Monte Carlo-based statistical methods (MASM11/FMS091)

Size: px
Start display at page:

Download "Monte Carlo-based statistical methods (MASM11/FMS091)"

Transcription

1 Monte Carlo-based statistical methods (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 6 Sequential Monte Carlo methods II February 7, 2014 M. Wiktorsson Monte Carlo-based statistical methods, L6 (1)

2 Plan of today's lecture 1 Last time: Sequential MC problems 2 3 M. Wiktorsson Monte Carlo-based statistical methods, L6 (2)

3 We are here 1 Last time: Sequential MC problems 2 3 M. Wiktorsson Monte Carlo-based statistical methods, L6 (3)

4 Last time: Sequential MC problems In the sequential MC framework, we aim at sequentially estimating sequences (τ n ) n 0 of expectations τ n = E fn (φ(x 0:n )) = φ(x 0:n )f n (x 0:n ) dx 0:n ( ) X n over spaces X n of increasing dimension, where the densities (f n ) are known up to normalizing constants only, i.e., for every n 0, where c n is an unknown constant. f n (x 0:n ) = z n(x 0:n ) c n, M. Wiktorsson Monte Carlo-based statistical methods, L6 (4)

5 Last time: Markov chains Some applications involved the notion of Markov chains: A Markov chain on X R d is a family of random variables (= stochastic process) (X k ) k 0 taking values in X such that P(X k+1 B X 0, X 1,..., X k ) = P(X k+1 B X k ). The density q of the distribution of X k+1 given X k = x is called the transition density of (X k ). Consequently, P(X k+1 B X k = x k ) = q(x k+1 x k ) dx k+1. As a rst example we considered an AR(1) process: X 0 = 0, X k+1 = αx k + ɛ k+1, where α is a constant and (ɛ k ) are i.i.d. variables. M. Wiktorsson Monte Carlo-based statistical methods, L6 (5) B

6 Last time: Markov chains (cont.) The following theorem provides the joint density f n (x 0, x 1,..., x n ) of X 0, X 1,..., X n. Theorem Let (X k ) be Markov with X 0 χ. Then for n > 0, n 1 f n (x 0, x 1,..., x n ) = χ(x 0 ) q(x k+1 x k ). k=0 Corollary (The Chapman-Kolmogorov equation) Let (X k ) be Markov. Then for n > 1, f n (x n x 0 ) = ( n 1 k=0 q(x k+1 x k ) ) dx 1 dx n 1. M. Wiktorsson Monte Carlo-based statistical methods, L6 (6)

7 Last time: Rare event analysis (REA) for Markov chains Let (X k ) be a Markov chain. Assume that we want to compute, for n = 0, 1, 2,... τ n = E(φ(X 0:n ) X 0:n B) = = B B f n (x 0:n ) φ(x 0:n ) P(X 0:n B) dx 0:n φ(x 0:n ) χ(x 0) n 1 k=0 q(x k+1 x k ) dx 0:n, P(X 0:n B) where B is a possibly rare event and P(X 0:n B) is generally unknown. We thus face a sequential MC problem ( ) with { z n (x 0:n ) χ(x 0 ) n 1 k=0 q(x k+1 x k ), c n P(X 0:n B). M. Wiktorsson Monte Carlo-based statistical methods, L6 (7)

8 Last time: Estimation in general HMMs Graphically: Y k 1 Y k Y k+1 (Observations)... X k 1 X k X k+1... (Markov chain) Y k X k = x k g(y k x k ) X k+1 X k = x k q(x k+1 x k ) X 0 χ(x 0 ) (Observation density) (Transition density) (Initial distribution) M. Wiktorsson Monte Carlo-based statistical methods, L6 (8)

9 Last time: Estimation in general HMMs In an HMM, the smoothing distribution f n (x 0:n y 0:n ) is the conditional distribution of a set X 0:n of hidden states given Y 0:n = y 0:n. Theorem (Smoothing distribution) where f n (x 0:n y 0:n ) = χ(x 0)g(y 0 x 0 ) n k=1 g(y k x k )q(x k x k 1 ), L n (y 0:n ) L n (y 0:n ) = density of the observations y 0:n n = χ(x 0 )g(y 0 x 0 ) g(y k x k )q(x k x k 1 ) dx 0 dx n. k=1 M. Wiktorsson Monte Carlo-based statistical methods, L6 (9)

10 Last time: Estimation in general HMMs Assume that we want to compute, online for n = 0, 1, 2,..., τ n = E(φ(X 0:n ) Y 0:n = y 0:n ) = φ(x 0:n )f n (x 0:n y 0:n ) dx 0 dx n = φ(x 0:n ) χ(x 0)g(y 0 x 0 ) n k=1 g(y k x k )q(x k x k 1 ) dx 0 dx n, L n (y 0:n ) where L n (y 0:n ) (= obscene integral) is generally unknown. We thus face a sequential MC problem ( ) with { z n (x 0:n ) χ(x 0 )g(y 0 x 0 ) n k=1 g(y k x k )q(x k x k 1 ), c n L n (y 0:n ). M. Wiktorsson Monte Carlo-based statistical methods, L6 (10)

11 We are here 1 Last time: Sequential MC problems 2 3 M. Wiktorsson Monte Carlo-based statistical methods, L6 (11)

12 Conditional methods Say that we want to generate a random vector from a given bivariate density p(x, y). If we know how to draw from the conditional distribution p(y x) and the marginal p(x) this can be done naturally using the following scheme. draw Z 1 p(x) draw Z 2 p(y x = Z 1 ) return (Z 1, Z 2 ) M. Wiktorsson Monte Carlo-based statistical methods, L6 (12)

13 Conditional methods This can be naturally extended to n-variate densities p(x 1,..., x n ): draw Z 1 p(x 1 ) draw Z 2 p(x 2 x 1 = Z 1 ) draw Z 3 p(x 3 x 1 = Z 1, x 2 = Z 2 ). draw Z n 1 p(x n 1 x 1 = Z 1, x 2 = Z 2,..., x n 2 = Z n 2 ) draw Z n p(x n x 1 = Z 1, x 2 = Z 2,..., x n 1 = Z n 1 ) return (Z 1,..., Z n ) Theorem The vector (Z 1,..., Z n ) has indeed n-variate density function p(x 1,..., x n ). M. Wiktorsson Monte Carlo-based statistical methods, L6 (13)

14 We are here 1 Last time: Sequential MC problems 2 3 M. Wiktorsson Monte Carlo-based statistical methods, L6 (14)

15 We are here 1 Last time: Sequential MC problems 2 3 M. Wiktorsson Monte Carlo-based statistical methods, L6 (15)

16 It is natural to aim at solving the problem using usual self-normalized IS. However, the generated samples (Xi 0:n, ω n (Xi 0:n )) should be such that having (Xi 0:n, ω n (Xi 0:n )), the next sample (Xi 0:n+1, ω n+1 (Xi 0:n+1 )) is easily generated with a complexity that does not increase with n (online sampling). the approximation remains stable as n increases. We call each draw Xi 0:n = (Xi 0,..., Xn i ) a particle. Moreover, we denote importance weights by ωn i def = ω n (Xi 0:n ). M. Wiktorsson Monte Carlo-based statistical methods, L6 (16)

17 We are here 1 Last time: Sequential MC problems 2 3 M. Wiktorsson Monte Carlo-based statistical methods, L6 (17)

18 We proceed recursively. Assume that we have generated particles (X 0:n i ) from g n (x 0:n ) so that N i=1 ωn i N φ(x l=1 ωl i 0:n ) E fn (φ(x 0:n )), n where, as usual, ω i n = ω n (X 0:n i ) = z n (X 0:n i )/g n (X 0:n i ). Key trick: Choose an instrumental distribution satisfying g n+1 (x 0:n+1 ) = g n+1 (x n+1 x 0:n )g n+1 (x 0:n ) g n+1 (x 0:n+1 ) = g n+1 (x n+1 x 0:n )g n (x 0:n ). M. Wiktorsson Monte Carlo-based statistical methods, L6 (18)

19 SIS (cont.) Last time: Sequential MC problems Now assume that we have drawn X 0:n g n (x 0:n ). Then, as g n+1 (x 0:n+1 ) = g n+1 (x n+1 x 0:n )g n+1 (x 0:n ) = g n+1 (x n+1 x 0:n )g n (x 0:n ), the conditional method allows us to generate a draw X 0:n+1 from g n+1 (x 0:n+1 ) using the following procedure: draw X n+1 g n+1 (x n+1 x 0:n = X 0:n ) let X 0:n+1 (X n+1, X 0:n ) This can be repeated recursively, yielding online sampling from the sequence (g n ). M. Wiktorsson Monte Carlo-based statistical methods, L6 (19)

20 SIS (cont.) Last time: Sequential MC problems Consequently, Xi 0:n+1 and ωn+1 i can be generated by keeping the previous Xi 0:n, simulating Xi n+1 g n+1 (x n+1 Xi 0:n ), setting Xi 0:n+1 = (Xi n+1, Xi 0:n ), and computing ωn+1 i = z n+1(xi 0:n+1 ) g n+1 (Xi 0:n+1 ) z n+1 (Xi 0:n+1 ) = z n (Xi 0:n )g n+1 (X n+1 = z n+1 (X 0:n+1 i ) i Xi 0:n ) zn(x0:n i ) g n (X 0:n z n (X 0:n i )g n+1 (X n+1 i X 0:n i ) ωi n. i ) M. Wiktorsson Monte Carlo-based statistical methods, L6 (20)

21 SIS (cont.) Last time: Sequential MC problems Voilà, the sample (Xi 0:n+1, ωn+1 i ) can now be used to approximate E fn+1 (φ(x 0:n+1 ))! So, by running the SIS algorithm, we have updated an approximation to an approximation N i=1 N i=1 ωn i N φ(x l=1 ωl i 0:n ) E fn (φ(x 0:n )) n ωn+1 i N φ(x l=1 ωl i 0:n+1 ) E fn+1 (φ(x 0:n+1 )) n+1 by only adding a component Xi n+1 to Xi 0:n weights. and sequentially updating the M. Wiktorsson Monte Carlo-based statistical methods, L6 (21)

22 SIS: Pseudo code for i = 1 N do draw Xi 0 g 0 set ω0 i = z 0(Xi 0) g 0 (Xi 0) end for return (Xi 0, ωi 0 ) for k = 0, 1, 2,... do for i = 1 N do draw Xi k+1 g k+1 (x k+1 X 0:k set Xi 0:k+1 (Xi k+1, Xi 0:k ) set ω i k+1 end for return (Xi 0:k+1, ωk+1 i ) end for i ) z k+1 (X 0:k+1 i ) z k (Xi 0:k )g k+1 (X k+1 i Xi 0:k ) ωi k M. Wiktorsson Monte Carlo-based statistical methods, L6 (22)

23 Example: REA reconsidered We consider again the example of REA for Markov chains (X = R, X 0 = x 0 = a): τ n = E(φ(X 0:n ) a X l, l = 0,..., n) = φ(x 0:n ) (a, ) n n 1 k=1 q(x k+1 x k ) P(a X l, l) } {{ } =z n(x 0:n )/c n dx 1:n. Choose g k+1 (x k+1 x 0:k ) to be the conditional density of X k+1 given X k and X k+1 a: g k+1 (x k+1 x 0:k ) = {cf. HA1, Problem 1} = q(x k+1 x k ) a q(z x k) dz. M. Wiktorsson Monte Carlo-based statistical methods, L6 (23)

24 Example: REA Last time: Sequential MC problems This implies that (recall that we have conditioned on X 0 = x 0 = a) g n (x 0:n ) = n 1 k=0 q(x k+1 x k ) a q(z x k) dz. In addition, the weights are updated according to ωk+1 i = z k+1 (Xi 0:k+1 ) z k (Xi 0:k )g k+1 (X k+1 = = k 1 l=0 q(xl+1 a i Xi 0:k k l=0 q(xl+1 i X l i ) ) ωi k i Xi l) q(xk+1 i Xi k) ωk i q(z Xk i ) dz q(z X k i ) dz ω i k. M. Wiktorsson Monte Carlo-based statistical methods, L6 (24) a

25 Example: REA; Matlab implementation for AR(1) process with Gaussian noise % design of instrumental distribution: int 1 normcdf(a,alpha*x,sigma); trunk_td_rnd =... % use e.g. HA1, Problem 1, to simulate % the conditional transition density; % SIS: part = a*ones(n,1); % initialization of all particles in a w = ones(n,1); for k = 1:(n 1), % main loop part_mut = trunk_td_rnd(part); w = w.*int(part); part = part_mut; end c = mean(w); % estimated probability M. Wiktorsson Monte Carlo-based statistical methods, L6 (25)

26 REA: Importance weight distribution Serious drawback of SIS: the importance weights degenerate! n = n = n = Importance weights (base 10 logarithm) M. Wiktorsson Monte Carlo-based statistical methods, L6 (26)

27 What's next? Last time: Sequential MC problems Weight degeneration is a universal problem with the SIS method and is due to the fact that the particle weights are generated through subsequent multiplications. This drawback preventedduring several decadesthe SIS method from being practically useful. Next week we will discuss an elegant solution to this problem: SIS with resampling (SISR). M. Wiktorsson Monte Carlo-based statistical methods, L6 (27)

How To Solve A Sequential Mca Problem

How To Solve A Sequential Mca Problem Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 6 Sequential Monte Carlo methods II February 3, 2012 Changes in HA1 Problem

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I February

More information

Monte Carlo-based statistical methods (MASM11/FMS091)

Monte Carlo-based statistical methods (MASM11/FMS091) Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I February 5, 2013 J. Olsson Monte Carlo-based

More information

Binomial lattice model for stock prices

Binomial lattice model for stock prices Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }

More information

1 Sufficient statistics

1 Sufficient statistics 1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =

More information

1 Prior Probability and Posterior Probability

1 Prior Probability and Posterior Probability Math 541: Statistical Theory II Bayesian Approach to Parameter Estimation Lecturer: Songfeng Zheng 1 Prior Probability and Posterior Probability Consider now a problem of statistical inference in which

More information

Polarization codes and the rate of polarization

Polarization codes and the rate of polarization Polarization codes and the rate of polarization Erdal Arıkan, Emre Telatar Bilkent U., EPFL Sept 10, 2008 Channel Polarization Given a binary input DMC W, i.i.d. uniformly distributed inputs (X 1,...,

More information

LECTURE 4. Last time: Lecture outline

LECTURE 4. Last time: Lecture outline LECTURE 4 Last time: Types of convergence Weak Law of Large Numbers Strong Law of Large Numbers Asymptotic Equipartition Property Lecture outline Stochastic processes Markov chains Entropy rate Random

More information

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

More information

Generating Random Variables and Stochastic Processes

Generating Random Variables and Stochastic Processes Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Generating Random Variables and Stochastic Processes 1 Generating U(0,1) Random Variables The ability to generate U(0, 1) random variables

More information

Generating Random Variables and Stochastic Processes

Generating Random Variables and Stochastic Processes Monte Carlo Simulation: IEOR E4703 c 2010 by Martin Haugh Generating Random Variables and Stochastic Processes In these lecture notes we describe the principal methods that are used to generate random

More information

Principle of Data Reduction

Principle of Data Reduction Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then

More information

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization Wolfram Burgard, Maren Bennewitz, Diego Tipaldi, Luciano Spinello 1 Motivation Recall: Discrete filter Discretize

More information

1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let

1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000

More information

Model-based Synthesis. Tony O Hagan

Model-based Synthesis. Tony O Hagan Model-based Synthesis Tony O Hagan Stochastic models Synthesising evidence through a statistical model 2 Evidence Synthesis (Session 3), Helsinki, 28/10/11 Graphical modelling The kinds of models that

More information

Portfolio Distribution Modelling and Computation. Harry Zheng Department of Mathematics Imperial College h.zheng@imperial.ac.uk

Portfolio Distribution Modelling and Computation. Harry Zheng Department of Mathematics Imperial College h.zheng@imperial.ac.uk Portfolio Distribution Modelling and Computation Harry Zheng Department of Mathematics Imperial College h.zheng@imperial.ac.uk Workshop on Fast Financial Algorithms Tanaka Business School Imperial College

More information

Gaussian Processes to Speed up Hamiltonian Monte Carlo

Gaussian Processes to Speed up Hamiltonian Monte Carlo Gaussian Processes to Speed up Hamiltonian Monte Carlo Matthieu Lê Murray, Iain http://videolectures.net/mlss09uk_murray_mcmc/ Rasmussen, Carl Edward. "Gaussian processes to speed up hybrid Monte Carlo

More information

Introduction to Markov Chain Monte Carlo

Introduction to Markov Chain Monte Carlo Introduction to Markov Chain Monte Carlo Monte Carlo: sample from a distribution to estimate the distribution to compute max, mean Markov Chain Monte Carlo: sampling using local information Generic problem

More information

Discrete Frobenius-Perron Tracking

Discrete Frobenius-Perron Tracking Discrete Frobenius-Perron Tracing Barend J. van Wy and Michaël A. van Wy French South-African Technical Institute in Electronics at the Tshwane University of Technology Staatsartillerie Road, Pretoria,

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

1 Simulating Brownian motion (BM) and geometric Brownian motion (GBM)

1 Simulating Brownian motion (BM) and geometric Brownian motion (GBM) Copyright c 2013 by Karl Sigman 1 Simulating Brownian motion (BM) and geometric Brownian motion (GBM) For an introduction to how one can construct BM, see the Appendix at the end of these notes A stochastic

More information

Performance evaluation of multi-camera visual tracking

Performance evaluation of multi-camera visual tracking Performance evaluation of multi-camera visual tracking Lucio Marcenaro, Pietro Morerio, Mauricio Soto, Andrea Zunino, Carlo S. Regazzoni DITEN, University of Genova Via Opera Pia 11A 16145 Genoa - Italy

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

Christfried Webers. Canberra February June 2015

Christfried Webers. Canberra February June 2015 c Statistical Group and College of Engineering and Computer Science Canberra February June (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 829 c Part VIII Linear Classification 2 Logistic

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

Exact Confidence Intervals

Exact Confidence Intervals Math 541: Statistical Theory II Instructor: Songfeng Zheng Exact Confidence Intervals Confidence intervals provide an alternative to using an estimator ˆθ when we wish to estimate an unknown parameter

More information

References. Importance Sampling. Jessi Cisewski (CMU) Carnegie Mellon University. June 2014

References. Importance Sampling. Jessi Cisewski (CMU) Carnegie Mellon University. June 2014 Jessi Cisewski Carnegie Mellon University June 2014 Outline 1 Recall: Monte Carlo integration 2 3 Examples of (a) Monte Carlo, Monaco (b) Monte Carlo Casino Some content and examples from Wasserman (2004)

More information

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a 88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

More information

Random access protocols for channel access. Markov chains and their stability. Laurent Massoulié.

Random access protocols for channel access. Markov chains and their stability. Laurent Massoulié. Random access protocols for channel access Markov chains and their stability laurent.massoulie@inria.fr Aloha: the first random access protocol for channel access [Abramson, Hawaii 70] Goal: allow machines

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

On closed-form solutions to a class of ordinary differential equations

On closed-form solutions to a class of ordinary differential equations International Journal of Advanced Mathematical Sciences, 2 (1 (2014 57-70 c Science Publishing Corporation www.sciencepubco.com/index.php/ijams doi: 10.14419/ijams.v2i1.1556 Research Paper On closed-form

More information

Chapter 2: Binomial Methods and the Black-Scholes Formula

Chapter 2: Binomial Methods and the Black-Scholes Formula Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the

More information

The Ergodic Theorem and randomness

The Ergodic Theorem and randomness The Ergodic Theorem and randomness Peter Gács Department of Computer Science Boston University March 19, 2008 Peter Gács (Boston University) Ergodic theorem March 19, 2008 1 / 27 Introduction Introduction

More information

Scalar Valued Functions of Several Variables; the Gradient Vector

Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

Monte Carlo Methods in Finance

Monte Carlo Methods in Finance Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction

More information

1 Inner Products and Norms on Real Vector Spaces

1 Inner Products and Norms on Real Vector Spaces Math 373: Principles Techniques of Applied Mathematics Spring 29 The 2 Inner Product 1 Inner Products Norms on Real Vector Spaces Recall that an inner product on a real vector space V is a function from

More information

160 CHAPTER 4. VECTOR SPACES

160 CHAPTER 4. VECTOR SPACES 160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results

More information

15. Symmetric polynomials

15. Symmetric polynomials 15. Symmetric polynomials 15.1 The theorem 15.2 First examples 15.3 A variant: discriminants 1. The theorem Let S n be the group of permutations of {1,, n}, also called the symmetric group on n things.

More information

Online Bayesian learning in dynamic models: An illustrative introduction to particle methods. September 2, 2011. Abstract

Online Bayesian learning in dynamic models: An illustrative introduction to particle methods. September 2, 2011. Abstract Online Bayesian learning in dynamic models: An illustrative introduction to particle methods Hedibert F. Lopes University of Chicago Carlos M. Carvalho University of Texas at Austin September 2, 2011 Abstract

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

Tagging with Hidden Markov Models

Tagging with Hidden Markov Models Tagging with Hidden Markov Models Michael Collins 1 Tagging Problems In many NLP problems, we would like to model pairs of sequences. Part-of-speech (POS) tagging is perhaps the earliest, and most famous,

More information

Some stability results of parameter identification in a jump diffusion model

Some stability results of parameter identification in a jump diffusion model Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss

More information

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation On-Line Bayesian Tracking Aly El-Osery 1 Stephen Bruder 2 1 Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA 2 Electrical and Computer Engineering

More information

Basics of Statistical Machine Learning

Basics of Statistical Machine Learning CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu Modern machine learning is rooted in statistics. You will find many familiar

More information

Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88

Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88 Nonlinear Algebraic Equations Lectures INF2320 p. 1/88 Lectures INF2320 p. 2/88 Nonlinear algebraic equations When solving the system u (t) = g(u), u(0) = u 0, (1) with an implicit Euler scheme we have

More information

Lecture 1: Course overview, circuits, and formulas

Lecture 1: Course overview, circuits, and formulas Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1. Motivation Network performance analysis, and the underlying queueing theory, was born at the beginning of the 20th Century when two Scandinavian engineers, Erlang 1 and Engset

More information

10-601. Machine Learning. http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html

10-601. Machine Learning. http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html 10-601 Machine Learning http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html Course data All up-to-date info is on the course web page: http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html

More information

1 Review of Least Squares Solutions to Overdetermined Systems

1 Review of Least Squares Solutions to Overdetermined Systems cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

More information

Strong Parallel Repetition Theorem for Free Projection Games

Strong Parallel Repetition Theorem for Free Projection Games Strong Parallel Repetition Theorem for Free Projection Games Boaz Barak Anup Rao Ran Raz Ricky Rosen Ronen Shaltiel April 14, 2009 Abstract The parallel repetition theorem states that for any two provers

More information

Conductance, the Normalized Laplacian, and Cheeger s Inequality

Conductance, the Normalized Laplacian, and Cheeger s Inequality Spectral Graph Theory Lecture 6 Conductance, the Normalized Laplacian, and Cheeger s Inequality Daniel A. Spielman September 21, 2015 Disclaimer These notes are not necessarily an accurate representation

More information

WHEN DOES A RANDOMLY WEIGHTED SELF NORMALIZED SUM CONVERGE IN DISTRIBUTION?

WHEN DOES A RANDOMLY WEIGHTED SELF NORMALIZED SUM CONVERGE IN DISTRIBUTION? WHEN DOES A RANDOMLY WEIGHTED SELF NORMALIZED SUM CONVERGE IN DISTRIBUTION? DAVID M MASON 1 Statistics Program, University of Delaware Newark, DE 19717 email: davidm@udeledu JOEL ZINN 2 Department of Mathematics,

More information

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Recall areal data also known as lattice data are data Y (s), s D where D is a discrete index set. This usually corresponds to data

More information

5 Directed acyclic graphs

5 Directed acyclic graphs 5 Directed acyclic graphs (5.1) Introduction In many statistical studies we have prior knowledge about a temporal or causal ordering of the variables. In this chapter we will use directed graphs to incorporate

More information

Lecture 8. Confidence intervals and the central limit theorem

Lecture 8. Confidence intervals and the central limit theorem Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

Monte Carlo Simulation

Monte Carlo Simulation 1 Monte Carlo Simulation Stefan Weber Leibniz Universität Hannover email: sweber@stochastik.uni-hannover.de web: www.stochastik.uni-hannover.de/ sweber Monte Carlo Simulation 2 Quantifying and Hedging

More information

L4: Bayesian Decision Theory

L4: Bayesian Decision Theory L4: Bayesian Decision Theory Likelihood ratio test Probability of error Bayes risk Bayes, MAP and ML criteria Multi-class problems Discriminant functions CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna

More information

Section 4.4 Inner Product Spaces

Section 4.4 Inner Product Spaces Section 4.4 Inner Product Spaces In our discussion of vector spaces the specific nature of F as a field, other than the fact that it is a field, has played virtually no role. In this section we no longer

More information

Marshall-Olkin distributions and portfolio credit risk

Marshall-Olkin distributions and portfolio credit risk Marshall-Olkin distributions and portfolio credit risk Moderne Finanzmathematik und ihre Anwendungen für Banken und Versicherungen, Fraunhofer ITWM, Kaiserslautern, in Kooperation mit der TU München und

More information

Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010

Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010 Simulation Methods Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 1 / 35 Outline 1 Generating Random Numbers 2 Variance Reduction 3 Quasi-Monte

More information

General Framework for an Iterative Solution of Ax b. Jacobi s Method

General Framework for an Iterative Solution of Ax b. Jacobi s Method 2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

More information

1.2 Solving a System of Linear Equations

1.2 Solving a System of Linear Equations 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables

More information

Lecture notes: single-agent dynamics 1

Lecture notes: single-agent dynamics 1 Lecture notes: single-agent dynamics 1 Single-agent dynamic optimization models In these lecture notes we consider specification and estimation of dynamic optimization models. Focus on single-agent models.

More information

Stress Recovery 28 1

Stress Recovery 28 1 . 8 Stress Recovery 8 Chapter 8: STRESS RECOVERY 8 TABLE OF CONTENTS Page 8.. Introduction 8 8.. Calculation of Element Strains and Stresses 8 8.. Direct Stress Evaluation at Nodes 8 8.. Extrapolation

More information

THE CENTRAL LIMIT THEOREM TORONTO

THE CENTRAL LIMIT THEOREM TORONTO THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

L13: cross-validation

L13: cross-validation Resampling methods Cross validation Bootstrap L13: cross-validation Bias and variance estimation with the Bootstrap Three-way data partitioning CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU

More information

Master s thesis tutorial: part III

Master s thesis tutorial: part III for the Autonomous Compliant Research group Tinne De Laet, Wilm Decré, Diederik Verscheure Katholieke Universiteit Leuven, Department of Mechanical Engineering, PMA Division 30 oktober 2006 Outline General

More information

Convex Hull Probability Depth: first results

Convex Hull Probability Depth: first results Conve Hull Probability Depth: first results Giovanni C. Porzio and Giancarlo Ragozini Abstract In this work, we present a new depth function, the conve hull probability depth, that is based on the conve

More information

Probability and Random Variables. Generation of random variables (r.v.)

Probability and Random Variables. Generation of random variables (r.v.) Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly

More information

CHAPTER IV - BROWNIAN MOTION

CHAPTER IV - BROWNIAN MOTION CHAPTER IV - BROWNIAN MOTION JOSEPH G. CONLON 1. Construction of Brownian Motion There are two ways in which the idea of a Markov chain on a discrete state space can be generalized: (1) The discrete time

More information

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

Lecture 2: Universality

Lecture 2: Universality CS 710: Complexity Theory 1/21/2010 Lecture 2: Universality Instructor: Dieter van Melkebeek Scribe: Tyson Williams In this lecture, we introduce the notion of a universal machine, develop efficient universal

More information

Asymptotics for a discrete-time risk model with Gamma-like insurance risks. Pokfulam Road, Hong Kong

Asymptotics for a discrete-time risk model with Gamma-like insurance risks. Pokfulam Road, Hong Kong Asymptotics for a discrete-time risk model with Gamma-like insurance risks Yang Yang 1,2 and Kam C. Yuen 3 1 Department of Statistics, Nanjing Audit University, Nanjing, 211815, China 2 School of Economics

More information

General Sampling Methods

General Sampling Methods General Sampling Methods Reference: Glasserman, 2.2 and 2.3 Claudio Pacati academic year 2016 17 1 Inverse Transform Method Assume U U(0, 1) and let F be the cumulative distribution function of a distribution

More information

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1]. Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

More information

M/M/1 and M/M/m Queueing Systems

M/M/1 and M/M/m Queueing Systems M/M/ and M/M/m Queueing Systems M. Veeraraghavan; March 20, 2004. Preliminaries. Kendall s notation: G/G/n/k queue G: General - can be any distribution. First letter: Arrival process; M: memoryless - exponential

More information

Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

More information

CHAPTER 2 Estimating Probabilities

CHAPTER 2 Estimating Probabilities CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a

More information

Learning outcomes. Knowledge and understanding. Competence and skills

Learning outcomes. Knowledge and understanding. Competence and skills Syllabus Master s Programme in Statistics and Data Mining 120 ECTS Credits Aim The rapid growth of databases provides scientists and business people with vast new resources. This programme meets the challenges

More information

Probability Generating Functions

Probability Generating Functions page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

More information

Credit Risk Models: An Overview

Credit Risk Models: An Overview Credit Risk Models: An Overview Paul Embrechts, Rüdiger Frey, Alexander McNeil ETH Zürich c 2003 (Embrechts, Frey, McNeil) A. Multivariate Models for Portfolio Credit Risk 1. Modelling Dependent Defaults:

More information

Gambling and Data Compression

Gambling and Data Compression Gambling and Data Compression Gambling. Horse Race Definition The wealth relative S(X) = b(x)o(x) is the factor by which the gambler s wealth grows if horse X wins the race, where b(x) is the fraction

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails 12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint

More information

Lecture 4: BK inequality 27th August and 6th September, 2007

Lecture 4: BK inequality 27th August and 6th September, 2007 CSL866: Percolation and Random Graphs IIT Delhi Amitabha Bagchi Scribe: Arindam Pal Lecture 4: BK inequality 27th August and 6th September, 2007 4. Preliminaries The FKG inequality allows us to lower bound

More information

Web-based Supplementary Materials for Bayesian Effect Estimation. Accounting for Adjustment Uncertainty by Chi Wang, Giovanni

Web-based Supplementary Materials for Bayesian Effect Estimation. Accounting for Adjustment Uncertainty by Chi Wang, Giovanni 1 Web-based Supplementary Materials for Bayesian Effect Estimation Accounting for Adjustment Uncertainty by Chi Wang, Giovanni Parmigiani, and Francesca Dominici In Web Appendix A, we provide detailed

More information

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

More information

Real-time Visual Tracker by Stream Processing

Real-time Visual Tracker by Stream Processing Real-time Visual Tracker by Stream Processing Simultaneous and Fast 3D Tracking of Multiple Faces in Video Sequences by Using a Particle Filter Oscar Mateo Lozano & Kuzahiro Otsuka presented by Piotr Rudol

More information

I. Pointwise convergence

I. Pointwise convergence MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.

More information

Statistics Graduate Courses

Statistics Graduate Courses Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.

More information

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

More information

A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking

A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking 174 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002 A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking M. Sanjeev Arulampalam, Simon Maskell, Neil

More information

Adaptive Search with Stochastic Acceptance Probabilities for Global Optimization

Adaptive Search with Stochastic Acceptance Probabilities for Global Optimization Adaptive Search with Stochastic Acceptance Probabilities for Global Optimization Archis Ghate a and Robert L. Smith b a Industrial Engineering, University of Washington, Box 352650, Seattle, Washington,

More information