 0:n ) = φ(x 0:n )f n (x 0:n y 0:n ) dx 0 dx n = φ(x 0:n ) χ(x 0)g(y 0 x 0 ) n k=1 g(y k x k )q(x k x k 1 ) dx 0 dx n, L n (y 0:n ) where L n (y 0:n ) (= obscene integral) is generally unknown. We thus face a sequential MC problem ( ) with { z n (x 0:n ) χ(x 0 )g(y 0 x 0 ) n k=1 g(y k x k )q(x k x k 1 ), c n L n (y 0:n ).

12 We are here 1 Last time: Sequential MC problems 2

13 We are here 1 Last time: Sequential MC problems 2

14 It is natural to aim at solving the problem using usual self-normalized IS. However, the generated samples (X0:n i, ω n(x0:n i )) should be such that having (X0:n i, ω n(x0:n i )), the next sample (X0:n+1 i, ω n+1(x0:n+1 i )) is easily generated with a complexity that does not increase with n (online sampling). the approximation remains stable as n increases. We call each draw X i 0:n = (Xi 0,..., Xi n) a particle. Moreover, we denote importance weights by ω i n = ω n (X i 0:n).

15 We are here 1 Last time: Sequential MC problems 2

16 We proceed recursively. Assume that we have generated particles (X i 0:n ) from g n(x 0:n ) so that N i=1 ω i n N l=1 ωl n h(x i 0:n) E fn (φ(x 0:n )), where, as usual, ω i n = ω n (X i 0:n ) = z n(x i 0:n )/g n(x i 0:n ). Key trick: Choose an instrumental distribution satisfying g n+1 (x 0:n+1 ) = g n+1 (x n+1 x 0:n )g n (x 0:n ).

17 SIS (cont.) Last time: Sequential MC problems Consequently, X0:n+1 i and ωi n+1 can be generated by keeping the previous X0:n i, simulating X i n+1 g n+1(x n+1 X i 0:n ), setting X0:n+1 i = (Xi n+1, Xi 0:n ), and computing ω i n+1 = z n+1(x i 0:n+1 ) g n+1 (X i 0:n+1 ) = = z n+1 (X i 0:n+1 ) z n (X i 0:n )g n+1(x i n+1 Xi 0:n ) z n(x i 0:n ) g n (X i 0:n ) z n+1 (X i 0:n+1 ) z n (X i 0:n )g n+1(x i n+1 Xi 0:n ) ωi n.

18 SIS (cont.) Last time: Sequential MC problems Voilà, the sample (X0:n+1 i, ωi n+1 ) can now be used to approximate E fn+1 (φ(x 0:n+1 ))! So, by running the SIS algorithm, we have updated an approximation N i=1 to an approximation N i=1 ω i n N l=1 ωl n h(x i 0:n) E fn (φ(x 0:n )) ω i n+1 N l=1 ωl n+1 h(x i 0:n+1) E fn+1 (φ(x 0:n+1 )) by only adding a component Xn+1 i to Xi 0:n updating the weights. and sequentially

19 SIS: Pseudo code for i = 1 N do draw X i 0 g 0 set ω i 0 = z 0(X i 0 ) g 0 (X i 0 ) end for return (X i 0, ωi 0 ) for k = 0, 1, 2,... do for i = 1 N do draw X i k+1 g k+1(x k+1 X i 0:n ) set X i 0:k+1 (Xi k+1, Xi 0:k ) set ω i k+1 z k+1 (X i 0:k+1 ) z k (X i 0:k )g k+1(x i k+1 Xi 0:k ) ωi k end for return (X i 0:k+1, ωi k+1 ) end for

20 Example: REA reconsidered We consider again the example of REA for Markov chains (X = R): τ n = E(φ(X 0:n ) a X l, l = 0,..., n) = φ(x 0:n ) χ(x n 1 0) k=0 q(x k+1 x k ) (a, ) n+1 P(a X l, l) } {{ } =z n(x 0:n )/c n Choose g k+1 (x k+1 x 0:k ) to be the conditional density of X k+1 given X k and X k+1 a: dx 0:n. g k+1 (x k+1 x 0:k ) = {cf. HA1, Problem 1} = q(x k+1 x k ) a q(z x k) dz.

21 Example: REA This implies that g n (x 0:n ) = a n 1 χ(x 0 ) q(x k+1 x k ) χ(x 0) dx 0 a q(z x k) dz. k=0 In addition, the weights are updated as ωk+1 i = z k+1 (X0:k+1 i ) z k (X0:k i )g k+1(xk+1 i Xi 0:k ) ωi k k l=0 = q(xi l+1 Xi l ) k 1 l=0 q(xi l+1 Xi l ) q(xi k+1 Xi k ) ωk i = a q(z Xi k ) dz a q(z X i k ) dz ωi k.

22 Example: REA; Matlab implementation for AR(1) process with Gaussian noise % design of instrumental distribution: int 1 normcdf(a,alpha*x,sigma); trunk_td_rnd % use HA1, Problem 1, to draw from % the truncated transition density; % SIS: % x = starting position. part = a*ones(n,1); % initialization in a w = ones(n,1); for k = 1:(n 1), % main loop part_mut = trunk_td_rnd(part); w = w.*int(part); part = part_mut; end c = mean(w); % estimated probability

23 REA: Importance weight distribution Serious drawback of SIS: the importance weights degenerate! n = n = n = Importance weights (base 10 logarithm)

24 What s next? Last time: Sequential MC problems Weight degeneration is a universal problem with the SIS method and is due to the fact that the particle weights are generated through subsequent multiplications. This drawback prevented during several decades the SIS method from being practically useful. Next week we will discuss an efficient solution to this problem: SIS with resampling.

Monte Carlo-based statistical methods (MASM11/FMS091)

Monte Carlo-based statistical methods (MASM11/FMS091) Monte Carlo-based statistical methods (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 6 Sequential Monte Carlo methods II February 7, 2014 M. Wiktorsson

More information

Monte Carlo-based statistical methods (MASM11/FMS091)

Monte Carlo-based statistical methods (MASM11/FMS091) Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I February 5, 2013 J. Olsson Monte Carlo-based

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I February

More information

Exact Confidence Intervals

Exact Confidence Intervals Math 541: Statistical Theory II Instructor: Songfeng Zheng Exact Confidence Intervals Confidence intervals provide an alternative to using an estimator ˆθ when we wish to estimate an unknown parameter

More information

Portfolio Distribution Modelling and Computation. Harry Zheng Department of Mathematics Imperial College h.zheng@imperial.ac.uk

Portfolio Distribution Modelling and Computation. Harry Zheng Department of Mathematics Imperial College h.zheng@imperial.ac.uk Portfolio Distribution Modelling and Computation Harry Zheng Department of Mathematics Imperial College h.zheng@imperial.ac.uk Workshop on Fast Financial Algorithms Tanaka Business School Imperial College

More information

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization Wolfram Burgard, Maren Bennewitz, Diego Tipaldi, Luciano Spinello 1 Motivation Recall: Discrete filter Discretize

More information

Binomial lattice model for stock prices

Binomial lattice model for stock prices Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }

More information

Lecture 8. Confidence intervals and the central limit theorem

Lecture 8. Confidence intervals and the central limit theorem Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

LECTURE 4. Last time: Lecture outline

LECTURE 4. Last time: Lecture outline LECTURE 4 Last time: Types of convergence Weak Law of Large Numbers Strong Law of Large Numbers Asymptotic Equipartition Property Lecture outline Stochastic processes Markov chains Entropy rate Random

More information

Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010

Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010 Simulation Methods Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 1 / 35 Outline 1 Generating Random Numbers 2 Variance Reduction 3 Quasi-Monte

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000

More information

Nonparametric adaptive age replacement with a one-cycle criterion

Nonparametric adaptive age replacement with a one-cycle criterion Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: Pauline.Schrijner@durham.ac.uk

More information

1 Simulating Brownian motion (BM) and geometric Brownian motion (GBM)

1 Simulating Brownian motion (BM) and geometric Brownian motion (GBM) Copyright c 2013 by Karl Sigman 1 Simulating Brownian motion (BM) and geometric Brownian motion (GBM) For an introduction to how one can construct BM, see the Appendix at the end of these notes A stochastic

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 5. Life annuities. Extract from: Arcones Manual for the SOA Exam MLC. Spring 2010 Edition. available at http://www.actexmadriver.com/ 1/114 Whole life annuity A whole life annuity is a series of

More information

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1]. Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

More information

Confidence Intervals for One Standard Deviation Using Standard Deviation

Confidence Intervals for One Standard Deviation Using Standard Deviation Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

Model-based Synthesis. Tony O Hagan

Model-based Synthesis. Tony O Hagan Model-based Synthesis Tony O Hagan Stochastic models Synthesising evidence through a statistical model 2 Evidence Synthesis (Session 3), Helsinki, 28/10/11 Graphical modelling The kinds of models that

More information

Gaussian Processes to Speed up Hamiltonian Monte Carlo

Gaussian Processes to Speed up Hamiltonian Monte Carlo Gaussian Processes to Speed up Hamiltonian Monte Carlo Matthieu Lê Murray, Iain http://videolectures.net/mlss09uk_murray_mcmc/ Rasmussen, Carl Edward. "Gaussian processes to speed up hybrid Monte Carlo

More information

Christfried Webers. Canberra February June 2015

Christfried Webers. Canberra February June 2015 c Statistical Group and College of Engineering and Computer Science Canberra February June (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 829 c Part VIII Linear Classification 2 Logistic

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

CHAPTER IV - BROWNIAN MOTION

CHAPTER IV - BROWNIAN MOTION CHAPTER IV - BROWNIAN MOTION JOSEPH G. CONLON 1. Construction of Brownian Motion There are two ways in which the idea of a Markov chain on a discrete state space can be generalized: (1) The discrete time

More information

15. Symmetric polynomials

15. Symmetric polynomials 15. Symmetric polynomials 15.1 The theorem 15.2 First examples 15.3 A variant: discriminants 1. The theorem Let S n be the group of permutations of {1,, n}, also called the symmetric group on n things.

More information

False-Alarm and Non-Detection Probabilities for On-line Quality Control via HMM

False-Alarm and Non-Detection Probabilities for On-line Quality Control via HMM Int. Journal of Math. Analysis, Vol. 6, 2012, no. 24, 1153-1162 False-Alarm and Non-Detection Probabilities for On-line Quality Control via HMM C.C.Y. Dorea a,1, C.R. Gonçalves a, P.G. Medeiros b and W.B.

More information

1 Sufficient statistics

1 Sufficient statistics 1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =

More information

Monte Carlo Methods in Finance

Monte Carlo Methods in Finance Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction

More information

THE CENTRAL LIMIT THEOREM TORONTO

THE CENTRAL LIMIT THEOREM TORONTO THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................

More information

Generating Random Variables and Stochastic Processes

Generating Random Variables and Stochastic Processes Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Generating Random Variables and Stochastic Processes 1 Generating U(0,1) Random Variables The ability to generate U(0, 1) random variables

More information

Monte Carlo Simulation

Monte Carlo Simulation 1 Monte Carlo Simulation Stefan Weber Leibniz Universität Hannover email: sweber@stochastik.uni-hannover.de web: www.stochastik.uni-hannover.de/ sweber Monte Carlo Simulation 2 Quantifying and Hedging

More information

Performance evaluation of multi-camera visual tracking

Performance evaluation of multi-camera visual tracking Performance evaluation of multi-camera visual tracking Lucio Marcenaro, Pietro Morerio, Mauricio Soto, Andrea Zunino, Carlo S. Regazzoni DITEN, University of Genova Via Opera Pia 11A 16145 Genoa - Italy

More information

The CUSUM algorithm a small review. Pierre Granjon

The CUSUM algorithm a small review. Pierre Granjon The CUSUM algorithm a small review Pierre Granjon June, 1 Contents 1 The CUSUM algorithm 1.1 Algorithm............................... 1.1.1 The problem......................... 1.1. The different steps......................

More information

Discrete Frobenius-Perron Tracking

Discrete Frobenius-Perron Tracking Discrete Frobenius-Perron Tracing Barend J. van Wy and Michaël A. van Wy French South-African Technical Institute in Electronics at the Tshwane University of Technology Staatsartillerie Road, Pretoria,

More information

Random access protocols for channel access. Markov chains and their stability. Laurent Massoulié.

Random access protocols for channel access. Markov chains and their stability. Laurent Massoulié. Random access protocols for channel access Markov chains and their stability laurent.massoulie@inria.fr Aloha: the first random access protocol for channel access [Abramson, Hawaii 70] Goal: allow machines

More information

On closed-form solutions to a class of ordinary differential equations

On closed-form solutions to a class of ordinary differential equations International Journal of Advanced Mathematical Sciences, 2 (1 (2014 57-70 c Science Publishing Corporation www.sciencepubco.com/index.php/ijams doi: 10.14419/ijams.v2i1.1556 Research Paper On closed-form

More information

Basics of Statistical Machine Learning

Basics of Statistical Machine Learning CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu Modern machine learning is rooted in statistics. You will find many familiar

More information

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation On-Line Bayesian Tracking Aly El-Osery 1 Stephen Bruder 2 1 Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA 2 Electrical and Computer Engineering

More information

5 Numerical Differentiation

5 Numerical Differentiation D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

More information

Principle of Data Reduction

Principle of Data Reduction Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then

More information

Generating Random Variables and Stochastic Processes

Generating Random Variables and Stochastic Processes Monte Carlo Simulation: IEOR E4703 c 2010 by Martin Haugh Generating Random Variables and Stochastic Processes In these lecture notes we describe the principal methods that are used to generate random

More information

The Ergodic Theorem and randomness

The Ergodic Theorem and randomness The Ergodic Theorem and randomness Peter Gács Department of Computer Science Boston University March 19, 2008 Peter Gács (Boston University) Ergodic theorem March 19, 2008 1 / 27 Introduction Introduction

More information

Chapter 2: Binomial Methods and the Black-Scholes Formula

Chapter 2: Binomial Methods and the Black-Scholes Formula Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the

More information

Mathematics of Life Contingencies MATH 3281

Mathematics of Life Contingencies MATH 3281 Mathematics of Life Contingencies MATH 3281 Life annuities contracts Edward Furman Department of Mathematics and Statistics York University February 13, 2012 Edward Furman Mathematics of Life Contingencies

More information

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88

Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88 Nonlinear Algebraic Equations Lectures INF2320 p. 1/88 Lectures INF2320 p. 2/88 Nonlinear algebraic equations When solving the system u (t) = g(u), u(0) = u 0, (1) with an implicit Euler scheme we have

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

Adaptive Search with Stochastic Acceptance Probabilities for Global Optimization

Adaptive Search with Stochastic Acceptance Probabilities for Global Optimization Adaptive Search with Stochastic Acceptance Probabilities for Global Optimization Archis Ghate a and Robert L. Smith b a Industrial Engineering, University of Washington, Box 352650, Seattle, Washington,

More information

Tagging with Hidden Markov Models

Tagging with Hidden Markov Models Tagging with Hidden Markov Models Michael Collins 1 Tagging Problems In many NLP problems, we would like to model pairs of sequences. Part-of-speech (POS) tagging is perhaps the earliest, and most famous,

More information

Non Parametric Inference

Non Parametric Inference Maura Department of Economics and Finance Università Tor Vergata Outline 1 2 3 Inverse distribution function Theorem: Let U be a uniform random variable on (0, 1). Let X be a continuous random variable

More information

Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions

Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions Chapter 4 - Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the

More information

Bandwidth Selection for Nonparametric Distribution Estimation

Bandwidth Selection for Nonparametric Distribution Estimation Bandwidth Selection for Nonparametric Distribution Estimation Bruce E. Hansen University of Wisconsin www.ssc.wisc.edu/~bhansen May 2004 Abstract The mean-square efficiency of cumulative distribution function

More information

Online Bayesian learning in dynamic models: An illustrative introduction to particle methods. September 2, 2011. Abstract

Online Bayesian learning in dynamic models: An illustrative introduction to particle methods. September 2, 2011. Abstract Online Bayesian learning in dynamic models: An illustrative introduction to particle methods Hedibert F. Lopes University of Chicago Carlos M. Carvalho University of Texas at Austin September 2, 2011 Abstract

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let

1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators... MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................

More information

Some stability results of parameter identification in a jump diffusion model

Some stability results of parameter identification in a jump diffusion model Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss

More information

Master s Theory Exam Spring 2006

Master s Theory Exam Spring 2006 Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem

More information

Strong Parallel Repetition Theorem for Free Projection Games

Strong Parallel Repetition Theorem for Free Projection Games Strong Parallel Repetition Theorem for Free Projection Games Boaz Barak Anup Rao Ran Raz Ricky Rosen Ronen Shaltiel April 14, 2009 Abstract The parallel repetition theorem states that for any two provers

More information

References. Importance Sampling. Jessi Cisewski (CMU) Carnegie Mellon University. June 2014

References. Importance Sampling. Jessi Cisewski (CMU) Carnegie Mellon University. June 2014 Jessi Cisewski Carnegie Mellon University June 2014 Outline 1 Recall: Monte Carlo integration 2 3 Examples of (a) Monte Carlo, Monaco (b) Monte Carlo Casino Some content and examples from Wasserman (2004)

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

Master s thesis tutorial: part III

Master s thesis tutorial: part III for the Autonomous Compliant Research group Tinne De Laet, Wilm Decré, Diederik Verscheure Katholieke Universiteit Leuven, Department of Mechanical Engineering, PMA Division 30 oktober 2006 Outline General

More information

C. Wohlin, M. Höst, P. Runeson and A. Wesslén, "Software Reliability", in Encyclopedia of Physical Sciences and Technology (third edition), Vol.

C. Wohlin, M. Höst, P. Runeson and A. Wesslén, Software Reliability, in Encyclopedia of Physical Sciences and Technology (third edition), Vol. C. Wohlin, M. Höst, P. Runeson and A. Wesslén, "Software Reliability", in Encyclopedia of Physical Sciences and Technology (third edition), Vol. 15, Academic Press, 2001. Software Reliability Claes Wohlin

More information

10-601. Machine Learning. http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html

10-601. Machine Learning. http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html 10-601 Machine Learning http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html Course data All up-to-date info is on the course web page: http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html

More information

Simulation Exercises to Reinforce the Foundations of Statistical Thinking in Online Classes

Simulation Exercises to Reinforce the Foundations of Statistical Thinking in Online Classes Simulation Exercises to Reinforce the Foundations of Statistical Thinking in Online Classes Simcha Pollack, Ph.D. St. John s University Tobin College of Business Queens, NY, 11439 pollacks@stjohns.edu

More information

Probability Generating Functions

Probability Generating Functions page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

More information

Probability and Random Variables. Generation of random variables (r.v.)

Probability and Random Variables. Generation of random variables (r.v.) Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly

More information

5.1 Identifying the Target Parameter

5.1 Identifying the Target Parameter University of California, Davis Department of Statistics Summer Session II Statistics 13 August 20, 2012 Date of latest update: August 20 Lecture 5: Estimation with Confidence intervals 5.1 Identifying

More information

The Exponential Distribution

The Exponential Distribution 21 The Exponential Distribution From Discrete-Time to Continuous-Time: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding

More information

1 Prior Probability and Posterior Probability

1 Prior Probability and Posterior Probability Math 541: Statistical Theory II Bayesian Approach to Parameter Estimation Lecturer: Songfeng Zheng 1 Prior Probability and Posterior Probability Consider now a problem of statistical inference in which

More information

A State Space Model for Wind Forecast Correction

A State Space Model for Wind Forecast Correction A State Space Model for Wind Forecast Correction Valérie Monbe, Pierre Ailliot 2, and Anne Cuzol 1 1 Lab-STICC, Université Européenne de Bretagne, France (e-mail: valerie.monbet@univ-ubs.fr, anne.cuzol@univ-ubs.fr)

More information

11. Time series and dynamic linear models

11. Time series and dynamic linear models 11. Time series and dynamic linear models Objective To introduce the Bayesian approach to the modeling and forecasting of time series. Recommended reading West, M. and Harrison, J. (1997). models, (2 nd

More information

Polarization codes and the rate of polarization

Polarization codes and the rate of polarization Polarization codes and the rate of polarization Erdal Arıkan, Emre Telatar Bilkent U., EPFL Sept 10, 2008 Channel Polarization Given a binary input DMC W, i.i.d. uniformly distributed inputs (X 1,...,

More information

Inference on Phase-type Models via MCMC

Inference on Phase-type Models via MCMC Inference on Phase-type Models via MCMC with application to networks of repairable redundant systems Louis JM Aslett and Simon P Wilson Trinity College Dublin 28 th June 202 Toy Example : Redundant Repairable

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1. Motivation Network performance analysis, and the underlying queueing theory, was born at the beginning of the 20th Century when two Scandinavian engineers, Erlang 1 and Engset

More information

Introduction to Markov Chain Monte Carlo

Introduction to Markov Chain Monte Carlo Introduction to Markov Chain Monte Carlo Monte Carlo: sample from a distribution to estimate the distribution to compute max, mean Markov Chain Monte Carlo: sampling using local information Generic problem

More information

A Study on the Comparison of Electricity Forecasting Models: Korea and China

A Study on the Comparison of Electricity Forecasting Models: Korea and China Communications for Statistical Applications and Methods 2015, Vol. 22, No. 6, 675 683 DOI: http://dx.doi.org/10.5351/csam.2015.22.6.675 Print ISSN 2287-7843 / Online ISSN 2383-4757 A Study on the Comparison

More information

On the mathematical theory of splitting and Russian roulette

On the mathematical theory of splitting and Russian roulette On the mathematical theory of splitting and Russian roulette techniques St.Petersburg State University, Russia 1. Introduction Splitting is an universal and potentially very powerful technique for increasing

More information

Recursive Estimation

Recursive Estimation Recursive Estimation Raffaello D Andrea Spring 04 Problem Set : Bayes Theorem and Bayesian Tracking Last updated: March 8, 05 Notes: Notation: Unlessotherwisenoted,x, y,andz denoterandomvariables, f x

More information

Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22

Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22 Math 151. Rumbos Spring 2014 1 Solutions to Assignment #22 1. An experiment consists of rolling a die 81 times and computing the average of the numbers on the top face of the die. Estimate the probability

More information

Selection Sampling from Large Data sets for Targeted Inference in Mixture Modeling

Selection Sampling from Large Data sets for Targeted Inference in Mixture Modeling Selection Sampling from Large Data sets for Targeted Inference in Mixture Modeling Ioanna Manolopoulou, Cliburn Chan and Mike West December 29, 2009 Abstract One of the challenges of Markov chain Monte

More information

Nonparametric Tests for Randomness

Nonparametric Tests for Randomness ECE 461 PROJECT REPORT, MAY 2003 1 Nonparametric Tests for Randomness Ying Wang ECE 461 PROJECT REPORT, MAY 2003 2 Abstract To decide whether a given sequence is truely random, or independent and identically

More information

Numerical Methods for Option Pricing

Numerical Methods for Option Pricing Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly

More information

Gambling and Data Compression

Gambling and Data Compression Gambling and Data Compression Gambling. Horse Race Definition The wealth relative S(X) = b(x)o(x) is the factor by which the gambler s wealth grows if horse X wins the race, where b(x) is the fraction

More information

Pablo A. Ferrari Antonio Galves. Construction of Stochastic Processes, Coupling and Regeneration

Pablo A. Ferrari Antonio Galves. Construction of Stochastic Processes, Coupling and Regeneration i Pablo A. Ferrari Antonio Galves Construction of Stochastic Processes, Coupling and Regeneration ii Pablo A. Ferrari, Antonio Galves Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa

More information

Statistics Graduate Courses

Statistics Graduate Courses Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.

More information

Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering

Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering Department of Industrial Engineering and Management Sciences Northwestern University September 15th, 2014

More information

Corrections to the First Printing

Corrections to the First Printing Corrections to the First Printing Chapter 2 (i) Page 48, Paragraph 1: cells/µ l should be cells/µl without the space. (ii) Page 48, Paragraph 2: Uninfected cells T i should not have the asterisk. Chapter

More information

Random Variate Generation (Part 3)

Random Variate Generation (Part 3) Random Variate Generation (Part 3) Dr.Çağatay ÜNDEĞER Öğretim Görevlisi Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü &... e-mail : cagatay@undeger.com cagatay@cs.bilkent.edu.tr Bilgisayar Mühendisliği

More information

Homework #2 Solutions

Homework #2 Solutions MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution

More information

Scalar Valued Functions of Several Variables; the Gradient Vector

Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,

More information

Is a Brownian motion skew?

Is a Brownian motion skew? Is a Brownian motion skew? Ernesto Mordecki Sesión en honor a Mario Wschebor Universidad de la República, Montevideo, Uruguay XI CLAPEM - November 2009 - Venezuela 1 1 Joint work with Antoine Lejay and

More information

L13: cross-validation

L13: cross-validation Resampling methods Cross validation Bootstrap L13: cross-validation Bias and variance estimation with the Bootstrap Three-way data partitioning CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU

More information

5.3 Improper Integrals Involving Rational and Exponential Functions

5.3 Improper Integrals Involving Rational and Exponential Functions Section 5.3 Improper Integrals Involving Rational and Exponential Functions 99.. 3. 4. dθ +a cos θ =, < a

More information

STAT 830 Convergence in Distribution

STAT 830 Convergence in Distribution STAT 830 Convergence in Distribution Richard Lockhart Simon Fraser University STAT 830 Fall 2011 Richard Lockhart (Simon Fraser University) STAT 830 Convergence in Distribution STAT 830 Fall 2011 1 / 31

More information

M/M/1 and M/M/m Queueing Systems

M/M/1 and M/M/m Queueing Systems M/M/ and M/M/m Queueing Systems M. Veeraraghavan; March 20, 2004. Preliminaries. Kendall s notation: G/G/n/k queue G: General - can be any distribution. First letter: Arrival process; M: memoryless - exponential

More information

Theory versus Experiment. Prof. Jorgen D Hondt Vrije Universiteit Brussel jodhondt@vub.ac.be

Theory versus Experiment. Prof. Jorgen D Hondt Vrije Universiteit Brussel jodhondt@vub.ac.be Theory versus Experiment Prof. Jorgen D Hondt Vrije Universiteit Brussel jodhondt@vub.ac.be Theory versus Experiment Pag. 2 Dangerous cocktail!!! Pag. 3 The basics in these lectures Part1 : Theory meets

More information