Building A RISC Microcontroller in an FPGA
|
|
|
- Dominic Heath
- 9 years ago
- Views:
Transcription
1 Building A RISC Microcontroller in an FPGA Name : Yap Zi He Course : 4 SEL Supervisor : PM Muhammad Mun im Ahmad Zabidi
2 Introduction Reduce Instruction Set Computer (RISC) is a new trend on computer design. The opposite and rather established trend is Complex Instruction Set Computer (CISC), which consist lots of instruction sets, addressing modes, instruction formats and a number of possible instructions length. The complexity of the instruction makes the design more complicated. While RISC tend to reduce the complexity of the instructions set and thus make the design process easier.
3 Objectives The objectives of my project is to design a RISC Microcontroller using VHDL and implement it in an FPGA The instructions set and features are based on ATMEL AVR AT90S1200 RISC Microcontroller. AT90S1200 At First Glance 89 Instructions 32 General Purpose Registers 2 IO Ports (15 pins) 1 x 8-bit Timer 1 x External Interrupt 1 x Analog Comparator
4 Scopes Implement the Complete AT90S1200 Microcontroller in an FPGA FPGA unimplementable features (analog comparator and internal pull-up resistors) and unnecessary feature (WatchDog Reset) will be ignored What is the Challenges? 1. AREA the design must be able to fit into the targeted FPGA device, which is Altera EPF10K20RC SPEED the microcontroller must be able to run at a minimum clock speed of 10MHz.
5 Project Background FPGA Implementation of a RISC microcontroller Wan Mohd Khalid Problems : 1. Project is poorly documented 2. Design using both VHDL and schematics 3. Only 50% instructions designed (behavioral approach) 4. No peripheral features (port, timer, ext int) 5. Project size is too large, require 3 pieces of EPF10K20! 6. FPGA implementation is not done
6 Approach Software (VHDL) Architecture & Instructions Set VHDL Coding (Text Editor) Synthesis (FPGA Express) Compilation & Simulation (MaxPlus II) Program Coding & Assembling (AVR Assembler) ASM to MIF Converter (Self Written) Program + Designed Microcontroller Simulation (AVR Studio) Compilation & Device Programming (MaxPlus 2) Results Checking Hardware Implementation
7 Architecture Overview Reset Clock Microcontroller (FPGA) PortB PortC PortD * All IO Ports are 8-bits width (3 ports = 24 pins) * External Interrupt and Timer external clock source share the same pin with pin D7
8 Fetch Unit Execution Unit I/O Program Counter Program ROM Instruction Reg Control Unit Register Addressing Indirect Addressing General Purpose Registers ALU Status Reg 8-Bit Data Bus Port B Port C Port D Timer Control Signals RAM Ext Int
9 Instructions Cycle / Pipelines Clock Cycle st Instruction Fetch Execute 2 nd instruction Fetch Execute 3 rd instruction Fetch Execute The 2 stage pipelines allowed 1 instruction to be executed on every clock cycle.
10 Project Highlight : Control Unit Designing the control unit is usually the most tedious task in digital system design In my design, the control unit is implemented with Synchronous Mealy Model. The advantages are :- 1. The control signals are asserted according to clock transition rather than generated by the state as in Moore Model. Thus the control signals appear faster and will speed up the microcontroller. 2. The control unit for the microcontroller has only 8 states! This is because control signals are lock to transition rather than the states. So all single cycle instructions can share the same state.
11 What is Synchronous Mealy Model? INPUT (Instruction Code, IRQ, Branch Taken? ) Combinational Combinational Logic for Logic NEXT STATE Next State Flip Flops Combinational Logic for OUTPUT Flip Flops OUTPUT (Control Signals) Clock Current State Clock
12 8 States Control Unit Wait for Interrupt Reset EXE State No IRQ SLEEP Branch1 Single Cycle Instrutions IRQ Sleep Unconditional branch LD Load Inst EXE Conditional branch taken Branch2 ST Store Inst CBI/SBI SBIC/SBIS SBICS Branch Instructions (3 cycles) 2 Cycles Instructions CBISBI
13 Instructions The designed microcontroller is capable of executing 92 instructions. Arithmetic and Logic Instructions (20) :- ADD, ADC, SUB, SUBI, SBC, SBCI, AND, ANDI, OR, ORI, EOR, COM, NEG, SBR, CBR, INC, DEC, TST, CLR, SER Branch and Skip Instructions (32) :- RJMP, RCALL, RET, RETI, CPSE, CP, CPC, CPI, SBRC, SBRS, SBIC, SBIS, BRBS, BRBC, BREQ, BRNE, BRCS, BRCC, BRSH, BRLO, BRMI, BRPL, BRGE, BRLT, BRHS, BRHC, BRTS, BRTC, BRVS, BRVC, BRIE, BRID Data Transfer Instructions (10) :- LD Z, LD Z+, LD Z, ST Z, ST Z+, ST Z, MOV, LDI, IN, OUT Bit and Bit Test Instructions (28) :- SBI, CBI, LSL, LSR, ROL, ROR, ASR, SWAP, BSET, BCLR, BST, BLD, SEC, CLC, SEN, CLN, SEZ, CLZ, SEI, CLI, SES, CLS, SEV, CLV, SET, CLT, SHE, CLH Misc Instructions (2) :- NOP, SLEEP > = 92 instructions
14 Results Achieved 1. VHDL coding and simulation for all the modules in the block diagram has been done successfully. 2. The design has been programmed into FPGA successfully. 3. The FPGA is now a microcontroller and is able to control some real applications (will be demo). How about the challenges stated? AREA The design fit into the targeted device successfully (using 92% of EPF10K20RC240-4) SPEED The final design clock speed is 12 MHz (target is 10MHz)
15 AT90S1200 VS My Design AT90S1200 RISCMCU Instructions G.P Registers Program ROM 512 words 512 words IO Ports 2 (15 pins) 3 (24 pins) Addressing Modes Speed 5 4 MHz / 12 MHz 8 12 MHz* 8-bit Timer 1 1 External Interrupt 1 1 Analog Comparator 1 None Implementation CMOS FPGA SRAM None 128 bytes * 18 MHz can be achieved when implemented in the fastest device from the same family
16 Recommendations on Future Works My design is based on AVR AT90S1200. There are many more members in the AVR family which contribute to more instructions and features. The next step will be adding these instructions and features into my design. Example: Instructions MUL, DIV, IJMP Features UART, SPI, 16-bit Timer (with input capture, output compare & PWM)
17 Conclusion The project has achieve all the objectives and fulfilled all the scope specified My main contribution is the VHDL source code, which is an AT90S1200 compatible RISC microcontroller
Instruction Set. Instruction Set Nomenclature: Status Register (SREG) Registers and Operands
Nomenclature: Status Register (SREG) SREG: Status register C: Carry flag in status register Z: Zero flag in status register N: Negative flag in status register V: Two s complement overflow indicator S:
Atmel AVR 8-bit Instruction Set
Atmel AVR 8-bit Instruction Set Instruction Set Nomenclature Status Register (SREG) SREG: Status Register C: Carry Flag Z: Zero Flag N: Negative Flag V: Two s complement overflow indicator S: N V, For
Instruction Set. Instruction Set Nomenclature. Status Register (SREG) Registers and Operands
Instruction Set Nomenclature Status Register (SREG) SREG: Status register C: Carry flag Z: Zero flag N: Negative flag V: Two s complement overflow indicator S: N V, For signed tests H: Half Carry flag
Instruction Set. Instruction Set Nomenclature. Status Register (SREG) Registers and Operands
Instruction Set Nomenclature Status Register (SREG) SREG: Status register C: Carry flag Z: Zero flag N: Negative flag V: Two s complement overflow indicator S: N V, For signed tests H: Half Carry flag
Atmel AVR 8-bit Instruction Set
Atmel AVR 8-bit Instruction Set Instruction Set Nomenclature Status Register (SREG) SREG: Status Register C: Carry Flag Z: Zero Flag N: Negative Flag V: Two s complement overflow indicator S: N V, For
Programming of Microcontrollers in Assembly Language
Brno University of Technology Programming of Microcontrollers in Assembly Language Microprocessor Techniques and Embedded Systems Lecture 2 Dr. Tomas Fryza Contents Basic Architectures in Microprocessor
The AVR Microcontroller and C Compiler Co-Design Dr. Gaute Myklebust ATMEL Corporation ATMEL Development Center, Trondheim, Norway
The AVR Microcontroller and C Compiler Co-Design Dr. Gaute Myklebust ATMEL Corporation ATMEL Development Center, Trondheim, Norway Abstract High Level Languages (HLLs) are rapidly becoming the standard
Voltage boost and buck circuits using Atmel AVR Tiny13V for driving a white LED.
Voltage boost and buck circuits using Atmel AVR Tiny13V for driving a white LED. By Steven Weber, KD1JV 1/26/09 The PWM feature of the Tiny13 processor can be used to make a simple voltage boost or buck
Chapter 13. PIC Family Microcontroller
Chapter 13 PIC Family Microcontroller Lesson 01 PIC Characteristics and Examples PIC microcontroller characteristics Power-on reset Brown out reset Simplified instruction set High speed execution Up to
How to use AVR Studio for Assembler Programming
How to use AVR Studio for Assembler Programming Creating your first assembler AVR project Run the AVRStudio program by selecting Start\Programs\Atmel AVR Tools\AVR Studio. You should see a screen like
8-bit Microcontroller. Application Note. AVR410: RC5 IR Remote Control Receiver
AVR410: RC5 IR Remote Control Receiver Features Low-cost Compact Design, Only One External Component Requires Only One Controller Pin, Any AVR Device Can be Used Size-efficient Code Introduction Most audio
MICROPROCESSOR AND MICROCOMPUTER BASICS
Introduction MICROPROCESSOR AND MICROCOMPUTER BASICS At present there are many types and sizes of computers available. These computers are designed and constructed based on digital and Integrated Circuit
Poor Man s A/D Converter By Dave Wissel at Wave Technology
Poor Man s A/D Converter By Dave Wissel at Wave Technology Years ago some of the then-old engineers working in the cost-completive area of consumer electronics told me, If it can t be done with a handful
AVR1321: Using the Atmel AVR XMEGA 32-bit Real Time Counter and Battery Backup System. 8-bit Microcontrollers. Application Note.
AVR1321: Using the Atmel AVR XMEGA 32-bit Real Time Counter and Battery Backup System Features 32-bit Real Time Counter (RTC) - 32-bit counter - Selectable clock source 1.024kHz 1Hz - Long overflow time
ATtiny4 / ATtiny5 / ATtiny9 / ATtiny10. Introduction. Feature. Atmel 8-bit AVR Microcontroller with 512/1024 Bytes In-System Programmable Flash
Atmel 8-bit AVR Microcontroller with 512/1024 Bytes In-System Programmable Flash ATtiny4 / ATtiny5 / ATtiny9 / ATtiny10 DATASHEET COMPLETE Introduction The Atmel ATtiny4/5/9/10 is a low-power CMOS 8-bit
8-bit Microcontroller with 1K Bytes In-System Programmable Flash. ATtiny13V ATtiny13
Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 120 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static
Technical Note. Micron NAND Flash Controller via Xilinx Spartan -3 FPGA. Overview. TN-29-06: NAND Flash Controller on Spartan-3 Overview
Technical Note TN-29-06: NAND Flash Controller on Spartan-3 Overview Micron NAND Flash Controller via Xilinx Spartan -3 FPGA Overview As mobile product capabilities continue to expand, so does the demand
Digitale Signalverarbeitung mit FPGA (DSF) Soft Core Prozessor NIOS II Stand Mai 2007. Jens Onno Krah
(DSF) Soft Core Prozessor NIOS II Stand Mai 2007 Jens Onno Krah Cologne University of Applied Sciences www.fh-koeln.de [email protected] NIOS II 1 1 What is Nios II? Altera s Second Generation
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV UNIT I THE 8086 MICROPROCESSOR 1. What is the purpose of segment registers
8051 hardware summary
8051 hardware summary 8051 block diagram 8051 pinouts + 5V ports port 0 port 1 port 2 port 3 : dual-purpose (general-purpose, external memory address and data) : dedicated (interfacing to external devices)
Central Processing Unit (CPU)
Central Processing Unit (CPU) CPU is the heart and brain It interprets and executes machine level instructions Controls data transfer from/to Main Memory (MM) and CPU Detects any errors In the following
8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. ATtiny24 ATtiny44 ATtiny84
Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 120 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static
AVR151: Setup and Use of the SPI. Introduction. Features. Atmel AVR 8-bit Microcontroller APPLICATION NOTE
Atmel AVR 8-bit Microcontroller AVR151: Setup and Use of the SPI APPLICATION NOTE Introduction This application note describes how to set up and use the on-chip Serial Peripheral Interface (SPI) of the
8-Bit Flash Microcontroller for Smart Cards. AT89SCXXXXA Summary. Features. Description. Complete datasheet available under NDA
Features Compatible with MCS-51 products On-chip Flash Program Memory Endurance: 1,000 Write/Erase Cycles On-chip EEPROM Data Memory Endurance: 100,000 Write/Erase Cycles 512 x 8-bit RAM ISO 7816 I/O Port
Building Blocks for PRU Development
Building Blocks for PRU Development Module 1 PRU Hardware Overview This session covers a hardware overview of the PRU-ICSS Subsystem. Author: Texas Instruments, Sitara ARM Processors Oct 2014 2 ARM SoC
Microcontrollers in Practice
M. Mitescu I. Susnea Microcontrollers in Practice With 117 Figures, 34 Tables and CD-Rom 4y Springer Contents Resources of Microcontrollers, 1 1.1 In this Chapter 1 1.2 Microcontroller Architectures 1
8051 MICROCONTROLLER COURSE
8051 MICROCONTROLLER COURSE Objective: 1. Familiarization with different types of Microcontroller 2. To know 8051 microcontroller in detail 3. Programming and Interfacing 8051 microcontroller Prerequisites:
Atmel Norway 2005. XMEGA Introduction
Atmel Norway 005 XMEGA Introduction XMEGA XMEGA targets Leadership on Peripheral Performance Leadership in Low Power Consumption Extending AVR market reach XMEGA AVR family 44-100 pin packages 16K 51K
Atmel 8-bit AVR Microcontroller with 2/4/8K Bytes In-System Programmable Flash. ATtiny25/V / ATtiny45/V / ATtiny85/V. Features
Atmel 8-bit AVR Microcontroller with 2/4/8K Bytes In-System Programmable Flash Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 120 Powerful Instructions Most Single
EC313 - VHDL State Machine Example
EC313 - VHDL State Machine Example One of the best ways to learn how to code is seeing a working example. Below is an example of a Roulette Table Wheel. Essentially Roulette is a game that selects a random
8-bit Microcontroller with 2K Bytes In-System Programmable Flash. ATtiny2313/V. Preliminary
Features Utilizes the AVR RISC Architecture AVR High-performance and Low-power RISC Architecture 120 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully
8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega162 ATmega162V. Features
查 询 ATMEGA162 供 应 商 Features High-performance, Low-power AVR 8-bit Microcontroller Advanced RISC Architecture 131 Powerful Instructions Most Single-clock Cycle Execution 32 x 8 General Purpose Working
Microprocessor and Microcontroller Architecture
Microprocessor and Microcontroller Architecture 1 Von Neumann Architecture Stored-Program Digital Computer Digital computation in ALU Programmable via set of standard instructions input memory output Internal
ET-BASE AVR ATmega64/128
ET-BASE AVR ATmega64/128 ET-BASE AVR ATmega64/128 which is a Board Microcontroller AVR family from ATMEL uses MCU No.ATmega64 and ATmega128 64PIN. Board ET-BASE AVR ATmega64/128 uses MCU s resources on
AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR
AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR INTRODUCTION This Project "Automatic Night Lamp with Morning Alarm" was developed using Microprocessor. It is the Heart of the system. The sensors
8-bit Microcontroller with 8K Bytes In-System Programmable Flash AT90S8515
Features Utilizes the AVR RISC Architecture AVR High-performance and Low-power RISC Architecture 118 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General-purpose Working Registers Up
A 5 Degree Feedback Control Robotic Arm (Haptic Arm)
A 5 Degree Feedback Control Robotic Arm (Haptic Arm) 1 Prof. Sheetal Nirve, 2 Mr.Abhilash Patil, 3 Mr.Shailesh Patil, 4 Mr.Vishal Raut Abstract: Haptics is the science of applying touch sensation and control
2.0 Command and Data Handling Subsystem
2.0 Command and Data Handling Subsystem The Command and Data Handling Subsystem is the brain of the whole autonomous CubeSat. The C&DH system consists of an Onboard Computer, OBC, which controls the operation
Am186ER/Am188ER AMD Continues 16-bit Innovation
Am186ER/Am188ER AMD Continues 16-bit Innovation 386-Class Performance, Enhanced System Integration, and Built-in SRAM Problem with External RAM All embedded systems require RAM Low density SRAM moving
MACHINE ARCHITECTURE & LANGUAGE
in the name of God the compassionate, the merciful notes on MACHINE ARCHITECTURE & LANGUAGE compiled by Jumong Chap. 9 Microprocessor Fundamentals A system designer should consider a microprocessor-based
7a. System-on-chip design and prototyping platforms
7a. System-on-chip design and prototyping platforms Labros Bisdounis, Ph.D. Department of Computer and Communication Engineering 1 What is System-on-Chip (SoC)? System-on-chip is an integrated circuit
AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR. 8-bit Microcontroller. Application Note. Features.
AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR Features Passing Variables Between C and Assembly Code Functions Calling Assembly Code Functions from C Calling C Functions from Assembly
Introduction to Microcontrollers
Introduction to Microcontrollers Courses 182.064 & 182.074 Vienna University of Technology Institute of Computer Engineering Embedded Computing Systems Group February 26, 2007 Version 1.4 Günther Gridling,
Serial port interface for microcontroller embedded into integrated power meter
Serial port interface for microcontroller embedded into integrated power meter Mr. Borisav Jovanović, Prof. dr. Predrag Petković, Prof. dr. Milunka Damnjanović, Faculty of Electronic Engineering Nis, Serbia
AVR Butterfly Training. Atmel Norway, AVR Applications Group
AVR Butterfly Training Atmel Norway, AVR Applications Group 1 Table of Contents INTRODUCTION...3 GETTING STARTED...4 REQUIRED SOFTWARE AND HARDWARE...4 SETTING UP THE HARDWARE...4 SETTING UP THE SOFTWARE...5
UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering. EEC180B Lab 7: MISP Processor Design Spring 1995
UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering EEC180B Lab 7: MISP Processor Design Spring 1995 Objective: In this lab, you will complete the design of the MISP processor,
Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2
Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of
Develop a Dallas 1-Wire Master Using the Z8F1680 Series of MCUs
Develop a Dallas 1-Wire Master Using the Z8F1680 Series of MCUs AN033101-0412 Abstract This describes how to interface the Dallas 1-Wire bus with Zilog s Z8F1680 Series of MCUs as master devices. The Z8F0880,
Z80 Microprocessors Z80 CPU. User Manual UM008006-0714. Copyright 2014 Zilog, Inc. All rights reserved. www.zilog.com
Z80 Microprocessors Z80 CPU UM008006-0714 Copyright 2014 Zilog, Inc. All rights reserved. www.zilog.com ii Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS. LIFE SUPPORT POLICY ZILOG S PRODUCTS
Using The PIC I/O Ports
EE2801 -- Lecture 22 Using The PIC I/O Ports EE2801-L22P01 The Variety Of Available IO Ports The PIC 16F874 microcontroller has five different IO ports, accounting for thirty three of the processors forty
8-bit Microcontroller with 1K Bytes In-System Programmable Flash. ATtiny13A
Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 120 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static
Mixing C and assembly language programs Copyright 2007 William Barnekow <[email protected]> All Rights Reserved
Mixing C and assembly language programs Copyright 2007 William Barnekow All Rights Reserved It is sometimes advantageous to call subroutines written in assembly language from programs
PART B QUESTIONS AND ANSWERS UNIT I
PART B QUESTIONS AND ANSWERS UNIT I 1. Explain the architecture of 8085 microprocessor? Logic pin out of 8085 microprocessor Address bus: unidirectional bus, used as high order bus Data bus: bi-directional
The ARM Architecture. With a focus on v7a and Cortex-A8
The ARM Architecture With a focus on v7a and Cortex-A8 1 Agenda Introduction to ARM Ltd ARM Processors Overview ARM v7a Architecture/Programmers Model Cortex-A8 Memory Management Cortex-A8 Pipeline 2 ARM
Microtronics technologies Mobile: 99707 90092
For more Project details visit: http://www.projectsof8051.com/rfid-based-attendance-management-system/ Code Project Title 1500 RFid Based Attendance System Synopsis for RFid Based Attendance System 1.
150127-Microprocessor & Assembly Language
Chapter 3 Z80 Microprocessor Architecture The Z 80 is one of the most talented 8 bit microprocessors, and many microprocessor-based systems are designed around the Z80. The Z80 microprocessor needs an
8-bit Microcontroller with 32K/64K/128K Bytes of ISP Flash and CAN Controller AT90CAN32 AT90CAN64 AT90CAN128
Features High-performance, Low-power AVR 8-bit Microcontroller Advanced RISC Architecture 33 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers + Peripheral
Palaparthi.Jagadeesh Chand. Associate Professor in ECE Department, Nimra Institute of Science & Technology, Vijayawada, A.P.
Patient Monitoring Using Embedded Palaparthi.Jagadeesh Chand Associate Professor in ECE Department, Nimra Institute of Science & Technology, Vijayawada, A.P Abstract The aim of this project is to inform
ATmega16U4/ATmega32U4
ATmega6U4/ATmega32U4 8-bit Microcontroller with 6/32 Bytes of ISP Flash and USB Controller DATASHEET Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 35 Powerful
Freescale Semiconductor, I
nc. Application Note 6/2002 8-Bit Software Development Kit By Jiri Ryba Introduction 8-Bit SDK Overview This application note describes the features and advantages of the 8-bit SDK (software development
ADS9850 Signal Generator Module
1. Introduction ADS9850 Signal Generator Module This module described here is based on ADS9850, a CMOS, 125MHz, and Complete DDS Synthesizer. The AD9850 is a highly integrated device that uses advanced
Microcontroller Based Low Cost Portable PC Mouse and Keyboard Tester
Leonardo Journal of Sciences ISSN 1583-0233 Issue 20, January-June 2012 p. 31-36 Microcontroller Based Low Cost Portable PC Mouse and Keyboard Tester Ganesh Sunil NHIVEKAR *, and Ravidra Ramchandra MUDHOLKAR
Timer A (0 and 1) and PWM EE3376
Timer A (0 and 1) and PWM EE3376 General Peripheral Programming Model Each peripheral has a range of addresses in the memory map peripheral has base address (i.e. 0x00A0) each register used in the peripheral
ATmega8A. Introduction. Features. 8-bit AVR Microcontroller DATASHEET COMPLETE
8-bit AVR Microcontroller ATmega8A DATASHEET COMPLETE Introduction The Atmel ATmega8A is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions
AN10850. LPC1700 timer triggered memory to GPIO data transfer. Document information. LPC1700, GPIO, DMA, Timer0, Sleep Mode
LPC1700 timer triggered memory to GPIO data transfer Rev. 01 16 July 2009 Application note Document information Info Keywords Abstract Content LPC1700, GPIO, DMA, Timer0, Sleep Mode This application note
8-bit Microcontroller with 8K/16K Bytes In-System Programmable Flash
Features High Performance, Low Power AVR 8-bit Microcontroller Advanced RISC Architecture 131 Powerful Instructions - Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static
8-bit Microcontroller with 8K Bytes In-System Programmable Flash. ATmega8515 ATmega8515L
Features High-performance, Low-power AVR 8-bit Microcontroller RISC Architecture 130 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static Operation
8-bit Microcontroller. Application Note. AVR201: Using the AVR Hardware Multiplier
AVR201: Using the AVR Hardware Multiplier Features 8- and 16-bit Implementations Signed and Unsigned Routines Fractional Signed and Unsigned Multiply Executable Example Programs Introduction The megaavr
Step Motor Controller. Application Note. AVR360: Step Motor Controller. Theory of Operation. Features. Introduction
AVR360: Step Motor Controller Features High-Speed Step Motor Controller Interrupt Driven Compact Code (Only 10 Bytes Interrupt Routine) Very High Speed Low Computing Requirement Supports all AVR Devices
Arduino Due Back. Warning: Unlike other Arduino boards, the Arduino Due board runs at 3.3V. The maximum. Overview
R Arduino Due Arduino Due Front Arduino Due Back Overview The Arduino Due is a microcontroller board based on the Atmel SAM3X8E ARM Cortex-M3 CPU (datasheet). It is the first Arduino board based on a 32-bit
Implementing SPI Master and Slave Functionality Using the Z8 Encore! F083A
Application Note Implementing SPI Master and Slave Functionality Using the Z8 Encore! F083A AN026701-0308 Abstract This application note demonstrates a method of implementing the Serial Peripheral Interface
COMPUTERS ORGANIZATION 2ND YEAR COMPUTE SCIENCE MANAGEMENT ENGINEERING JOSÉ GARCÍA RODRÍGUEZ JOSÉ ANTONIO SERRA PÉREZ
COMPUTERS ORGANIZATION 2ND YEAR COMPUTE SCIENCE MANAGEMENT ENGINEERING UNIT 1 - INTRODUCTION JOSÉ GARCÍA RODRÍGUEZ JOSÉ ANTONIO SERRA PÉREZ Unit 1.MaNoTaS 1 Definitions (I) Description A computer is: A
RAPID PROTOTYPING OF DIGITAL SYSTEMS Second Edition
RAPID PROTOTYPING OF DIGITAL SYSTEMS Second Edition A Tutorial Approach James O. Hamblen Georgia Institute of Technology Michael D. Furman Georgia Institute of Technology KLUWER ACADEMIC PUBLISHERS Boston
CAN bus board. www.matrixmultimedia.com EB018
CAN bus board www.matrixmultimedia.com EB018 Contents About this document 3 Board layout 3 General information 4 Circuit description 5 Protective cover 6 Circuit diagram 7 2 Copyright About this document
Solution: start more than one instruction in the same clock cycle CPI < 1 (or IPC > 1, Instructions per Cycle) Two approaches:
Multiple-Issue Processors Pipelining can achieve CPI close to 1 Mechanisms for handling hazards Static or dynamic scheduling Static or dynamic branch handling Increase in transistor counts (Moore s Law):
ASYNCHRONOUS COUNTERS
LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding
Software based Finite State Machine (FSM) with general purpose processors
Software based Finite State Machine (FSM) with general purpose processors White paper Joseph Yiu January 2013 Overview Finite state machines (FSM) are commonly used in electronic designs. FSM can be used
Systems I: Computer Organization and Architecture
Systems I: Computer Organization and Architecture Lecture : Microprogrammed Control Microprogramming The control unit is responsible for initiating the sequence of microoperations that comprise instructions.
ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies
ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation
8-bit Microcontroller. Application Note. AVR400: Low Cost A/D Converter
AVR400: Low Cost A/D Converter Features Interrupt Driven : 23 Words Low Use of External Components Resolution: 6 Bits Measurement Range: 0-2 V Runs on Any AVR Device with 8-bit Timer/Counter and Analog
8-bit Atmel Microcontroller with 128KBytes In-System Programmable Flash. ATmega128 ATmega128L
Features High-performance, Low-power Atmel AVR 8-bit Microcontroller Advanced RISC Architecture 133 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers + Peripheral
Introduction to the Altera Qsys System Integration Tool. 1 Introduction. For Quartus II 12.0
Introduction to the Altera Qsys System Integration Tool For Quartus II 12.0 1 Introduction This tutorial presents an introduction to Altera s Qsys system inegration tool, which is used to design digital
M68EVB908QL4 Development Board for Motorola MC68HC908QL4
M68EVB908QL4 Development Board for Motorola MC68HC908QL4! Axiom Manufacturing 2813 Industrial Lane Garland, TX 75041 Email: [email protected] Web: http://www.axman.com! CONTENTS CAUTIONARY NOTES...3 TERMINOLOGY...3
AVR305: Half Duplex Compact Software UART. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR305: Half Duplex Compact Software UART Features 32 Words of Code, Only Handles Baud Rates of up to 38.4 kbps with a 1 MHz XTAL Runs on Any AVR Device Only Two Port Pins Required Does Not Use Any Timer
AVR Timer/Counter. Prof Prabhat Ranjan DA-IICT, Gandhinagar
AVR Timer/Counter Prof Prabhat Ranjan DA-IICT, Gandhinagar 8-bit Timer/Counter0 with PWM Single Compare Unit Counter Clear Timer on Compare Match (Auto Reload) Glitch-free, Phase Correct Pulse Width Modulator
System Considerations
System Considerations Interfacing Performance Power Size Ease-of Use Programming Interfacing Debugging Cost Device cost System cost Development cost Time to market Integration Peripherals Different Needs?
8-bit Microcontroller with 1K Bytes In-System Programmable Flash. ATtiny13A. Summary
Features High Performance, Low Power AVR 8-Bit Microcontroller Advanced RISC Architecture 120 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static
Memory Basics. SRAM/DRAM Basics
Memory Basics RAM: Random Access Memory historically defined as memory array with individual bit access refers to memory with both Read and Write capabilities ROM: Read Only Memory no capabilities for
LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters
LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB OBJECTIVES 1. Introduction to latches and the D type flip-flop 2. Use of actual flip-flops to help you understand sequential
8-bit Microcontroller with 16K Bytes In-System Programmable Flash. ATmega16 ATmega16L
Features High-performance, Low-power Atmel AVR 8-bit Microcontroller Advanced RISC Architecture 131 Powerful Instructions Most Single-clock Cycle Execution 32 x 8 General Purpose Working Registers Fully
The WIMP51: A Simple Processor and Visualization Tool to Introduce Undergraduates to Computer Organization
The WIMP51: A Simple Processor and Visualization Tool to Introduce Undergraduates to Computer Organization David Sullins, Dr. Hardy Pottinger, Dr. Daryl Beetner University of Missouri Rolla Session I.
Lab 1 Course Guideline and Review
Lab 1 Course Guideline and Review Overview Welcome to ECE 3567 Introduction to Microcontroller Lab. In this lab we are going to experimentally explore various useful peripherals of a modern microcontroller
Best Practises for LabVIEW FPGA Design Flow. uk.ni.com ireland.ni.com
Best Practises for LabVIEW FPGA Design Flow 1 Agenda Overall Application Design Flow Host, Real-Time and FPGA LabVIEW FPGA Architecture Development FPGA Design Flow Common FPGA Architectures Testing and
The Programming Interface
: In-System Programming Features Program any AVR MCU In-System Reprogram both data Flash and parameter EEPROM memories Eliminate sockets Simple -wire SPI programming interface Introduction In-System programming
How To Write A Microsoft Microsoft 8D (Droid) (Program) (Powerbook) (I386) (Microsoft) (Donga) (Opera) And (Dungeo) (Dugeo
CPU08 Central Processor Unit Reference Manual M68HC08 Microcontrollers CPU08RM Rev. 02/2006 freescale.com CPU08 Central Processor Unit Reference Manual To provide the most up-to-date information, the
APPLICATION NOTE. Atmel AVR443: Sensor-based Control of Three Phase Brushless DC Motor. Atmel AVR 8-bit Microcontrollers. Features.
APPLICATION NOTE Features Atmel AVR443: Sensor-based Control of Three Phase Brushless DC Motor Less than 5µs response time on Hall sensor output change Theoretical maximum of 1600k RPM Over-current sensing
8-bit Atmel with 8KBytes In- System Programmable Flash. ATmega8 ATmega8L
Features High-performance, Low-power Atmel AVR 8-bit Microcontroller Advanced RISC Architecture 130 Powerful Instructions Most Single-clock Cycle Execution 32 8 General Purpose Working Registers Fully
Chapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
Secure My-d TM and Mifare TM RFID reader system by using a security access module Erich Englbrecht ([email protected]) V0.1draft
Application Report Secure My-d TM and Mifare TM RFID reader system by using a security access module Erich Englbrecht ([email protected]) V0.1draft Embedded RF ABSTRACT This application report describes
