Dynamic Model with Slip for Wheeled Omni-Directional Robots

Size: px
Start display at page:

Download "Dynamic Model with Slip for Wheeled Omni-Directional Robots"

Transcription

1 Wllams et al., Fnal anuscrpt, IEEE TRANSACTIONS ON ROBOTICS AND AUTOATION, arch 22 Dynamc odel wth Slp for Wheeled Omn-Drectonal Robots Robert L. Wllams II and Bran E. Carter Oho Unversty, Athens, Oho Paolo Gallna and Gulo Rosat Unversty of Padova, Padova, Italy IEEE Transactons on Robotcs and Automaton Vol. 8, No., pp Correspondng author: Robert L. Wllams II, ember IEEE Assocate Professor Department of echancal Engneerng 257 Stocker Center Oho Unversty Athens, OH Phone: (74) Fax: (74) E-mal: URL:

2 Wllams et al., Fnal anuscrpt, IEEE TRANSACTIONS ON ROBOTICS AND AUTOATION, arch 22 2 Dynamc odel wth Slp for Wheeled Omn-Drectonal Robots Robert L. Wllams II, Bran E. Carter 2, Paolo Gallna, and Gulo Rosat 4 Abstract--A dynamc model s presented for omn-drectonal wheeled moble robots, ncludng wheel/moton surface slp. We derve the dynamcs model, expermentally measure frcton coeffcents, and measure the force to cause slp (to valdate our frcton model). Dynamc smulaton examples are presented to demonstrate omn-drectonal moton wth slp. After developng an mproved frcton model, compared to our ntal model, the smulaton results agree well wth expermentallymeasured trajectory data wth slp. Intally we thought that only hgh robot velocty and acceleraton governed the resultng slppng moton. However, we learned that the rgd materal exstng n the dscontnutes between omn-drectonal wheel rollers plays an equally mportant role n determnng omndrectonal moble robot dynamc slp moton, even at low rates and acceleratons. Index Terms-- Dynamc model, sldng frcton model, omndrectonal moble robot, wheel slp. I. INTRODUCTION Research nterest n moble robots has been tremendous n the past few years, as evdenced by revew artcles (e.g. [] and [2]). Some researchers have consdered slppng moton between the wheels and moton surface n moble robots and vehcles. Cho and Sreenvasan have desgned artculated wheeled vehcles wth varable-length axles to elmnate knematc wheel-surface slppng []. Hamdy and Badreddn developed a tenth-order nonlnear dynamc model for a wheeled moble robot that ncludes slp between the drven wheels and the ground [4]. Rajagopalan developed an expresson for the angular velocty of wheel slp for wheeled moble robots wth dfferent combnatons of steerng and drvng wheels, consderng knematcs only [5]. Shekhar derves a dynamc model for moble robots wth wheel slp usng accessblty and controllablty n nonlnear control theory [6]. Balakrshna and Ghosal present a tracton model accountng for slp n nonholonomc wheeled moble robots [7]. Schedng et al. present expermental evaluaton of a navgaton system that handles autonomous vehcle wheel slp va mult-sensor feedback [8]. Several research groups are developng omn-drectonal moble robots and vehcles due to nherent aglty benefts. Jung et al. developed an omn-drectonal moble robot base for the RoboCup competton [9]. RoboCup ( s an nternatonal competton wheren teams of autonomous moble robots compete n the game of soccer. oore et al. present a control algorthm for an omn-drectonal sx-wheeled vehcle; each wheel s steered and drven ndependently []. Watanabe et al. present a controller for an autonomous omn-drectonal moble robot for servce applcatons []. Wtus nvestgates the moblty of a 6-wheeled omn-drectonal vehcle wth tre nflaton control [2]. A recent artcle n these transactons presented a clever desgn plus expermental results for a sphercal rollng robot []; however, ths moble robot s not omn-drectonal and a no-slp condton was assumed. Our lterature search revealed only two papers whch mentoned slp n omn-drectonal wheeled robots. or et al. clam that ther vehcle avods tre slppage by desgn snce ther omn-drectonal moton base decouples steerng and drvng [4]. Dckerson and Lapn present a controller for omn-drectonal ecanum-wheeled vehcles, that ncludes wheel slp detecton and compensaton [5]. The current paper presents a dynamc model for omndrectonal moble robots that ncludes slppng between the wheels and the moton surface. Ths paper was motvated by a need n the Oho Unversty cross-dscplnary RoboCup team: n prelmnary hardware testng of our omn-drectonal three-wheeled player robot, sgnfcant slppng occurred whch necesstated development of a dynamc model wth slp. Though our work s motvated by RoboCup, the result s a general dynamc model for omn-drectonal wheeled vehcles ncludng slp. Our model ncludes both frcton n the wheel rollng drecton and n the transverse drecton (normal to the frst). One mportant ssue turned out to be dfferng frctonal characterstcs due to the rgd materal dscontnutes between rollers n the omn-drectonal wheels. Ths artcle does not focus on real-tme control snce our objectve was to model and understand the sldng dynamcs problem n smulaton and expermentally. Based on our dynamc model, we wll develop real-tme control n the future, ncludng a means to measure the slppng for feedback control. Ths paper frst presents our omn-drectonal robot desgn, followed by dynamc modelng ncludng slp, a method to expermentally determne the coeffcents of frcton and valdate our frcton model, and then smulaton and expermental results to demonstrate omn-drectonal robot dynamcs consderng slp. II. ONI-DIRECTIONAL ROBOT ODEL In early evaluaton of our three-wheeled omn-drectonal moble robot hardware, slppng was encountered between the wheels and the carpet playng feld when the robot was n moton. Ths unexpected behavor motvated the development of a dynamc model ncludng slp. Ths model s presented n the next secton; the current secton descrbes the omn-drectonal robot hardware and model. Assocate Professor, Oho Unversty, Athens, OH; ember, IEEE 2 Graduate Research Assstant, Oho Unversty, Athens, OH Assstant Professor, Unversty of Padova, Padova, Italy; on sabbatcal at Oho Unversty durng the work reported 4 Graduate Research Assstant, Unversty of Padova, Padova, Italy

3 Wllams et al., Fnal anuscrpt, IEEE TRANSACTIONS ON ROBOTICS AND AUTOATION, arch 22 Fgure shows the CAD model for the three-wheeled omndrectonal moble robot and Fg. 2 shows a photograph of the prototype hardware. Fgure shows the top vew of our general three-wheeled omndrectonal moble robot model. The varables, used n the dynamc model of the next secton, are explaned below. The nertally-fxed frame s {} and the movng Cartesan reference frame s {}. The rear wheel s algned n the X drecton; the front two wheels are symmetrcally-placed, algned by constant angle δ from the Y axs (shown only for the left wheel n Fg. ). We assume the center of mass for the robot s located at the center of the robot crcle, whch s the orgn of {}. Ths was one of our gudng prncples n desgn. The robot mass s m and the robot mass moment of nerta about the Z axs through the center of mass s I. Each wheel center poston s gven by poston vector r, from the orgn of {} to the center of the wheel. The unt vector n ths drecton s also the drecton of each wheel s angular velocty vector (.e. s the axle drecton). The unt vector ŝ s normal to, gvng the nstantaneous drecton of each wheel. The Cartesan varables for omn-drectonal moton are X = { x y φ} T. As seen n Fg., the translatonal vector gvng the poston of the orgn of {} wth respect to the orgn of {} s { x y} T (expressed n the coordnates of {}); also, the angle φ gves the orentaton of the robot wth respect to the nertal frame horzontal drecton X. note that these wheels were not ntended for omn-drectonal moble robots; rather, they were developed for materal handlng applcatons. For a good dscusson on omn-drectonal wheels for moble robots, see [6]. Our applcaton dctated economcal, commercally-avalable wheels, whch led to our choce of wheel. As seen n Fg. 4, the axle s mounted normal to the wheel s crcle as n a standard wheel. However, the contact wth the ground s va rollers that are free to spn about an axs n-lne wth the crcle crcumference, normal to the wheel axle. Ths enables omndrectonal moton. III. ONI-DIRECTIONAL ROBOT DYNAICS ODELING Ths secton presents omn-drectonal moble robot modelng wth slp ncluded between the wheels and moton surface. The frst subsecton presents the model, plus the frcton model and expermental measurement of the frcton coeffcents; the second subsecton presents a method to expermentally valdate our theoretcal frcton model and measured frcton coeffcents. A. Dynamcs odel wth Slp The dynamcs model s developed n ths subsecton for a threewheeled omn-drectonal robot, but t apples to any omndrectonal robot wth three or more wheels. The dynamc model s shown n the top vew of Fg. above, and s descrbed n Secton 2. Fgure 5 shows modelng detals for the th wheel from a sde vew. Fgure 5 shows that our omn-drectonal wheel contans n=8 rollers; further, the fxed angle θ covers each roller sector and the fxed angle θ covers each sector between rollers. θ' θ" 2π n r^ θ Fgure. CAD odel Y δ 2 X x,y Y m,i s^ r Fgure 2. Hardware Photo φ ^r X Fgure. Omn-Drectonal Robot odel, Top Vew The omn-drectonal moton s enabled va specal wheels. Fgure 4 shows a commercal omn-drectonal wheel (kornylak.com) used n our moble robot desgns. It s mportant to Fgure 4. Commercal Wheel ρ P v r Fgure 5. Wheel Detal As seen n Fg. 5, we denote P (=,2,) as the contact pont between the th wheel and the ground. Instantaneously, P belongs to the ground and the wheel, but we consder that P s on the wheel. The velocty vector v for pont P s: v = v + ω r + v () G v G s the vehcle center of mass translatonal velocty, ω s the vehcle rotatonal velocty (both translatonal and rotatonal velocty vectors are expressed wth respect to the nertally-fxed frame {}), r s the poston vector gvng the wheel center poston wth respect to the movng frame {}, expressed n the nertal frame, and v r s the perpheral wheel speed wth respect to the movng frame, expressed n the nertal frame. Note that when v s null, there s no slppng moton. We can express v as a functon of the wheel angular velocty vector θ & and the wheel radus vector r r ρ : r s^ v = θ & ρ (2)

4 Wllams et al., Fnal anuscrpt, IEEE TRANSACTIONS ON ROBOTICS AND AUTOATION, arch 22 4 The wheel angular velocty vector θ & = & θ s the scalar wheel speed & θ n the unt drecton, and the wheel radus poston vector ρ s scalar wheel radus ρ from the wheel center to pont P. Note the result of (2) s scalar ρ & θ n the unt wheel drecton ŝ (normal to ). The next two subsectons present our ntal frcton model and expermental measurement of frcton coeffcents. ) Intal Frcton odel There are two drectons of wheel/ground frcton to consder: the frst s frcton n the drecton of the wheel rotaton, ŝ, and the second s transverse to ths drecton,. Intally our model only ncluded the former case, but ntal trals wth the omn-drectonal moton base hardware ndcated that we must also nclude the latter frcton case. For use wth frcton n the drecton of the wheel rotaton, the sldng velocty component v W n the th wheel s obtaned by dottng the total pont P velocty from () nto the ŝ unt drecton: vw G ( ω r ) ˆ + ρ & θ = v = v + s () To convert wheel postons and unt drectons n the movng frame {} ( r and ŝ ) to the nertal frame {} ( r and ŝ ), use (4): R R = r R r = (4) s the orthonormal rotaton matrx gvng the orentaton of the movng frame {} wth respect to the nertal frame {}: cosφ snφ R = (5) snφ cosφ Therefore, () becomes: ( ) vw = vg R + ω R r R + ρ & θ On the other hand, the transverse sldng velocty component v n the th wheel, along the wheel axle drecton s: T vt ( ω R r ) R vg R + (6) = (7) If we assume the vehcle weght s equally dstrbuted on each wheel, the frcton force exerted on wheel by the moton surface through pont P s gven by: mg F ( W ( vw ) R = µ + µ T ( vt ) R ) (8) where µ W () s a functon representng the frcton coeffcent versus the sldng velocty n the drecton of the wheel rotaton and µ T () s the frcton coeffcent for the transverse wheel drecton. The dynamc equatons are: m& x = x ˆ F m y& = y ˆ F = = xˆ, yˆ, zˆ where & I & φ = zˆ ( r F ) & (9) = are the unt drecton vectors of the nertal frame. The X & = f X, X& : nonlnear dynamc equatons are of the form ( ) g ˆ ( ( ) ˆ x µ W vw R s + µ T ( vt ) R ) & = x () g & = ˆ ( ( ) ˆ y y µ W vw R s + µ T ( vt ) R ) = & φ mg [ ( ( ) ( ) )] ˆ ˆ z R r µ W vw R s + µ T vt R I = In our smulaton we use the followng smplfed formulas for coeffcent of frcton: 2 µ W ( vw ) = µ W max atan( kvw ) π () 2 µ T ( vt ) = µ T max atan( kvt ) π where µ W max, µ T max, and k are constants, and v W and v T are the sldng velocty magntudes n the wheel rotaton and transverse drectons, respectvely. Notce that n our frcton model, the dynamc frcton coeffcent s assumed to be constant and equal to the constant statc frcton coeffcent; we assume that ths smplfed model wll be suffcent to match expermental results. Equatons () are artfcal functons to convenently represent the frcton coeffcents stably n smulaton, avodng algorthmc problems that may arse when usng a dscontnuous functon at zero sldng velocty. Ths s a common approach; for example see [7] whch presents a parametrc model and expermental results for tre-road frcton coeffcents for automotve applcatons wth dfferent road condtons. The k constant governs the steepness of the change between postve and negatve µ W max and µ T max about zero sldng velocty. We chose k= by eye and to ensure numercal stablty n Smulnk. Note that () defnes postve frcton coeffcent to correspond wth postve sldng velocty; the opposte sgn behavor (Coulomb frcton acts opposte to the sldng drecton) s taken nto account n (8). Also, µ T max s much less than µ W max due to the desgn of the omn-drectonal wheels used, wth smaller frcton n the transverse drecton than the prmary drvng drecton, owng to the passve rollng cylnders (see Fg. 4). Our smple frcton model s ntended to capture gross realworld frcton characterstcs. Improvements are certanly possble by consderng stcton and dfferent coeffcents for the statc and dynamc frcton coeffcents. For an mproved frcton model, see [8]; these authors present a tre/road frcton model usng the LuGre dry frcton model and ncludng tre dynamcs. Our wheel and rollng surface materals are not smlar to the tre/road problem. 2) Expermental Frcton Coeffcent easurement We measured expermental values for µ W max and µ T max for use n the dynamc smulaton, for two moton surfaces: paper and carpet. In order to estmate µ W max, we bult a specal vehcle n whch all the wheels were algned along a common drecton. Each wheel angle was fxed n such a way that only the rollers were n contact wth the moton surface. The surface was made up of a rgd board covered wth paper or carpet. The square board was pvoted on one edge. The vehcle was placed so that all wheel axes were parallel to the pvotng edge. Then we gradually lfted the board untl the specal vehcle sld. µ W max was determned as the tangent of the angle between the lfted board and the horzontal plane. To measure µ T max, we repeated the above procedure, placng the specal vehcle so that all wheel axes were perpendcular to the pvotng edge. Agan n ths case only the rollers were n contact wth the moton surface. The results are: µ. 26 and W max =

5 Wllams et al., Fnal anuscrpt, IEEE TRANSACTIONS ON ROBOTICS AND AUTOATION, arch 22 5 µ T max =.9 for the paper moton surface, and µ W max =. 25 and µ T max =.5 for the carpet moton surface. These results were averaged over several trals. For each surface, the transverse roller frcton ( µ T max ) s much smaller than that n the wheel rotaton drecton ( µ W max ). The wheel rotaton drecton frcton coeffcents are nearly the same for paper and carpet. B. Intal Smulaton and Expermental Results Ths secton presents smulated and expermental results to demonstrate omn-drectonal moble robot moton consderng slp. Smulaton results are presented frst usng the ntal frcton model; next, the expermental procedure and results are presented and compared wth the smulaton results. For both of the followng subsectons (smulaton and expermental results), the same moton condton s used: we command straght-lne moton from ntal pont X = {.. } T to fnal pont X F = {.4. }T (m) n a specfed tme of t F =. 5 sec. We consder only X moton snce, due to robot symmetry, Y moton s nherently less affected by slp. φ moton could have sgnfcant slp behavor; ths wll be the subject of future expermental work. Fgure shows our robot o hardware geometry (our desgn has δ =5 : we were drven to ths o choce by RoboCup sze constrants; δ = s preferable for robot symmetry). The moton s commanded n the nertal frame, {} n Fg.. Robot orentaton φ s also mportant n slp dynamcs, but the pure X moton wll also demonstrate (unwanted) orentaton slp moton. Robot orentaton s commanded as zero for the moton example. Snce we wsh to demonstrate slppng, we make no attempt to smooth the commanded velocty moton from rest or endng at rest. Hence, the smulated commanded wheel acceleraton s nfnte at the start and the deceleraton s nfnte at the end of the tme perod. Of course, nether the real or smulated robot can acheve nfnte acceleraton or deceleraton, but the hgh acceleratons at the start and end are suffcent to cause slp. Constant velocty s commanded n between the start and end. Clearly for omndrectonal moble robot applcatons we need smoother trajectory generaton, perhaps usng 5 th -order polynomals for wheel dsplacements. For ths moton example, the requred constant wheel angular speeds are & θ = & θ2 = +. 6 and & θ = 4. 5 (rad/s); note the wheel numberng conventon s gven n Fg.. Wth ths moton example, we consder two moton surfaces to nclude dfferent levels of frcton: a smooth paper surface and a rough carpet surface. The expermentally-measured frcton coeffcents for use n smulaton were presented n Secton.A.2. ) Intal Smulaton Results We developed a atlab Smulnk model to smulate omndrectonal moble robot dynamc moton consderng slp. In ths subsecton we present smulated dynamcs results usng the ntal frcton model of Secton.A.. The smulated moton condton, surfaces, and frcton coeffcents are descrbed above. To save space, we only show the smulated case wth the paper moton surface. Fgure 6a shows the Cartesan dsplacements and Fg. 6b shows the assocated sldng speeds n the wheel drectons for each wheel, for the smulated moton. In Fg. 6b, the smulated sldng speeds for wheels one and two are dentcal due to symmetry. As seen n Fg. 6b, slppng s encountered at the start and end of moton (due to the nfnte commanded acceleraton and deceleraton), but not n the mddle. The effect, seen n Fg. 6a, s that x falls short by 4 mm ts goal of.4 m, whle y drfts -9 mm from the desred zero. φ drfts from ts commanded value of zero by -.6 rad at the end; n the mddle of moton, the φ drft s larger. From approxmately t =.25 sec to t = t F =. 5 sec, the x moton s lnear, whch means constant velocty has been acheved and the smulaton predcts no unwanted slppng n ths range φ x t (sec). -. Fgure 6a. Cartesan Dsplacements (m and rad), t (sec) Fgure 6b. Wheel Sldng Speeds v W, v W 2, v W (m/s) 2) Expermental Procedure and Results Experments were performed to valdate the results of our smulaton work, usng both paper and carpet moton surfaces. Our moble robot was tethered for the experments; eventually our moble robots wll be free, the on-board PCs communcatng wth the host PC va wreless Ethernet. To control the robot durng the expermental trals, WnCon. n conjuncton wth Smulnk was used. Ths enabled us to use a Quanser ult-q board to control the motor angular veloctes through a feedback loop. The expermental robot was shown earler n Fg. 2. Please note that the robot cables must be held manually to avod constranng the robot moton. Expermental trajectores were traced by attachng a lghtweght pencl to the robot center of mass, for the paper surface. Ths was not feasble for the carpet surface, so only the end ponts and fnal orentatons were recorded n the carpet cases. Another way to present the smulaton result from Fg. 6a s gven n Fgs. 7a and b, plottng y vs. x for the paper and carpet moton surfaces. The expermental data s ncluded for comparson. y,2

6 Wllams et al., Fnal anuscrpt, IEEE TRANSACTIONS ON ROBOTICS AND AUTOATION, arch 22 6 Fgure 7a. Smulated (dashed) and Expermental (sold) Results for Paper oton Surface Fgure 7b. Smulated (dashed) and Expermental (O) Results for Carpet oton Surface In Fg. 7a, the dashed curve s the smulated result usng the ntal frcton model wth the paper moton surface; ths curve was obtaned by plottng y vs. x (rather than vs. tme t) from Fg. 6a. The four sold curves are the results of the four expermental trals for the same moton case, wth the paper moton surface. In Fg. 7b, the three sngle O ponts are the endng ponts for the three expermental trals wth the carpet moton surface (these cases also tred to obtan pure X moton from to.4 m; no trajectory s avalable as explaned above). The dashed curve s the smulated result usng the ntal frcton model and the carpet moton surface (not prevously shown). IV. IPROVED ODEL Clearly from Fgs. 7, the ntal smulaton results do not agree well wth the expermental results, when usng the ntal frcton model wth ether moton surface, paper or carpet. Ths poor result motvated the need for an mproved frcton model. We use the same type of smple frcton model, but augmented for the specal nature of our omn-drectonal wheels geometry. Ths secton presents our mproved frcton model, valdaton of our frcton coeffcent measurements, and mproved smulaton results, compared wth the precedng expermental results. A. Improved Frcton odel We notced that, for our choce of wheel, the frcton coeffcent s a functon of the wheel angle θ. When the rgd wheel materal between two rollers s n contact wth the moton surface (see Fg. 5), the frcton coeffcents change. Ths undesrable behavor cannot be blamed on the wheel manufacturer snce the wheels were not made for use n omn-drectonal moble robots. We account for ths phenomenon by ntroducng nonlnear frcton coeffcents as a functon of the sldng speeds and wheel angle. Let n be the number of rollers n the wheel (n=8 n Fgs. 4 and 5). Each roller and rgd porton s wthn angular sector 2 π n. Each sector can be splt nto two dfferent (roller and rgd) portons wth dfferent frcton coeffcents: θ + θ = 2π n as seen n Fg. 5. Therefore, we have dfferent frcton coeffcents accordng to whch part of the sector s n contact wth the moton surface at a gven tme. In our hardware wheel, θ (the roller) accounts for 9% of each angular sector 2 π n and θ" (the rgd materal) accounts for %. To summarze, our mproved frcton model s the same as (), but we use roller values for frcton coeffcent ( µ and ' W max ' µ T max ) when the wheel angle s wthn the θ sector and we use " " rgd materal values ( µ W max and µ T max ) when the wheel angle s wthn θ". ' ' We measured expermental values for µ W max, µ T max, " W max " T µ, and µ max for both paper and carpet moton surfaces. ' W max ' T µ and µ max were already measured n Secton.A.2; now we have added a sngle prme superscrpt to ndcate roller. " W max " T µ and µ max were measured n the same way, but n these cases the wheel angle was fxed so that only the wheel sector between two consecutve rollers was n contact wth the moton surface. The double-prme superscrpt ndcates the rgd materal between rollers. The results, averaged over several trals, are shown n Table I below (the frst two columns are the same as the prevous results n Secton.A.2). Table I. Expermental Frcton Coeffcents Surface ' ' " " µ W max µ T max µ W max µ T max Paper Carpet ' T max Agan, for each surface, the transverse roller frcton ( µ ) s ' much smaller than that n the wheel rotaton drecton ( µ W max ). ' The wheel rotaton drecton roller frcton coeffcents ( µ W max ) are nearly the same for paper and carpet. For the materal between the rollers (double-prme), the carpet frcton coeffcent value s hgher than that of the paper surface. As expected, the wheel and transverse coeffcents of frcton ( µ max and µ max ) are dentcal for the materal between the rollers (for a gven moton surface). B. Valdaton of Frcton Coeffcent easurements In attempt to valdate both our expermental statc frcton coeffcents and our mproved frcton model, we now derve and measure the maxmum allowable force yeldng statc equlbrum for the omn-drectonal robot. The frcton force on each wheel s: " W " T

7 Wllams et al., Fnal anuscrpt, IEEE TRANSACTIONS ON ROBOTICS AND AUTOATION, arch 22 7 F = F ˆ + F ˆ (2) Ws Tr Where F W and F T are respectvely the frcton force magntudes along the wheel moton drecton and along the wheel axs drecton (transverse). Suppose we apply an external force F = { } T at the robot mass center. What s the maxmum force e Fe F emax we can apply at the mass center and stll mantan statc equlbrum (avod sldng moton)? The external force we apply s ressted by the frcton forces and moment: F e = = = = ( rx y ry x ) FW + ( rx y ry x ) F T = = x FW + x FT = y FW + y FT = = () whch s rewrtten as: F e = [ AW FW AT ] FT (4) where: x AW = y r x y r y x x AT = y r x y r y x 2x 2 y r2 x 2y r2 y 2x 2x 2 y r2 x 2y r2 y 2x x y r x y r y x x y r x y r y x F = { F F } T F = { F F } T W FW W 2 W T FT T 2 T Notce that the elements of A W, A T are expressed n the nertal frame, so they are functons of robot orentaton φ. We can express A W, A T as a product of two matrces: A W = RB W A T = RBT (5) where B W, B T are dentcal to A W, A T, except all vector components are expressed n the movng frame {}, and: cφ sφ R = R = sφ cφ Notce that wth ths notaton, B W, B T are constant, whle R s a functon of the angular poston. Therefore: FW F e = R [ BW BT ] (6) FT The set of frcton forces that can be exerted by the moton surface contact pont on the robot s gven by: Σ = mg mg mg mg F F µ W max FW µ W max, µ T max FT µ max T (7) where: FW F = F T = { F F F F F } T FW W 2 W T T 2 T Equaton (7) represents the domnon of the lnear transformaton gven by (6). The mage of Σ F s a polytope that represents the maxmum force avalable along x, y, and φ. Our am s to calculate the maxmum value of F e that satsfes (6) and at the same tme belongs to the mage of Σ F. There are several standard ways to solve ths problem usng polytope theory [9]. For our partcular problem we can turn the problem nto a typcal constraned maxmzaton problem and solve t wth numercal software lke athematca. If we splt the matrx R [ B W B T ] n two sub-matrces, we have: B F = R [ B W B T ] e = BF (8) B 2 = B2F therefore F = { F F = B F, = B F, F Σ } e max e max F s a functon of φ. ' W max e e 2 ' T F. Notce that Usng µ max and µ max determned expermentally above, we can plot the maxmum force before sldng, F e max, versus moble robot orentaton φ, usng the theory of ths secton. Fe max can also be measured expermentally wth the followng procedure. When we apply an external force to the robot along the X drecton, f the sum of the three frcton force components along X s hgh enough, the robot does not move. We ncrease the external force untl the robot moves. The mnmum external force to move the robot s recorded as F e max. The procedure s repeated wth dfferent angular orentatons φ. An expermental plot of F e max vs. φ s shown n Fg. 8. Note ths fgure gves results for the omn-drectonal robot (Fgs. 2 and ), not the specal vehcle constructed for frcton coeffcent measurement n Sectons.A.2 and 4.A. Due to robot symmetry, plottng results from to π / 2 rad n robot orentaton s suffcent. Three seres of data have been collected. Consderng statc condtons, the expermental data (O) and the theoretcal result (sold curve, solved va athematca) compare reasonably well, whch serves to valdate both our frcton coeffcents and our frcton model. Though the agreement s reasonable, the expermental repeatablty s very low. Femax (N) φ (deg) F e max Fgure 8. Expermental (O) and Theoretcal (sold)

8 Wllams et al., Fnal anuscrpt, IEEE TRANSACTIONS ON ROBOTICS AND AUTOATION, arch 22 8 C. Improved Smulaton Results In an attempt to mprove the poor smulaton/expermental agreement of Fgs. 7, the mproved frcton model of ths secton s mplemented n smulaton n ths subsecton, and then compared wth the exstng expermental data. The mproved frcton model accounts for the rgd materal n the dscontnutes between wheel rollers (see Fg. 5). Fgures 9 show smulated results for the same moton nput case as for Fgs. 6; Fgs. 9 nclude the real-world effect of the rgd materal between the wheel rollers. Agan, to save space, the smulated results are shown only for the paper moton surface n Fgs. 9. Fgure 9a shows the Cartesan dsplacements and Fg. 9b shows the assocated sldng speeds v W for each wheel, for the smulated pure X moton on the paper surface. Agan n Fg. 9b, the smulated sldng speeds for wheels one and two are dentcal due to symmetry. As seen n Fg. 9b, slppng agan s encountered at the start and end of moton. In addton, wheel three experences sgnfcant slp durng the mddle of the moton; ths behavor was not predcted by the ntal frcton model. The effect, seen n Fg. 9a, s that x falls short by 5 mm ts goal of.4 m, whle y drfts -22 mm from the desred zero. φ drfts from ts commanded value of zero by -. rad n the worst case at the end. All three Cartesan drfts are much larger than predcted n Fg. 6a. Fgure a. Improved Smulated (dashed) and Expermental (sold) Results for Paper oton Surface.4..2 x. y φ t (sec). -. Fgure 9a. Cartesan Dsplacements (m and rad), t (sec) Fgure 9b. Wheel Sldng Speeds v W, v W 2, v W (m/s) Fgures a and b compare the precedng expermental data wth ths new, mproved frcton model smulaton, plottng y vs. x for paper and carpet moton surfaces, respectvely. The expermental data of Fgs. s dentcal to that of Fgs. 7.,2 Fgure b. Improved Smulated (dashed) and Expermental (O) Results for Carpet oton Surface In Fg. a, the dashed curve s the smulated result usng the mproved frcton model and the paper moton surface; ths curve was obtaned by plottng y vs. x from Fg. 9a. The four sold curves are the prevously-presented expermental results for the same moton case, wth the paper moton surface. The three sngle O ponts n Fg. 9b are the same expermental endng ponts wth the carpet moton surface as shown n Fg. 7b. The dashed curve s the smulated result usng the mproved frcton model and the carpet moton surface (not prevously shown). Clearly, the smulaton/ expermental agreement obtaned by the mproved frcton model (shown n Fgs. a and b) s much better than that dsplayed n Fgs. 7a and b whch used the ntal frcton model. Fgures 7 and gnore the moble robot orentaton φ. For the paper moton surface, the smulated (mproved frcton model) endng value of φ s -. rad. No expermental data s avalable for ths case, snce the four expermental trals all ended wth very small φ, close to the angular measurement precson. Even so, the agreement s good qualtatvely snce the smulated endng angle s also small. For the carpet moton surface, the smulated endng value of φ s.558 rad, whch compares favorably wth the measured expermental values of.524,.56, and.489 rad (leftto-rght for the expermental Os of Fg. b). As mentoned earler, we assumed the dynamc frcton coeffcent s equal to the statc frcton coeffcent. Perhaps better

9 Wllams et al., Fnal anuscrpt, IEEE TRANSACTIONS ON ROBOTICS AND AUTOATION, arch 22 9 smulaton/expermental agreement would be obtaned by use of a combned frcton coeffcent model where the dynamc frcton s less. Ths s dffcult to measure, and we are satsfed wth the agreement shown n Fg., usng statc coeffcents of frcton only. V. CONCLUSION Ths paper presents a dynamc model for omn-drectonal wheeled moble robots and vehcles, consderng slppng between the wheels and moton surface. We derved the dynamcs model, expermentally measured the frcton coeffcents, and valdated our frcton model by expermentally measurng the maxmum force causng slp at varous robot orentatons. Smulaton examples were presented to demonstrate slppng moton; the ntal frcton model results dd not agree wth expermental trajectory data. Therefore, an mproved frcton model was developed, consderng the rgd materal n the dscontnutes between omn-drectonal wheel rollers. Wth ths mproved frcton model the smulaton agreed well wth the expermental data. Two moton surfaces (paper and carpet) were used n smulaton and experments, wth dfferent frcton propertes. A pure X translatonal moton was commanded n smulaton and experment; smulatons show that slppng for Y translatonal motons are not as severe, due to robot symmetry. Wth zero commanded rotatonal moton, the robot experenced undesrable slp n rotatonal moton. In the future we wll study slppng n commanded rotatonal motons. Durng our ntal modelng and expermental work, we thought that omn-drectonal robot slp dynamcs would be lmted by hgh veloctes and acceleratons. Ths s stll true; however, we learned that, for our robot desgn, an equally sgnfcant factor n slp dynamcs s the rgd materal between rollers, even at low moton rates and acceleratons. Our development team response was to fle away as much of that materal as possble to avod contact n these sectors (after the experments). However, ths artcle s pertnent to any omn-drectonal moble robot desgn wth or wthout dscontnuty between rollers. Our work demonstrated reasonable smulaton/expermental agreement and we feel that we have captured the slp dynamcs behavor of our desgn. A future mprovement s to use statc and dynamc coeffcents of frcton; due to our demonstrated agreement, we conclude that the statc coeffcents of frcton are adequate. For dfferent omn-drectonal robot desgns, our modelng and smulaton work wll apply, but sgnfcant expermental work s stll requred to measure the varous frcton coeffcents and to fully understand the dynamc slp behavor. Snce our objectve was to model and understand the sldng dynamcs problem, ths artcle does not focus on real-tme control. We wll develop real-tme control n the future based on our dynamc model, ncludng measurement of varables for feedback control to overcome slppng dynamcs. [6] S. Shekhar, Wheel Rollng Constrants and Slp n oble Robots, Proceedngs of the IEEE Internatonal Conference on Robotcs and Automaton, : , 997. [7] R. Balakrshna and A. Ghosal, odelng of slp for wheeled moble robots, IEEE Transactons on Robotcs and Automaton, ():26 2, 995. [8] S. Schedng, G. Dssanayake, E.. Nebot, and H. Durrant-Whyte, Experment n Autonomous Navgaton of an Underground nng Vehcle, IEEE Transactons on Robotcs and Automaton, 5(): 85 95, 999. [9].-J. Jung, H.-S. Km, S. Km, and J.-H. Km, Omn-Drectonal oble Base OK-II, Proceedngs of the IEEE Internatonal Conference on Robotcs and Automaton, 4: , 2. [] K.L. oore,. Davdson, V. Bahl, S. Rch, and S. Jrgal, odelng and Control of a Sx-Wheeled Autonomous Robot, Proceedngs of the Amercan Control Conference, : 48-49, 2. [] K. Watanabe, Y. Shrash, S. Tzafestas, J. Tang, and T. Fukuda, Feedback Control of an Omn-drectonal Autonomous Platform for oble Servce Robots, Journal of Intellgent and Robotc Systems,22: 5-, 998. [2] G. Wtus, oblty Potental of a Robotc 6-Wheeled Omn-Drectonal Drve Vehcle (ODV) wth Z-Axs and Tre Inflaton Control, Proceedngs of SPIE, 424: 6-4, 2. [] S. Bhattacharya and S. Agrawal, Sphercal Rollng Robot: Desgn and oton Plannng Studes, IEEE Transactons on Robotcs and Automaton, 6(6): 85-89, 2. [4] Y. or, E. Nakano, T. Takahash, and K. Takayama, echansm and Runnng odes of New Omn-Drectonal Vehcle ODV9, JSE Internatonal Journal, Seres C, 42(): 2-27, 999. [5] S.L. Dckerson and B.D. Lapn, Control of an Omn-Drectonal Robotc Vehcle wth ecanum Wheels, Natonal Telesystems Conference Proceedng, : 2-28, 99. [6] F.G. Pn and S.. Kllough, A New Famly of Omn-drectonal and Holonomc Wheeled Platforms for oble Robots, IEEE Transactons on Robotcs and Automaton, (4): , 994. [7] F. Gustafsson, Slp-Based Tre-Road Frcton Estmaton, Automatca, (6): 87-99, 997. [8] X. Claeys, J. Y, L. Alvarez, R. Horowtz, C.C. de Wt, 2, A Dynamc Tre/Road Frcton odel for D Vehcle Control and Smulaton, IEEE Intellgent Transportaton Systems Proceedngs, Oakland, CA, Aug 25-29, [9] H. Yong-Seob, L. Jhong, and T.C. Hsa, A Recursve Dmenson- Growng ethod for Computng Robotc anpulablty Polytope, Proceedngs of the IEEE Internatonal Conference on Robotcs and Automaton, , 2. REFERENCES [] C.C. De Wt, Trends n oble Robot and Vehcle Control, Control Problems n Robotcs and Automaton, 5-75, 998. [2] J. Borensten, H.R. Everett, and L. Feng, oble Robot Postonng: Sensors and Technques, Journal of Robotc Systems, 4: 2-249, 997. [] B.J. Cho and S.V. Sreenvasan, Gross oton Characterstcs of Artculated oble Robots wth Pure Rollng Capablty on Smooth Uneven Surfaces, IEEE Transactons on Robotcs and Automaton, 5(2): 4-4, 999. [4] A. Hamdy and E. Badreddn, Dynamc odelng of a Wheeled oble Robot for Identfcaton, Navgaton and Control, IACS Conference on odelng and Control of Technologcal Systems, 9-28, 992. [5] R. Rajagopalan, A Generc Knematc Formulaton for Wheeled oble Robots, Journal of Robotc Systems, 4: 77-9, 997.

Faraday's Law of Induction

Faraday's Law of Induction Introducton Faraday's Law o Inducton In ths lab, you wll study Faraday's Law o nducton usng a wand wth col whch swngs through a magnetc eld. You wll also examne converson o mechanc energy nto electrc energy

More information

where the coordinates are related to those in the old frame as follows.

where the coordinates are related to those in the old frame as follows. Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product

More information

Rotation Kinematics, Moment of Inertia, and Torque

Rotation Kinematics, Moment of Inertia, and Torque Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute

More information

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 7. Root Dynamcs 7.2 Intro to Root Dynamcs We now look at the forces requred to cause moton of the root.e. dynamcs!!

More information

IMPACT ANALYSIS OF A CELLULAR PHONE

IMPACT ANALYSIS OF A CELLULAR PHONE 4 th ASA & μeta Internatonal Conference IMPACT AALYSIS OF A CELLULAR PHOE We Lu, 2 Hongy L Bejng FEAonlne Engneerng Co.,Ltd. Bejng, Chna ABSTRACT Drop test smulaton plays an mportant role n nvestgatng

More information

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background: SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and

More information

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna wangtngzhong2@sna.cn Abstract.

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

Damage detection in composite laminates using coin-tap method

Damage detection in composite laminates using coin-tap method Damage detecton n composte lamnates usng con-tap method S.J. Km Korea Aerospace Research Insttute, 45 Eoeun-Dong, Youseong-Gu, 35-333 Daejeon, Republc of Korea yaeln@kar.re.kr 45 The con-tap test has the

More information

Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum

Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum Physcs 106 Week 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap 11.2 to 3 Rotatonal quanttes as vectors Cross product Torque expressed as a vector Angular momentum defned Angular momentum as a

More information

"Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *

Research Note APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES * Iranan Journal of Scence & Technology, Transacton B, Engneerng, ol. 30, No. B6, 789-794 rnted n The Islamc Republc of Iran, 006 Shraz Unversty "Research Note" ALICATION OF CHARGE SIMULATION METHOD TO ELECTRIC

More information

RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST) yaoqi.feng@yahoo.

RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST) yaoqi.feng@yahoo. ICSV4 Carns Australa 9- July, 007 RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL Yaoq FENG, Hanpng QIU Dynamc Test Laboratory, BISEE Chna Academy of Space Technology (CAST) yaoq.feng@yahoo.com Abstract

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy 4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.

More information

Calculation of Sampling Weights

Calculation of Sampling Weights Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

More information

1 Example 1: Axis-aligned rectangles

1 Example 1: Axis-aligned rectangles COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

More information

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attribute Acceptance Plans The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

More information

Inter-Ing 2007. INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 15-16 November 2007.

Inter-Ing 2007. INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 15-16 November 2007. Inter-Ing 2007 INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 15-16 November 2007. UNCERTAINTY REGION SIMULATION FOR A SERIAL ROBOT STRUCTURE MARIUS SEBASTIAN

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

Can Auto Liability Insurance Purchases Signal Risk Attitude?

Can Auto Liability Insurance Purchases Signal Risk Attitude? Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang

More information

What is Candidate Sampling

What is Candidate Sampling What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

More information

1. Measuring association using correlation and regression

1. Measuring association using correlation and regression How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a

More information

Multi-Robot Tracking of a Moving Object Using Directional Sensors

Multi-Robot Tracking of a Moving Object Using Directional Sensors Mult-Robot Trackng of a Movng Object Usng Drectonal Sensors Xaomng Hu, Karl H. Johansson, Manuel Mazo Jr., Alberto Speranzon Dept. of Sgnals, Sensors & Systems Royal Insttute of Technology, SE- 44 Stockholm,

More information

BERNSTEIN POLYNOMIALS

BERNSTEIN POLYNOMIALS On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful

More information

Lecture 3: Force of Interest, Real Interest Rate, Annuity

Lecture 3: Force of Interest, Real Interest Rate, Annuity Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and

More information

A machine vision approach for detecting and inspecting circular parts

A machine vision approach for detecting and inspecting circular parts A machne vson approach for detectng and nspectng crcular parts Du-Mng Tsa Machne Vson Lab. Department of Industral Engneerng and Management Yuan-Ze Unversty, Chung-L, Tawan, R.O.C. E-mal: edmtsa@saturn.yzu.edu.tw

More information

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008 Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

Politecnico di Torino. Porto Institutional Repository

Politecnico di Torino. Porto Institutional Repository Poltecnco d orno Porto Insttutonal Repostory [Proceedng] rbt dynamcs and knematcs wth full quaternons rgnal Ctaton: Andres D; Canuto E. (5). rbt dynamcs and knematcs wth full quaternons. In: 16th IFAC

More information

Traffic State Estimation in the Traffic Management Center of Berlin

Traffic State Estimation in the Traffic Management Center of Berlin Traffc State Estmaton n the Traffc Management Center of Berln Authors: Peter Vortsch, PTV AG, Stumpfstrasse, D-763 Karlsruhe, Germany phone ++49/72/965/35, emal peter.vortsch@ptv.de Peter Möhl, PTV AG,

More information

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.

More information

A Multi-mode Image Tracking System Based on Distributed Fusion

A Multi-mode Image Tracking System Based on Distributed Fusion A Mult-mode Image Tracng System Based on Dstrbuted Fuson Ln zheng Chongzhao Han Dongguang Zuo Hongsen Yan School of Electroncs & nformaton engneerng, X an Jaotong Unversty X an, Shaanx, Chna Lnzheng@malst.xjtu.edu.cn

More information

Autonomous Navigation and Map building Using Laser Range Sensors in Outdoor Applications

Autonomous Navigation and Map building Using Laser Range Sensors in Outdoor Applications Autonomous Navgaton and Map buldng Usng aser Range Sensors n Outdoor Applcatons Jose Guvant, Eduardo Nebot and Stephan Baker Australan Centre for Feld Robotcs Department of Mechancal and Mechatronc Engneerng

More information

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange

More information

Rotation and Conservation of Angular Momentum

Rotation and Conservation of Angular Momentum Chapter 4. Rotaton and Conservaton of Angular Momentum Notes: Most of the materal n ths chapter s taken from Young and Freedman, Chaps. 9 and 0. 4. Angular Velocty and Acceleraton We have already brefly

More information

21 Vectors: The Cross Product & Torque

21 Vectors: The Cross Product & Torque 21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl

More information

On the Optimal Control of a Cascade of Hydro-Electric Power Stations

On the Optimal Control of a Cascade of Hydro-Electric Power Stations On the Optmal Control of a Cascade of Hydro-Electrc Power Statons M.C.M. Guedes a, A.F. Rbero a, G.V. Smrnov b and S. Vlela c a Department of Mathematcs, School of Scences, Unversty of Porto, Portugal;

More information

Performance Analysis of Energy Consumption of Smartphone Running Mobile Hotspot Application

Performance Analysis of Energy Consumption of Smartphone Running Mobile Hotspot Application Internatonal Journal of mart Grd and lean Energy Performance Analyss of Energy onsumpton of martphone Runnng Moble Hotspot Applcaton Yun on hung a chool of Electronc Engneerng, oongsl Unversty, 511 angdo-dong,

More information

DEFINING %COMPLETE IN MICROSOFT PROJECT

DEFINING %COMPLETE IN MICROSOFT PROJECT CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

Ring structure of splines on triangulations

Ring structure of splines on triangulations www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAM-Report 2014-48 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

Forecasting the Direction and Strength of Stock Market Movement

Forecasting the Direction and Strength of Stock Market Movement Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract - Stock market s one of the most complcated systems

More information

SMOOTH TRAJECTORY PLANNING ALGORITHMS FOR INDUSTRIAL ROBOTS: AN EXPERIMENTAL EVALUATION

SMOOTH TRAJECTORY PLANNING ALGORITHMS FOR INDUSTRIAL ROBOTS: AN EXPERIMENTAL EVALUATION 1. Albano LANZUTTI SMOOTH TRAJECTORY PLANNING ALGORITHMS FOR INDUSTRIAL ROBOTS: AN EXPERIMENTAL EVALUATION 1. DIPARTIMENTO DI INGEGNERIA ELETTRICA, GESTIONALE E MECCANICA UNIVERSITA' DI UDINE, UDINE ITALY

More information

Project Networks With Mixed-Time Constraints

Project Networks With Mixed-Time Constraints Project Networs Wth Mxed-Tme Constrants L Caccetta and B Wattananon Western Australan Centre of Excellence n Industral Optmsaton (WACEIO) Curtn Unversty of Technology GPO Box U1987 Perth Western Australa

More information

INVESTIGATION OF VEHICULAR USERS FAIRNESS IN CDMA-HDR NETWORKS

INVESTIGATION OF VEHICULAR USERS FAIRNESS IN CDMA-HDR NETWORKS 21 22 September 2007, BULGARIA 119 Proceedngs of the Internatonal Conference on Informaton Technologes (InfoTech-2007) 21 st 22 nd September 2007, Bulgara vol. 2 INVESTIGATION OF VEHICULAR USERS FAIRNESS

More information

A Multi-Camera System on PC-Cluster for Real-time 3-D Tracking

A Multi-Camera System on PC-Cluster for Real-time 3-D Tracking The 23 rd Conference of the Mechancal Engneerng Network of Thaland November 4 7, 2009, Chang Ma A Mult-Camera System on PC-Cluster for Real-tme 3-D Trackng Vboon Sangveraphunsr*, Krtsana Uttamang, and

More information

Stochastic Six-Degree-of-Freedom Flight Simulator for Passively Controlled High-Power Rockets

Stochastic Six-Degree-of-Freedom Flight Simulator for Passively Controlled High-Power Rockets Stochastc Sx-Degree-of-Freedom Flght for Passvely Controlled Hgh-Power s Smon Box 1 ; Chrstopher M. Bshop 2 ; and Hugh Hunt 3 Downloaded from ascelbrary.org by TECHNISCHE UNIVERSITEIT DELFT on 2/7/13.

More information

Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION

Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION Vson Mouse Saurabh Sarkar a* a Unversty of Cncnnat, Cncnnat, USA ABSTRACT The report dscusses a vson based approach towards trackng of eyes and fngers. The report descrbes the process of locatng the possble

More information

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

v a 1 b 1 i, a 2 b 2 i,..., a n b n i. SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are

More information

Calculating the high frequency transmission line parameters of power cables

Calculating the high frequency transmission line parameters of power cables < ' Calculatng the hgh frequency transmsson lne parameters of power cables Authors: Dr. John Dcknson, Laboratory Servces Manager, N 0 RW E B Communcatons Mr. Peter J. Ncholson, Project Assgnment Manager,

More information

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance Calbraton Method Instances of the Cell class (one nstance for each FMS cell) contan ADC raw data and methods assocated wth each partcular FMS cell. The calbraton method ncludes event selecton (Class Cell

More information

POLYSA: A Polynomial Algorithm for Non-binary Constraint Satisfaction Problems with and

POLYSA: A Polynomial Algorithm for Non-binary Constraint Satisfaction Problems with and POLYSA: A Polynomal Algorthm for Non-bnary Constrant Satsfacton Problems wth and Mguel A. Saldo, Federco Barber Dpto. Sstemas Informátcos y Computacón Unversdad Poltécnca de Valenca, Camno de Vera s/n

More information

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services An Evaluaton of the Extended Logstc, Smple Logstc, and Gompertz Models for Forecastng Short Lfecycle Products and Servces Charles V. Trappey a,1, Hsn-yng Wu b a Professor (Management Scence), Natonal Chao

More information

Homework: 49, 56, 67, 60, 64, 74 (p. 234-237)

Homework: 49, 56, 67, 60, 64, 74 (p. 234-237) Hoework: 49, 56, 67, 60, 64, 74 (p. 34-37) 49. bullet o ass 0g strkes a ballstc pendulu o ass kg. The center o ass o the pendulu rses a ertcal dstance o c. ssung that the bullet reans ebedded n the pendulu,

More information

How To Calculate The Accountng Perod Of Nequalty

How To Calculate The Accountng Perod Of Nequalty Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.

More information

A hybrid global optimization algorithm based on parallel chaos optimization and outlook algorithm

A hybrid global optimization algorithm based on parallel chaos optimization and outlook algorithm Avalable onlne www.ocpr.com Journal of Chemcal and Pharmaceutcal Research, 2014, 6(7):1884-1889 Research Artcle ISSN : 0975-7384 CODEN(USA) : JCPRC5 A hybrd global optmzaton algorthm based on parallel

More information

APPLICATION OF PROBE DATA COLLECTED VIA INFRARED BEACONS TO TRAFFIC MANEGEMENT

APPLICATION OF PROBE DATA COLLECTED VIA INFRARED BEACONS TO TRAFFIC MANEGEMENT APPLICATION OF PROBE DATA COLLECTED VIA INFRARED BEACONS TO TRAFFIC MANEGEMENT Toshhko Oda (1), Kochro Iwaoka (2) (1), (2) Infrastructure Systems Busness Unt, Panasonc System Networks Co., Ltd. Saedo-cho

More information

+ + + - - This circuit than can be reduced to a planar circuit

+ + + - - This circuit than can be reduced to a planar circuit MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to

More information

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors Pont cloud to pont cloud rgd transformatons Russell Taylor 600.445 1 600.445 Fall 000-014 Copyrght R. H. Taylor Mnmzng Rgd Regstraton Errors Typcally, gven a set of ponts {a } n one coordnate system and

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

Number of Levels Cumulative Annual operating Income per year construction costs costs ($) ($) ($) 1 600,000 35,000 100,000 2 2,200,000 60,000 350,000

Number of Levels Cumulative Annual operating Income per year construction costs costs ($) ($) ($) 1 600,000 35,000 100,000 2 2,200,000 60,000 350,000 Problem Set 5 Solutons 1 MIT s consderng buldng a new car park near Kendall Square. o unversty funds are avalable (overhead rates are under pressure and the new faclty would have to pay for tself from

More information

Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)

Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching) Face Recognton Problem Face Verfcaton Problem Face Verfcaton (1:1 matchng) Querymage face query Face Recognton (1:N matchng) database Applcaton: Access Control www.vsage.com www.vsoncs.com Bometrc Authentcaton

More information

Fault tolerance in cloud technologies presented as a service

Fault tolerance in cloud technologies presented as a service Internatonal Scentfc Conference Computer Scence 2015 Pavel Dzhunev, PhD student Fault tolerance n cloud technologes presented as a servce INTRODUCTION Improvements n technques for vrtualzaton and performance

More information

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo

More information

Detailed Analysis of SCARA-Type Serial Manipulator on a Moving Base with LabView

Detailed Analysis of SCARA-Type Serial Manipulator on a Moving Base with LabView Internatonal Journal of Advanced Robotc Systems ARTICLE Detaled Analyss of SCARA-Type Seral Manpulator on a Movng Base wth LabVew Regular Paper Alrıa Kalel 1,*, Ahmet Dumlu 1, M. Fath Çorapsı 1 and Köksal

More information

2. RELATED WORKS AND PROBLEM STATEMENT

2. RELATED WORKS AND PROBLEM STATEMENT JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 30, 1245-1260 (2014) Short Paper Traffc Congeston Evaluaton and Sgnal Tmng Optmzaton Based on Wreless Sensor Networks: Issues, Approaches and Smulaton * School

More information

SIMPLE LINEAR CORRELATION

SIMPLE LINEAR CORRELATION SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.

More information

Data Broadcast on a Multi-System Heterogeneous Overlayed Wireless Network *

Data Broadcast on a Multi-System Heterogeneous Overlayed Wireless Network * JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 24, 819-840 (2008) Data Broadcast on a Mult-System Heterogeneous Overlayed Wreless Network * Department of Computer Scence Natonal Chao Tung Unversty Hsnchu,

More information

Efficient Striping Techniques for Variable Bit Rate Continuous Media File Servers æ

Efficient Striping Techniques for Variable Bit Rate Continuous Media File Servers æ Effcent Strpng Technques for Varable Bt Rate Contnuous Meda Fle Servers æ Prashant J. Shenoy Harrck M. Vn Department of Computer Scence, Department of Computer Scences, Unversty of Massachusetts at Amherst

More information

Vehicle Detection and Tracking in Video from Moving Airborne Platform

Vehicle Detection and Tracking in Video from Moving Airborne Platform Journal of Computatonal Informaton Systems 10: 12 (2014) 4965 4972 Avalable at http://www.jofcs.com Vehcle Detecton and Trackng n Vdeo from Movng Arborne Platform Lye ZHANG 1,2,, Hua WANG 3, L LI 2 1 School

More information

Gender Classification for Real-Time Audience Analysis System

Gender Classification for Real-Time Audience Analysis System Gender Classfcaton for Real-Tme Audence Analyss System Vladmr Khryashchev, Lev Shmaglt, Andrey Shemyakov, Anton Lebedev Yaroslavl State Unversty Yaroslavl, Russa vhr@yandex.ru, shmaglt_lev@yahoo.com, andrey.shemakov@gmal.com,

More information

A New Task Scheduling Algorithm Based on Improved Genetic Algorithm

A New Task Scheduling Algorithm Based on Improved Genetic Algorithm A New Task Schedulng Algorthm Based on Improved Genetc Algorthm n Cloud Computng Envronment Congcong Xong, Long Feng, Lxan Chen A New Task Schedulng Algorthm Based on Improved Genetc Algorthm n Cloud Computng

More information

A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATION-BASED OPTIMIZATION. Michael E. Kuhl Radhamés A. Tolentino-Peña

A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATION-BASED OPTIMIZATION. Michael E. Kuhl Radhamés A. Tolentino-Peña Proceedngs of the 2008 Wnter Smulaton Conference S. J. Mason, R. R. Hll, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATION-BASED OPTIMIZATION

More information

Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network

Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network 700 Proceedngs of the 8th Internatonal Conference on Innovaton & Management Forecastng the Demand of Emergency Supples: Based on the CBR Theory and BP Neural Network Fu Deqang, Lu Yun, L Changbng School

More information

VOLTAGE stability issue remains a major concern in

VOLTAGE stability issue remains a major concern in Impacts of Mert Order Based Dspatch on Transfer Capablty and Statc Voltage Stablty Cuong P. guyen, Student Member, IEEE, and Alexander J. Flueck, Member, IEEE Abstract In ths paper, the goal s to nvestgate

More information

Power-of-Two Policies for Single- Warehouse Multi-Retailer Inventory Systems with Order Frequency Discounts

Power-of-Two Policies for Single- Warehouse Multi-Retailer Inventory Systems with Order Frequency Discounts Power-of-wo Polces for Sngle- Warehouse Mult-Retaler Inventory Systems wth Order Frequency Dscounts José A. Ventura Pennsylvana State Unversty (USA) Yale. Herer echnon Israel Insttute of echnology (Israel)

More information

Document Clustering Analysis Based on Hybrid PSO+K-means Algorithm

Document Clustering Analysis Based on Hybrid PSO+K-means Algorithm Document Clusterng Analyss Based on Hybrd PSO+K-means Algorthm Xaohu Cu, Thomas E. Potok Appled Software Engneerng Research Group, Computatonal Scences and Engneerng Dvson, Oak Rdge Natonal Laboratory,

More information

Non-symmetric membership function for Fuzzy-based visual servoing onboard a UAV.

Non-symmetric membership function for Fuzzy-based visual servoing onboard a UAV. 1 Non-symmetrc membershp functon for Fuzzy-based vsual servong onboard a UAV. M. A. Olvares-Méndez* and P. Campoy and C. Martínez and I. F. Mondragón B. Computer Vson Group, DISAM, Unversdad Poltécnca

More information

NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia

NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia To appear n Journal o Appled Probablty June 2007 O-COSTAT SUM RED-AD-BLACK GAMES WITH BET-DEPEDET WI PROBABILITY FUCTIO LAURA POTIGGIA, Unversty o the Scences n Phladelpha Abstract In ths paper we nvestgate

More information

How To Understand The Results Of The German Meris Cloud And Water Vapour Product

How To Understand The Results Of The German Meris Cloud And Water Vapour Product Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPP-ATBD-ClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller

More information

Inner core mantle gravitational locking and the super-rotation of the inner core

Inner core mantle gravitational locking and the super-rotation of the inner core Geophys. J. Int. (2010) 181, 806 817 do: 10.1111/j.1365-246X.2010.04563.x Inner core mantle gravtatonal lockng and the super-rotaton of the nner core Matheu Dumberry 1 and Jon Mound 2 1 Department of Physcs,

More information

Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation

Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation Exhaustve Regresson An Exploraton of Regresson-Based Data Mnng Technques Usng Super Computaton Antony Daves, Ph.D. Assocate Professor of Economcs Duquesne Unversty Pttsburgh, PA 58 Research Fellow The

More information

Lagrangian Dynamics: Virtual Work and Generalized Forces

Lagrangian Dynamics: Virtual Work and Generalized Forces Admssble Varatons/Vrtual Dsplacements 1 2.003J/1.053J Dynamcs and Control I, Sprng 2007 Paula Echeverr, Professor Thomas Peacock 4/4/2007 Lecture 14 Lagrangan Dynamcs: Vrtual Work and Generalzed Forces

More information

J. Parallel Distrib. Comput.

J. Parallel Distrib. Comput. J. Parallel Dstrb. Comput. 71 (2011) 62 76 Contents lsts avalable at ScenceDrect J. Parallel Dstrb. Comput. journal homepage: www.elsever.com/locate/jpdc Optmzng server placement n dstrbuted systems n

More information

Time Domain simulation of PD Propagation in XLPE Cables Considering Frequency Dependent Parameters

Time Domain simulation of PD Propagation in XLPE Cables Considering Frequency Dependent Parameters Internatonal Journal of Smart Grd and Clean Energy Tme Doman smulaton of PD Propagaton n XLPE Cables Consderng Frequency Dependent Parameters We Zhang a, Jan He b, Ln Tan b, Xuejun Lv b, Hong-Je L a *

More information

Abstract. 260 Business Intelligence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING

Abstract. 260 Business Intelligence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING 260 Busness Intellgence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING Murphy Choy Mchelle L.F. Cheong School of Informaton Systems, Sngapore

More information

Distributed Multi-Target Tracking In A Self-Configuring Camera Network

Distributed Multi-Target Tracking In A Self-Configuring Camera Network Dstrbuted Mult-Target Trackng In A Self-Confgurng Camera Network Crstan Soto, B Song, Amt K. Roy-Chowdhury Department of Electrcal Engneerng Unversty of Calforna, Rversde {cwlder,bsong,amtrc}@ee.ucr.edu

More information

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL

More information

How To Find The Dsablty Frequency Of A Clam

How To Find The Dsablty Frequency Of A Clam 1 Predcton of Dsablty Frequences n Lfe Insurance Bernhard Köng 1, Fran Weber 1, Maro V. Wüthrch 2 Abstract: For the predcton of dsablty frequences, not only the observed, but also the ncurred but not yet

More information

Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT

Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the

More information

ON THE ACCURACY, REPEATABILITY, AND DEGREE OF INFLUENCE OF KINEMATICS PARAMETERS FOR INDUSTRIAL ROBOTS

ON THE ACCURACY, REPEATABILITY, AND DEGREE OF INFLUENCE OF KINEMATICS PARAMETERS FOR INDUSTRIAL ROBOTS Internatonal Journal of Modellng and Smulaton, Vol. 22, No. 3, 2002 ON THE ACCURACY, REPEATABILITY, AND DEGREE OF INFLUENCE OF KINEMATICS PARAMETERS FOR INDUSTRIAL ROBOTS P.S. Shakolas, K.L. Conrad, and

More information

A frequency decomposition time domain model of broadband frequency-dependent absorption: Model II

A frequency decomposition time domain model of broadband frequency-dependent absorption: Model II A frequenc decomposton tme doman model of broadband frequenc-dependent absorpton: Model II W. Chen Smula Research Laborator, P. O. Box. 134, 135 Lsaker, Norwa (1 Aprl ) (Proect collaborators: A. Bounam,

More information

IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS

IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS Chrs Deeley* Last revsed: September 22, 200 * Chrs Deeley s a Senor Lecturer n the School of Accountng, Charles Sturt Unversty,

More information

An Interest-Oriented Network Evolution Mechanism for Online Communities

An Interest-Oriented Network Evolution Mechanism for Online Communities An Interest-Orented Network Evoluton Mechansm for Onlne Communtes Cahong Sun and Xaopng Yang School of Informaton, Renmn Unversty of Chna, Bejng 100872, P.R. Chna {chsun,yang}@ruc.edu.cn Abstract. Onlne

More information

How To Test The Transferablty Of An Orgnal Manuscrpt

How To Test The Transferablty Of An Orgnal Manuscrpt Fnal Draft of the orgnal manuscrpt: Stener, L.; Bouver, V.; ay, U.; Huber, N.: Smulaton of frcton and wear n DL/steel contacts for dfferent loadng hstores and geometres: Ball-on-plate confguraton and pston

More information

Brigid Mullany, Ph.D University of North Carolina, Charlotte

Brigid Mullany, Ph.D University of North Carolina, Charlotte Evaluaton And Comparson Of The Dfferent Standards Used To Defne The Postonal Accuracy And Repeatablty Of Numercally Controlled Machnng Center Axes Brgd Mullany, Ph.D Unversty of North Carolna, Charlotte

More information

Joint Scheduling of Processing and Shuffle Phases in MapReduce Systems

Joint Scheduling of Processing and Shuffle Phases in MapReduce Systems Jont Schedulng of Processng and Shuffle Phases n MapReduce Systems Fangfe Chen, Mural Kodalam, T. V. Lakshman Department of Computer Scence and Engneerng, The Penn State Unversty Bell Laboratores, Alcatel-Lucent

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information