Basics of Steam Generation

Size: px
Start display at page:

Download "Basics of Steam Generation"

Transcription

1 Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Basics of Steam Generation Sebastian Teir Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection

2 Table of contents Introduction...3 Basics of boilers and boiler processes...3 Definition...3 A simple boiler...4 A simple power plant cycle...4 Carnot efficiency...5 Properties of water and steam...5 Introduction...5 Boiling of water...6 Effect of pressure on evaporation temperature...7 Basics of combustion...7 Principles...7 Products of combustion...8 Types of combustion...8 Combustion of solid fuels...8 Combustion of coal...8 Main types of a modern boiler...9 Heat exchanger boiler model...10 General...10 Heat exchanger basics...10 T-Q diagram...11 Heat recovery steam generator model...12 Heat exchanger model of furnace-equipped boilers...13 References...15 The Basics of Steam Generation - 2

3 Introduction The world energy consumption has doubled in the last thirty years and it keeps on increasing with about 1,5 % per year. While the earth's oil and gas reserves are expected to deplete after roughly one hundred years, the coal reserves will last for almost five hundred years into the future. In Finland, 50 % of the electrical power produced, is produced in steam power plants. But there are more reasons to why electricity generation based on steam power plant will continue to grow and why there still will be a demand for steam boilers in the future: The cost of the produced electricity is low The technology has been used for many decades and is reliable and available Wind and solar power are still expensive compared to steam power The environmental impact of coal powered steam plants have under the past decade been heavily diminished thanks to improved SO x and NO x reduction technology The paper industry uses steam boilers as a vital utility to recycle chemicals and derive electricity from black liquor (pulping waste) Waste and biofuels can effectively be combusted in a boiler Basics of boilers and boiler processes Definition In a traditional context, a boiler is an enclosed container that provides a means for heat from combustion to be transferred into the working media (usually water) until it becomes heated or a gas (steam). One could simply say that a boiler is as a heat exchanger between fire and water. The boiler is the part of a steam power plant process that produces the steam and thus provides the heat. The steam or hot water under pressure can then be used for transferring the heat to a process that consumes the heat in the steam and turns it into work. A steam boiler fulfils the following statements: It is part of a type of heat engine or process Heat is generated through combustion (burning) It has a working fluid, a.k.a. heat carrier that transfers the generated heat away from the boiler The heating media and working fluid are separated by walls In an industrial/technical context, the concept steam boiler (also referred to as steam generator ) includes the whole complex system for producing steam for use e. g. in a turbine or in industrial process. It includes all the different phases of heat transfer from flames to water/steam mixture (economizer, boiler, superheater, reheater and air preheater). It also includes different auxiliary systems (e. g. fuel feeding, water treatment, flue gas channels including stack). [1] The heat is generated in the furnace part of the boiler, where fuel is combusted. The fuel used in a boiler contains either chemically bonded energy (like coal, waste and biofuels) or nuclear energy. Nuclear energy will not be covered in this material. A boiler must be designed to absorb the maximum amount of heat released in the process of combustion. This heat is transferred to the boiler water through radiation, conduction and convection. The relative percentage of each is dependent upon the type of boiler, the designed heat transfer surface and the fuels that power the combustion. The Basics of Steam Generation - 3

4 A simple boiler In order to describe the principles of a steam boiler, consider a very simple case, where the boiler simply is a container, partially filled with water (Figure 1). Combustion of fuel produce heat, which is transferred to the container and makes the water evaporate. The vapor or steam can escape through a pipe that is connected to the container and be transported elsewhere. Another pipe brings water (called feedwater ) to the container to replace the water that has evaporated and escaped. Since the pressure level in the boiler should be kept constant (in order to have stable process values), the mass of the steam that escapes has to be equal to the mass of the water that is added. If steam leaves the boiler faster than water is added, the pressure in the boiler falls. If water is added faster than it is evaporated, the pressure rises. Figure 1: Simplified boiler drawing. If more fuel is combusted, more heat is generated and transferred to the water. Thus, more steam is generated and pressure rises inside the boiler. If less fuel is combusted, less steam is generated and the pressure sinks. A simple power plant cycle The steam boiler provides steam to a heat consumer, usually to power an engine. In a steam power plant a steam turbine is used for extracting the heat from the steam and turning it into work. The turbine usually drives a generator that turns the work from the turbine into electricity. The steam, used by the turbine, can be recycled by cooling it until it condensates into water and then return it as feedwater to the boiler. The condenser, where the steam is condensed, is a heat exchanger that typically uses water from a nearby sea or a river to cool the steam. In a typical power plant the pressure, at which the steam is produced, is high. But when the steam has been used to drive the turbine, the pressure has dropped drastically. A pump is therefore needed to get the pressure back up. Since the work needed to compress a Figure 2: Rankine cycle fluid is about a hundred times less than the work needed to compress a gas, the pump is located after the condenser. The cycle that the described process forms, is called a Rankine cycle and is the basis of most modern steam power plant processes (Figure 2). G The Basics of Steam Generation - 4

5 Carnot efficiency When considering any heat process or power cycle it is necessary to review the Carnot efficiency that comes from the second law of thermodynamics. The Carnot efficiency equation gives the maximum thermal efficiency of a system (Figure 3) undergoing a reversible power cycle while operating between two thermal reservoirs at temperatures T h and T c (temperature unit Kelvin). T T T H C C η max = = 1 (1) TH TH To give a practical example of the use of this theory on steam boilers, consider the Rankine cycle example presented in Figure 2. The temperature of the hot reservoir would then be the temperature of the steam produced in the boiler and the temperature of the cold reservoir would be the temperature of the cooling water drawn from a nearby river or lake (Figure 4). The formula in Equation 1 can then be used to get the theoretical maximum efficiency that we can get from the turbine. We can plot curve by of the maximum efficiency as a function of the steam exhaust temperature by keeping the cooling water temperature constant. If we suppose the temperature of the cooling water is around 20 C (293 K) on a warm summer day, we get a curve, which is presented in the figure: The bigger temperature difference, the higher thermal efficiency. Although no practical heat process is fully reversible, many processes can be calculated precisely enough by approximating them as reversible processes. Properties of water and steam Introduction Water is a useful and cheap medium to use as a working fluid. When water is boiled into steam its volume increases about 1,600 times, producing a force that is almost as explosive as gunpowder. The force produced by this Hot reservoir Qh (temperature Th) Wcycle = Qh - Qc Cold reservoir Qc (Temperature Tc) Figure 3: Carnot efficiency visualized Wp Hot reservoir Qh (temperature Th) Cold reservoir Qc (Temperature Tc) Figure 4: Carnot efficiency applied on the Rankine cycle.. 0,7 0,6 0,5 0,4 0,3 0,2 0,1 Carnot efficiency Wt Temperature [K] Figure 5: Carnot efficiency graph example. The Basics of Steam Generation - 5

6 expansion is the source of power in all steam engines. It also makes the boiler a dangerous device that must be carefully treated. The theoretical amount of heat that can be transferred from the combustion process to the working fluid in a boiler is equivalent to the change in its total heat content from its state at entering to that at exiting the boiler. In order to be able to select and design steam- and power-generation equipment, it is necessary to thoroughly understand the properties of the working fluid steam, the use of steam tables and the use of superheat. These fundamentals of steam generation will be briefly reviewed in this chapter. When phase changes of the water is discussed, only the liquid-vapor and vapor-liquid phase changes are mentioned, since these are the phase changes that the entire boiler technology is based on. [2] Temperature [C] Evaporation of water Phase change Net enthalpy of water [kj/kg water] Figure 6: Water evaporation plotted in a temperature-enthalpy graph. Boiling of water Water and steam are typically used as heat carriers in heating systems. Steam, the gas phase of water, results from adding sufficient heat to water to cause it to evaporate. This boiler process consists of three main steps: The first step is the adding of heat to the water that raises the temperature up to the boiling point of water, also called preheating. The second step is the continuing addition of heat to change the phase from water to steam, the actual evaporation. The third step is the heating of steam beyond the boiling temperature of water, known as superheating. The first step and the third steps are the part where heat addition causes a temperature rise but no phase change, and the second step is the part where the heat addition only causes a phase change. In Figure 6, the left section represents the preheating, the middle section the evaporation, and the third section the superheating. When all the water has been evaporated, the steam is called dry saturated steam. If steam is heated beyond its saturation point, the temperature begins to rise again and the steam becomes superheated steam. Superheated steam is defined by its zero moisture content: It contains no water at all, only 100% steam. Evaporation During the evaporation the enthalpy rises drastically. If we evaporate the water at atmospheric pressure from saturated liquid to saturated vapour, the enthalpy rise needed is 2260 kj/kg, from 430 kj/kg (sat. water) to 2690 kj/kg (sat. steam). When the water has reached the dry saturated steam condition, the steam contains a large amount of latent heat, corresponding to the heat that was led to the process under constant pressure and temperature. So despite pressure and temperature is the same for the liquid and the vapour, the amount of heat is much higher in vapour compared to the liquid. Superheating If the steam is heated beyond the dry saturated steam condition, the temperature begins to rise again and the properties of the steam start to resemble those of a perfect gas. Steam with higher The Basics of Steam Generation - 6

7 temperature than that of saturated steam is called superheated steam. It contains no moisture and cannot condense until its temperature has been lowered to that of saturated steam at the same pressure. Superheating the steam is particularly useful for eliminating condensation in steam lines, decreasing the moisture in the turbine exhaust and increasing the efficiency (i.e. Carnot efficiency) of the power plant. Effect of pressure on evaporation temperature It is well known that water boils and evaporates at 100 C under atmospheric pressure. By higher pressure, water evaporates at higher temperature - e.g. a pressure of 10 bar equals an evaporation temperature of 184 C. The pressure and the corresponding temperature when a phase change occurs are called the saturation temperature and saturation pressure. During the evaporation process, pressure and temperature are constant, but if the vaporization occurs in a closed vessel, the expansion that occurs due to the phase change of water into steam causes the pressure to rise and thus the boiling temperature rises. From the diagram (Figure 7) we can se that when we exceed a certain pressure, 22,12 Mpa (the corresponding temperature is 374 C), the line stops. The reason is that the border between gas phase and liquid phase is blurred out at that pressure. That point, where the different phases cease to exist, is called the critical point of water. Basics of combustion Principles The process of combustion is a high speed, high temperature chemical reaction. It is the rapid union of an element or a compound with oxygen that results in the production of heat - essentially, it is a controlled explosion. Combustion occurs when the elements in a fuel combine with oxygen and produce heat. All fuels, whether they are solid, liquid or in gaseous form, consist primarily of compounds of carbon and hydrogen called hydrocarbons. Sulphur is also present in these fuels. Pressure [bar] ,1 0,01 22,12 MPa Temperature [ C] Figure 7: Evaporation pressure as a function of evaporation temperature. Figure 8: A pulverized coal fired burner in action. The Basics of Steam Generation - 7

8 Products of combustion When the hydrogen and oxygen combine, intense heat and water vapor is formed. When carbon and oxygen combine, intense heat and the compounds of carbon monoxide or carbon dioxide are formed. When sulfur and oxygen combine, sulfur dioxide and heat are formed. These chemical reactions take place in a furnace during the burning of fuel, provided there is sufficient air (oxygen) to completely burn the fuel. Very little of the released carbon is actually "consumed" in the combustion reaction because flame temperature seldom reaches the vaporization point of carbon. Most of it combines with oxygen to form CO 2 and passes out the vent. Carbon, which cools before it can combine with oxygen to form CO 2, passes out the vent as visible smoke. The intense yellow color of an oil flame is largely caused by incandescent carbon particles. As we mentioned in the introduction to this segment, combustion can never be 100% efficient. All fuels contain some moisture and non-combustibles: Top-quality coal has 20% noncombustibles. Residual oil is 10% noncombustible. Natural gas has 1-15% (depending on origin) of noncombustible gases like N 2 and CO 2. Types of combustion There are three types of combustion: Perfect Combustion is achieved when all the fuel is burned using only the theoretical amount of air, but as we said before perfect combustion cannot be achieved in a boiler. Complete Combustion is achieved when all the fuel is burned using the minimal amount of air above the theoretical amount of air needed to burn the fuel. Complete combustion is always our goal. With complete combustion, the fuel is burned at the highest combustion efficiency with low pollution. Incomplete Combustion occurs when all the fuel is not burned, which results in the formation of soot and smoke. Combustion of solid fuels Solid fuels can be divided into high grade; coal and low grade; peat and bark. The most typical firing methods are grate firing, cyclone firing, pulverized firing and fluidized bed firing, as described below. Pulverized firing has been used in industrial and utility boilers from 60 MWt to 6000 MWt. Grate firing (Figure 9) has been used to fire biofuels from 5 MWt to 600 MWt and cyclone firing has been used in small scale 3-6 MWt. Figure 9: Stoker or grate firing. Combustion of coal Oil and gas are always combusted with a burner, but there are three different ways to combust coal: The Basics of Steam Generation - 8

9 Fluidized bed combustion Fixed bed combustion (grate boilers) Entrained bed combustion (pulverized coal combustion) In fixed bed combustion, larger-sized coal is combusted in the bottom part of the combustor with low-velocity air. Stoker boilers also employ this type of combustion. Large-capacity pulverized coal fired boilers for power plants usually employ entrained bed combustion. In fluidized bed combustion, fuel is introduced into the fluidized bed and combusted. Main types of a modern boiler In a modern boiler, there are two main types of boilers when considering the heat transfer means from flue gases to feed water: Fire tube boilers and water tube boilers. In a fire tube boiler the flue gases from the furnace are conducted to flue passages, which consist of several parallel-connected tubes. The tubes run through the boiler vessel, which contains the feedwater. The tubes are thus surrounded by water. The heat from the flue gases is transferred from the tubes to the water in the container, thus the water is heated into steam. An easy way to remember the principle is to say that a fire tube boiler has "fire in the tubes". Figure 10: Fluidized bed combustion. 1. Turning chamber 2. Flue gas collection chamber 3. Open furnace 4. Flame tube 5. Burner seat 6. Manhole 7. Fire tubes 8. Water space 9. Steam space 10. Outlet and circulation 11. Flue gas out 12. Blow-out hatch 13. Main hatch 14. Cleaning hatch 15. Main steam outlet 16. Level control assembly 17. Feedwater inlet 18. Utility steam outlet 19. Safety valve assembly 20. Feet 21. Inslulation Figure 11: Schematic of a Höyrytys TTK fire tube steam boiler [Höyrytys]. The Basics of Steam Generation - 9

10 In a water tube boiler, the conditions are the opposite of a fire tube boiler. The water circulates in many parallel-connected tubes. The tubes are situated in the flue gas channel, and are heated by the flue gases, which are led from the furnace through the flue gas passage. In a modern boiler, the tubes, where water circulates, are welded together and form the furnace walls. Therefore the water tubes are directly exposed to radiation and gases from the combustion (Figure 12). Similarly to the fire tube boiler, the water tube boiler received its name from having "water in the tubes". A modern utility boiler is usually a water tube boiler, because a fire tube boiler is limited in capacity and only feasible in small systems. Figure 12: Simplified drawing describing the water tube boiler principle. /4/ Heat exchanger boiler model General If a modern water tube boiler utilizes a furnace, the furnace and the evaporator is usually the same construction the inner furnace walls consists solely of boiler tubes, conducting feed water, which absorbs the combustion heat and evaporates. flue gas process steam In process engineering a boiler is modelled as a network of heat exchangers, which symbolizes the transfer of heat from the flue gas to the steam/water in boiler pipes. For instance, the furnace, abstracted as a heat exchanger (Figure 13), consists of the following streams: the fuel (at storage temperature), combustion air (at outdoors temperature) and feedwater as input streams. The output streams are the flue gas from the combustion of the fuelair mixture, and the steam. feed water air fuel Figure 13: Furnace heat exchanger model. Heat exchanger basics The task of a heat exchanger is to transfer the heat from one flow of medium (fluid/gas stream) to another - without any physical contact, i.e. without actually mixing the two media. When speaking about the two streams that interact (exchange heat) in a heat exchanger we usually talk about the hot stream and the cold stream (Figure 14). The hot stream (a.k.a. heat source) is the stream that gives away heat to the cold stream (a.k.a. heat sink) that absorbs the heat. Thus, in a boiler the flue gas stream is the hot stream (heat source) and the water/steam stream is the cold stream (heat sink). The Basics of Steam Generation - 10

11 There are two different main types of heat exchangers: Parallel-flow and counter-flow. In a parallel flow heat exchanger the fluids flow in the same direction and in a counter flow heat exchanger the fluids flow in the opposite direction. Combinations of these types (like cross-flow exchangers and more complicated ones, like boilers) can usually be approximately calculated according to the counter-flow type. hot stream cold stream T-Q diagram A useful tool for designing a heat exchanger is the T-Q diagram. The diagram consists of two axes: Temperature (T) and transferred heat (Q). The hot stream and the cold stream are represented in the diagram by two lines on top of each other. If the exchanger is of parallelflow type, the lines proceed in the same direction (Figure 15). If the exchanger is a counter-flow (or cross-flow-combination, like a boiler), the lines points in the opposite direction (Figure 16). The length of the lines on the Q- axis shows the transferred heat rate and the T- axis the rise/drop in temperature that the heat transfer has caused. Since the heat strays from a higher temperature to a lower (according to the second law of thermodynamics) the wanted heat transfer happens by itself if and only if the hot stream is always hotter than the cold stream. That's why the streams must never cross. Since no material has an infinite heat transfer rate, the pinch temperature (Tpinch) of the heat exchanger defines the minimum allowed temperature difference between the two flows. If the streams cross, the lines must be horizontally adjusted (that is, external heating and cooling must be supplied) in order to correspond with the pinch temperature (Figure 17). Figure 14: A heat exchanger (also furnace). T1 T2 t2 t1 T hot stream cold stream Figure 15: T-Q diagram of a parallel-flow type heat exchanger. T1 T2 t2 t1 T deltaq Figure 16: T-Q diagram of a counter-flow type heat exchanger. Q Q The Basics of Steam Generation - 11

12 T t1 T1 Tpinch T2 t1 Q external heating required external cooling required Figure 17: Adjusted streams. Heat recovery steam generator model To give an example of the construction of a heat exchanger model, a heat recovery steam generator (HRSG) is constructed next as a heat exchanger cascade. The HRSG is basically a boiler without a furnace the HRSG extracts heat from flue gases originating from fuel combusted in an external unit. Since the HRSG only deals with two streams (flue gases as the hot stream and steam/water as the cold stream), it represents the simplest heat exchanger model of a modern boiler application. Since the heating of water occurs in three steps (Figure 6), the heat exchanger model is usually divided into at least three units. We start with the heat exchanger unit, where the evaporation occurs the evaporator. Assuming that water enters the evaporator as saturated water and exits as saturated steam, the heat transferred from the flue gas is the required heat to change the phase of water into steam. The phase change occurs (water boils) at a constant temperature, and therefore the steam/water stream temperature won t change in the evaporator. In order to preheat the water for the evaporator, another heat exchanger unit is needed. This unit is called economizer, and is a cross-flow type of heat exchanger. It is placed after the evaporator in the flue gas stream, since the evaporator requires higher flue gas temperature than the economizer. The heat exchanger unit that superheats the saturated steam is called superheater. The superheater heats the saturated steam beyond the saturation point until it reaches the designed maximum temperature. It requires therefore the highest flue gas temperature to receive heat and is thus placed first in the flue gas stream. The maximum temperature of the boiler is limited by the properties of The Basics of Steam Generation - 12

13 the superheater tube material. Today's economically feasible material can take temperatures of C. The result is a heat exchanger cascade of a HRSG (with a single pressure level), which can be found in Figure 18. The T-Q diagram of the model is visualized in Figure 19. Economizer water saturated water Evaporator T Sup Eva Eco saturated steam Superheater Figure 18: Heat exchanger model of the HRSG. Figure 19: T-Q diagram of the HRSG model in Figure 18. Q Heat exchanger model of furnace-equipped boilers The order of the heat transfer units on the water/steam side is always economizer - evaporator - superheater (downstream order). The temperature levels and the temperature difference between the flue gases and the working fluid usually limits the arrangement variation possibilities of the heat transfer surfaces on the flue gas side. In a boiler with a furnace, adequate cooling has to be maintained and material temperature should not exceed 600 C. Thus the evaporator part of the water/steam cycle is placed in the furnace walls, since the heat of the evaporation provides enough cooling for the furnace, which is the hottest part of the boiler. Since the furnace is inside the boiler, high flue gas temperatures (over 1000 C) are obtained. After the flue gas has given off heat for the steam production, it is still quite hot. In order to cool down the flue gases further to gain higher boiler efficiency, flue gases can be used to preheat the combustion air. The heat exchanger used for this purpose is called an air preheater. The Basics of Steam Generation - 13

14 The result is a heat exchanger model of a furnace-equipped boiler (e.g. PCF-boiler, grate boiler or oil/gas boiler), which can be found in Figure 20. The T-Q diagram of the model is visualized in Figure 21 Air out T Eco Eva Sup Air Air in Air preheater Figure 21: T-Q diagram of the heat exchanger model in Figure 20. Q Figure 20: Furnace equipped boiler with air preheater. The Basics of Steam Generation - 14

15 References 1. Ahonen, V. Höyrytekniikka II. Otakustantamo, Espoo Combustion Engineering. Combustion: Fossil power systems. 3 rd ed. Windsor Esa Vakkilainen, lecture slides and material on steam boiler technology, American Heritage Dictionary of the English Language: Fourth Edition, The Basics of Steam Generation - 15

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Boiler Calculations Sebastian

More information

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

More information

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink COMBUSTION In order to operate a heat engine we need a hot source together with a cold sink Occasionally these occur together in nature eg:- geothermal sites or solar powered engines, but usually the heat

More information

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2 WASTE HEAT BOILERS CONTENTS 1 INTRODUCTION... 3 2 CONCEPTION OF WASTE HEAT BOILERS... 4 2.1 Complex Solution...4 2.2 Kind of Heat Exchange...5 2.3 Heat Recovery Units and Their Usage...5 2.4 Materials

More information

The soot and scale problems

The soot and scale problems Dr. Albrecht Kaupp Page 1 The soot and scale problems Issue Soot and scale do not only increase energy consumption but are as well a major cause of tube failure. Learning Objectives Understanding the implications

More information

UNIT 2 REFRIGERATION CYCLE

UNIT 2 REFRIGERATION CYCLE UNIT 2 REFRIGERATION CYCLE Refrigeration Cycle Structure 2. Introduction Objectives 2.2 Vapour Compression Cycle 2.2. Simple Vapour Compression Refrigeration Cycle 2.2.2 Theoretical Vapour Compression

More information

Heat Exchangers in Boilers

Heat Exchangers in Boilers Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Heat Exchangers in Boilers Sebastian

More information

How To Power A Power Plant With Waste Heat

How To Power A Power Plant With Waste Heat Power Generation Siemens Organic Rankine Cycle Waste Heat Recovery with ORC Answers for energy. Table of Contents Requirements of the Future Power Supply without extra Fuel Siemens ORC-Module Typical Applications

More information

Continuous flow direct water heating for potable hot water

Continuous flow direct water heating for potable hot water Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial

More information

HEAT RECOVERY OPTIONS FOR DRYERS AND OXIDIZERS

HEAT RECOVERY OPTIONS FOR DRYERS AND OXIDIZERS HEAT RECOVERY OPTIONS FOR DRYERS AND OXIDIZERS William K. Scullion, Application Engineering Leader, MEGTEC Systems, De Pere, WI Introduction Competitive pressures continuously motivate us to examine our

More information

SAMPLE CHAPTERS UNESCO EOLSS

SAMPLE CHAPTERS UNESCO EOLSS STEAM TURBINE OPERATIONAL ASPECTS R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Steam Turbines, Operation, Supersaturation, Moisture, Back Pressure, Governing

More information

Steam Generator Boilers Compact Steam Boilers. Rapid Start-Up Safe in Operation

Steam Generator Boilers Compact Steam Boilers. Rapid Start-Up Safe in Operation Steam Generator Boilers Compact Steam Boilers Rapid Start-Up Safe in Operation AB&CO TT BOILERS The boiler maker AB&CO TT BOILERS LTD. have since the middle sixties produced industrial boilers and heaters

More information

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels 1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

Module 5: Combustion Technology. Lecture 33: Combustion air calculation

Module 5: Combustion Technology. Lecture 33: Combustion air calculation 1 P age Module 5: Combustion Technology Lecture 33: Combustion air calculation 2 P age Keywords: Heat of combustion, stoichiometric air, excess air, natural gas combustion Combustion air calculation The

More information

How To Calculate The Performance Of A Refrigerator And Heat Pump

How To Calculate The Performance Of A Refrigerator And Heat Pump THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION On completion of this tutorial you should be able to do the following. Discuss the merits of different refrigerants. Use thermodynamic tables for

More information

1.3 Properties of Coal

1.3 Properties of Coal 1.3 Properties of Classification is classified into three major types namely anthracite, bituminous, and lignite. However there is no clear demarcation between them and coal is also further classified

More information

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS ASME ORC 2015 3rd International Seminar on ORC Power Systems 12-14 October 2015, Brussels, Belgium PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS Vittorio

More information

Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard

Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard Introduction SRU s (Sulfur Recovery Units) are critical pieces of equipment in refineries and gas plants. SRUs remove sulfur compounds from certain

More information

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley. Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study

More information

Steam/Water Circulation Design

Steam/Water Circulation Design Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Steam/Water Circulation Design

More information

Efficiency on a large scale CFB Steam Boilers

Efficiency on a large scale CFB Steam Boilers Efficiency on a large scale CFB Steam Boilers Circulating Fluidized Bed Steam Boiler The Circulating Fluidized Bed Steam Boiler is an offering from Bosch Thermotechnology a member of the worldwide Bosch

More information

Building Energy Systems. - HVAC: Heating, Distribution -

Building Energy Systems. - HVAC: Heating, Distribution - * Some of the images used in these slides are taken from the internet for instructional purposes only Building Energy Systems - HVAC: Heating, Distribution - Bryan Eisenhower Associate Director Center

More information

I. STEAM GENERATION, BOILER TYPES

I. STEAM GENERATION, BOILER TYPES I. STEAM GENERATION, BOILER TYPES and BOILER PLANT SYSTEMS 1 Steam Generation Water s Unique Properties: High Thermal Capacity (Specific Heat) High Critical Temperature Ideal Medium for Heat Delivery High

More information

Thermodynamics - Example Problems Problems and Solutions

Thermodynamics - Example Problems Problems and Solutions Thermodynamics - Example Problems Problems and Solutions 1 Examining a Power Plant Consider a power plant. At point 1 the working gas has a temperature of T = 25 C. The pressure is 1bar and the mass flow

More information

Development of a model for the simulation of Organic Rankine Cycles based on group contribution techniques

Development of a model for the simulation of Organic Rankine Cycles based on group contribution techniques ASME Turbo Expo Vancouver, June 6 10 2011 Development of a model for the simulation of Organic Rankine ycles based on group contribution techniques Enrico Saverio Barbieri Engineering Department University

More information

How does solar air conditioning work?

How does solar air conditioning work? How does solar air conditioning work? In a conventional air conditioning system; The working fluid arrives at the compressor as a cool, low-pressure gas. The compressor is powered by electricity to squeeze

More information

Boiler efficiency measurement. Department of Energy Engineering

Boiler efficiency measurement. Department of Energy Engineering Boiler efficiency measurement Department of Energy Engineering Contents Heat balance on boilers Efficiency determination Loss categories Fluegas condensation principals Seasonal efficiency Emission evaluation

More information

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS 2 Be able to evaluate

More information

Thermodynamical aspects of the passage to hybrid nuclear power plants

Thermodynamical aspects of the passage to hybrid nuclear power plants Energy Production and Management in the 21st Century, Vol. 1 273 Thermodynamical aspects of the passage to hybrid nuclear power plants A. Zaryankin, A. Rogalev & I. Komarov Moscow Power Engineering Institute,

More information

Steam Generation Efficiency Module Blowdown Losses Section

Steam Generation Efficiency Module Blowdown Losses Section Steam End User Training Steam Generation Efficiency Module Blowdown Losses Section Slide 1 Blowdown Losses Module This section will discuss blowdown loss and its affect on boiler efficiency. [Slide Visual

More information

Boiler Preparation, Start-Up and Shutdown

Boiler Preparation, Start-Up and Shutdown Boiler Preparation, Start-Up and Shutdown Learning Outcome When you complete this module you will be able to: Describe the basic preparation of a boiler for start-up, and the start-up and shutdown procedures.

More information

THE HUMIDITY/MOISTURE HANDBOOK

THE HUMIDITY/MOISTURE HANDBOOK THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M

More information

B0401 Abstract 029 Oral Presentation Session B04 Innovative Applications and Designs - Tuesday, July 1, 2008 16:00 h

B0401 Abstract 029 Oral Presentation Session B04 Innovative Applications and Designs - Tuesday, July 1, 2008 16:00 h Reference System for a Power Plant Based on Biomass Gasification and SOFC Richard Toonssen, Nico Woudstra, Adrian H.M. Verkooijen Delft University of Technology Energy Technology, Process & Energy department

More information

Description of Thermal Oxidizers

Description of Thermal Oxidizers Description of Thermal Oxidizers NESTEC, Inc. is a full service equipment supplier specializing in solutions for plant emission problems. The benefit in working with NESTEC, Inc. is we bring 25+ years

More information

Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling

Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 8, Issue 6 (Sep. - Oct. 2013), PP 25-29 Performance of the Boiler and To Improving the Boiler Efficiency

More information

Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound.

Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound. Steam Tables What They Are How to Use Them The heat quantities and temperature/ pressure relationships referred to in this Handbook are taken from the Properties of Saturated Steam table. Definitions of

More information

Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin

Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin Drying of Woody Biomass BioPro Expo & Marketplace / Atlanta, GA / March 14-16, 2011 Drying of Woody Biomass Conventional Direct Fired Dryer Technology Proprietary work of the Copyright Owner Issues with

More information

Condensing Boiler Efficiency

Condensing Boiler Efficiency Condensing Boiler Efficiency Date: July 17, 2012 PRES E NT ED BY DO N L E O NA RDI LE O N A RD I I NC. HV AC T RAI N I N G & C ON SU LT IN G Concepts 1 The current state of evolution in boiler design 2

More information

A Review on Power Generation in Thermal Power Plant for Maximum Efficiency

A Review on Power Generation in Thermal Power Plant for Maximum Efficiency International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 4, Number 1 (2014), pp. 1-8 Research India Publications http://www.ripublication.com/ijame.htm A Review on Power Generation

More information

DIN 2403 Identification of pipelines according to the fluid conveyed. Marking of pipes according to fluid transported

DIN 2403 Identification of pipelines according to the fluid conveyed. Marking of pipes according to fluid transported DIN 2403 Identification of pipelines according to the fluid conveyed. Marking of pipes according to fluid transported 1 Field of application This standard specifies the colours for the identification of

More information

Increasing Natural Gas Boiler Efficiency by Capturing Waste Energy from Flue Gas

Increasing Natural Gas Boiler Efficiency by Capturing Waste Energy from Flue Gas Increasing Natural Gas Boiler Efficiency by Capturing Waste Energy from Flue Gas Mark Schiffhauer, ATSI Engineering Services Cameron Veitch, Combustion and Energy Systems Scott Larsen, New York State Energy

More information

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS Rearranging atoms. In a chemical reaction, bonds between atoms in one or more molecules (reactants) break and new bonds are formed with other atoms to

More information

Condensing Economizers Workshop Enbridge Gas, Toronto. MENEX Boiler Plant Heat Recovery Technologies. Prepared by: Jozo Martinovic, M A Sc, P Eng

Condensing Economizers Workshop Enbridge Gas, Toronto. MENEX Boiler Plant Heat Recovery Technologies. Prepared by: Jozo Martinovic, M A Sc, P Eng Condensing Economizers Workshop Enbridge Gas, Toronto MENEX Boiler Plant Heat Recovery Technologies Prepared by: Jozo Martinovic, M A Sc, P Eng MENEX Innovative Solutions May 15, 2008 MENEX INC. 683 Louis

More information

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SECOND GRADE WATER WEEK 1. PRE: Exploring the properties of water. LAB: Experimenting with different soap mixtures. POST: Analyzing

More information

COKE PRODUCTION FOR BLAST FURNACE IRONMAKING

COKE PRODUCTION FOR BLAST FURNACE IRONMAKING COKE PRODUCTION FOR BLAST FURNACE IRONMAKING By Hardarshan S. Valia, Scientist, Ispat Inland Inc INTRODUCTION A world class blast furnace operation demands the highest quality of raw materials, operation,

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

More information

University of Iowa Power Plant

University of Iowa Power Plant University of Iowa Power Plant Contents Purpose... 2 History... 3 Cogeneration... 6 Boilers... 7 Environmental Impact... 10 Steam Turbine Generators... 12 Modernization... 14 Biomass Fuel Initiative...

More information

Station #1 Interpreting Infographs

Station #1 Interpreting Infographs Energy Resources Stations Activity Page # 1 Station #1 Interpreting Infographs 1. Identify and explain each of the energy sources (5) illustrated in the infograph. 2. What do the white and black circles

More information

COMBUSTION. By: Michael Biarnes. In collaboration with: Bill Freed and Jason Esteves. E Instruments International LLC - www.e-inst.

COMBUSTION. By: Michael Biarnes. In collaboration with: Bill Freed and Jason Esteves. E Instruments International LLC - www.e-inst. COMBUSTION By: Michael Biarnes In collaboration with: Bill Freed and Jason Esteves E Instruments International LLC - www.e-inst.com 1 Combustion What is Combustion? Combustion takes place when fuel, most

More information

5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal.

5. State the function of pulveriser. The pulverisers are the equipments which are used to powdered coal. 413 POWER PLANT ENGINEERING PART-A 1. Define Power. Power is the rate at which energy is used (or) Energy/time. 2. What are the types of fuels? Solid fuel Liquid fuel Gaseous fuel (Any one among the above

More information

Webpage: www.ijaret.org Volume 3, Issue IV, April 2015 ISSN 2320-6802

Webpage: www.ijaret.org Volume 3, Issue IV, April 2015 ISSN 2320-6802 Efficiency Assessment and Improvement of at Super Thermal Power Station Vikram Singh Meena 1, Dr. M.P Singh 2 1 M.Tech in Production Engineering, Jagannath University, Jaipur, Rajasthan, India Vikrammeena134@gmail.com

More information

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation R K Kapooria Department of Mechanical Engineering, BRCM College of Engineering & Technology, Bahal (Haryana)

More information

Design of heat exchangers

Design of heat exchangers Design of heat exchangers Exchanger Design Methodology The problem of heat exchanger design is complex and multidisciplinary. The major design considerations for a new heat exchanger include: process/design

More information

Tutkimuksen merkitys menestyvässä liiketoiminnassa- Innovaatiosta tuotteeksi

Tutkimuksen merkitys menestyvässä liiketoiminnassa- Innovaatiosta tuotteeksi Tutkimuksen merkitys menestyvässä liiketoiminnassa- Innovaatiosta tuotteeksi Matti Rautanen Manager, External Networks, Power-wide R&D Tutkimuksella tulevaisuuteen- seminaari Kaukolämpöpäivät, Kuopio 29.8.2013

More information

Waste to Energy in Düsseldorf. for a clean city.

Waste to Energy in Düsseldorf. for a clean city. Waste to Energy in Düsseldorf for a clean city. Waste Management in Düsseldorf. Düsseldorf s public utilities company known as Stadtwerke Düsseldorf operates a waste to energy plant (WtE) that has been

More information

Improving Energy Efficiency through Biomass Drying

Improving Energy Efficiency through Biomass Drying Improving Energy Efficiency through Biomass Drying Gilbert McCoy, Senior Energy Systems Engineer Northwest CHP Technical Assistance Partnership International District Energy Association Woody Biomass CHP

More information

Low grade thermal energy sources and uses from the process industry in the UK

Low grade thermal energy sources and uses from the process industry in the UK Low grade thermal energy sources and uses from the process industry in the UK Yasmine Ammar, Sharon Joyce, Rose Norman, Yaodong Wang, Anthony P. Roskilly Sustainable Thermal Energy Management in the Process

More information

Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1

Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1 Lesson Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications Version ME, IIT Kharagpur The objectives of this lecture are to discuss. Performance aspects of SSS cycle and

More information

NAWTEC18-3541 CONCEPTS AND EXPERIENCES FOR HIGHER PLANT EFFICIENCY WITH MODERN ADVANCED BOILER AND INCINERATION TECHNOLOGY

NAWTEC18-3541 CONCEPTS AND EXPERIENCES FOR HIGHER PLANT EFFICIENCY WITH MODERN ADVANCED BOILER AND INCINERATION TECHNOLOGY Proceedings of the 18th Annual North American Waste-to-Energy Conference NAWTEC18 May 11-13, 2010, Orlando, Florida, USA NAWTEC18-3541 CONCEPTS AND EXPERIENCES FOR HIGHER PLANT EFFICIENCY WITH MODERN ADVANCED

More information

MICRO-COGENERATION AND DESALINATION USING ROTARY STEAM ENGINE (RSE) TECHNOLOGY

MICRO-COGENERATION AND DESALINATION USING ROTARY STEAM ENGINE (RSE) TECHNOLOGY MICRO-COGENERATION AND DESALINATION USING ROTARY STEAM ENGINE (RSE) TECHNOLOGY Kari Alanne, Kari Saari, Maunu Kuosa, Md. Mizanur Rahman* Andrew Martin** Heikki Pohjola*** *Aalto University, Espoo, Finland

More information

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb. Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

More information

Control Device Requirements Charts For Oil and Gas Handling and Production Facilities

Control Device Requirements Charts For Oil and Gas Handling and Production Facilities Device Charts For Oil and Gas Handling and Production Facilities Purpose/Scope: The purpose of this document is to provide standardized guidance for use by the regulated community and air permit reviewers,

More information

How Ground/Water Source Heat Pumps Work

How Ground/Water Source Heat Pumps Work How Ground/Water Source s Work Steve Kavanaugh, Professor Emeritus of Mechanical Engineering, University of Alabama Ground Source s (a.k.a. Geothermal s) are becoming more common as the costs of energy

More information

By K.K.Parthiban / Boiler specialist / Venus Energy Audit System

By K.K.Parthiban / Boiler specialist / Venus Energy Audit System FINE TUNING EXPERIENCE OF A CFBC BOILER By K.K.Parthiban / Boiler specialist / Venus Energy Audit System Introduction The Industrial boilers have been seeing a growth in capacity in the recent years. Current

More information

R&D on Oil-Burning, Environment-Friendly, High-Efficiency Boiler

R&D on Oil-Burning, Environment-Friendly, High-Efficiency Boiler [N.2.1.1] R&D on Oil-Burning, Environment-Friendly, High-Efficiency Boiler (Environment-Friendly, High-Efficiency Boiler Group) Takashi Murakawa, Yasuhiro Kotani, Kazuhiro Kamijo, Koichi Tsujimoto, Hiroshi

More information

Module 2.2. Heat transfer mechanisms

Module 2.2. Heat transfer mechanisms Module 2.2 Heat transfer mechanisms Learning Outcomes On successful completion of this module learners will be able to - Describe the 1 st and 2 nd laws of thermodynamics. - Describe heat transfer mechanisms.

More information

Chapter 2.2: Boilers

Chapter 2.2: Boilers Chapter 2.2: Boilers Part I: Objective type Questions and Answers 1. The minimum capacity of any closed vessel which generates steam under Indian Boilers Regulation Act is. a) 2.275 liters b) 22.75 kilo

More information

Stirling heat engine Internal combustion engine (Otto cycle) Diesel engine Steam engine (Rankine cycle) Kitchen Refrigerator

Stirling heat engine Internal combustion engine (Otto cycle) Diesel engine Steam engine (Rankine cycle) Kitchen Refrigerator Lecture. Real eat Engines and refrigerators (Ch. ) Stirling heat engine Internal combustion engine (Otto cycle) Diesel engine Steam engine (Rankine cycle) Kitchen Refrigerator Carnot Cycle - is not very

More information

BOILER OPERATORS HANDBOOK

BOILER OPERATORS HANDBOOK BOILER OPERATORS HANDBOOK prepared by National Industrial Fuel Efficiency Service Ltd. Graham & Trotman First published in 1959 as the New Stoker's Manual and in 1969 as The Boiler Operators Handbook This

More information

MODULE 1. Thermodynamics cycles can be divided into two generation categories :

MODULE 1. Thermodynamics cycles can be divided into two generation categories : MODULE 1 1. STEAM POWER PLANT: Two important area of application of thermodynamics are power generation and refrigeration. Both power generation and refrigeration are usually accomplished by a system that

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics Objectives MAE 320 - Chapter 6 The Second Law of Thermodynamics The content and the pictures are from the text book: Çengel, Y. A. and Boles, M. A., Thermodynamics: An Engineering Approach, McGraw-Hill,

More information

THERMAL TO MECHANICAL ENERGY CONVERSION: ENGINES AND REQUIREMENTS

THERMAL TO MECHANICAL ENERGY CONVERSION: ENGINES AND REQUIREMENTS THERMAL TO MECHANICAL ENERGY CONVERSION: ENGINES AND REQUIREMENTS Oleg N. Favorsky Russian Academy of Science, Division of Physical-Technical Problems of Energetics, Moscow, Russia Keywords: Power, heat,

More information

10 Nuclear Power Reactors Figure 10.1

10 Nuclear Power Reactors Figure 10.1 10 Nuclear Power Reactors Figure 10.1 89 10.1 What is a Nuclear Power Station? The purpose of a power station is to generate electricity safely reliably and economically. Figure 10.1 is the schematic of

More information

MCQ - ENERGY and CLIMATE

MCQ - ENERGY and CLIMATE 1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated

More information

Humidity, Condensation, Clouds, and Fog. Water in the Atmosphere

Humidity, Condensation, Clouds, and Fog. Water in the Atmosphere Humidity, Condensation, Clouds, and Fog or Water in the Atmosphere The Hydrologic Cycle Where the Water Exists on Earth Evaporation From the Oceans and Land The Source of Water Vapor for the Atmosphere

More information

Overview of Waste Heat Recovery for Power and Heat

Overview of Waste Heat Recovery for Power and Heat Overview of Waste Heat Recovery for Power and Heat Dave Sjoding Northwest Clean Energy Application Center Washington State University Extension Energy Program Waste Heat Recovery for Power and Heat Workshop

More information

SULFUR RECOVERY UNIT. Thermal Oxidizer

SULFUR RECOVERY UNIT. Thermal Oxidizer SULFUR RECOVERY UNIT Thermal Oxidizer BURNERS FLARES INCINERATORS PARTS & SERVICE SULFUR RECOVERY UNIT Thermal Oxidizer Tail Gas Thermal Oxidizer designed and built to GOST-R requirements. Zeeco can meet

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant

Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant Supercritical CO2 Power Cycle Symposium September 9-10, 2014 Pittsburg, Pennsylvania USA Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant Dr. Leonid Moroz, Dr. Maksym

More information

ENERGY SAVING WORT BOILING SISTEM IN BREWING FACTORY

ENERGY SAVING WORT BOILING SISTEM IN BREWING FACTORY ENERGY SAVING WORT BOILING SISTEM IN BREWING FACTORY Mariana Geta TOMESCU (cas. Cismarescu) *, Carol CSATLOS** * Faculty of Food and Tourism, Transilvania University of Braşov, Braşov, Romania ** Faculty

More information

Bomb Calorimetry. Electrical leads. Stirrer

Bomb Calorimetry. Electrical leads. Stirrer Bomb Calorimetry Stirrer Electrical leads Oxygen inlet valve Bomb Fuse Calorimeter Outer jacket Not shown: heating and cooling system for outer jacket, and controls that keep the outer jacket at the same

More information

Chapter 17: Change of Phase

Chapter 17: Change of Phase Chapter 17: Change of Phase Conceptual Physics, 10e (Hewitt) 3) Evaporation is a cooling process and condensation is A) a warming process. B) a cooling process also. C) neither a warming nor cooling process.

More information

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS Blank SONNTAG/BORGNAKKE STUDY PROBLEM 7-1 7.1 A car engine and its fuel consumption A car engine produces 136 hp on the output shaft with a thermal efficiency

More information

EFFICIENCY WITH DIFFERENT GCV OF COAL AND EFFICIENCY IMPROVEMENT OPPORTUNITY IN BOILER

EFFICIENCY WITH DIFFERENT GCV OF COAL AND EFFICIENCY IMPROVEMENT OPPORTUNITY IN BOILER EFFICIENCY WITH DIFFERENT GCV OF COAL AND EFFICIENCY IMPROVEMENT OPPORTUNITY IN BOILER Chetan T. Patel 1, Dr.Bhavesh K. patel 2, Vijay K. Patel 3 M.E. in Energy Engineering 4 th sem, Government Engineering

More information

Analysis of Ammonia Water (NH3-H2O) Vapor Absorption Refrigeration System based on First Law of Thermodynamics

Analysis of Ammonia Water (NH3-H2O) Vapor Absorption Refrigeration System based on First Law of Thermodynamics International Journal of Scientific & Engineering Research Volume 2, Issue 8, August-2011 1 Analysis of Ammonia Water (NH3-H2O) Vapor Absorption Refrigeration System based on First Law of Thermodynamics

More information

C H A P T E R T W O. Fundamentals of Steam Power

C H A P T E R T W O. Fundamentals of Steam Power 35 C H A P T E R T W O Fundamentals of Steam Power 2.1 Introduction Much of the electricity used in the United States is produced in steam power plants. Despite efforts to develop alternative energy converters,

More information

A Novel Storage Technology Opens New Opportunities for CSP

A Novel Storage Technology Opens New Opportunities for CSP A Novel Storage Technology Opens New Opportunities for CSP Reuel Shinnar Dept. of Chemical Engineering The City College of The City University of New York The Future of CSP CSP is at presently the only

More information

C H A P T E R 3 FUELS AND COMBUSTION

C H A P T E R 3 FUELS AND COMBUSTION 85 C H A P T E R 3 FUELS AND COMBUSTION 3.1 Introduction to Combustion Combustion Basics The last chapter set forth the basics of the Rankine cycle and the principles of operation of steam cycles of modern

More information

Petroleum Refinery Hydrogen Production Unit: Exergy and Production Cost Evaluation

Petroleum Refinery Hydrogen Production Unit: Exergy and Production Cost Evaluation Int. J. of Thermodynamics ISSN 1301-9724 Vol. 11 (No. 4), pp. 187-193, December 2008 Petroleum Refinery Hydrogen Production Unit: and Production Cost Evaluation Flávio E. Cruz 1 and Silvio de Oliveira

More information

Study on performance and methods to optimize thermal oil boiler efficiency in cement industry

Study on performance and methods to optimize thermal oil boiler efficiency in cement industry energyequipsys/ Vol 4/No1/June 016/ 53-64 Energy Equipment and Systems http://energyequipsys.ut.ac.ir www.energyeuquipsys.com Study on performance and methods to optimize thermal oil boiler efficiency

More information

1 DESCRIPTION OF THE APPLIANCE

1 DESCRIPTION OF THE APPLIANCE 1 DESCRIPTION OF THE APPLIANCE 1.1 INTRODUCTION The cast iron SF boilers are a valid solution for the present energetic problems, since they can run with solid fuels: wood and coal. These series of boilers

More information

Glossary of Heating, Ventilation and Air Conditioning Terms

Glossary of Heating, Ventilation and Air Conditioning Terms Glossary of Heating, Ventilation and Air Conditioning Terms Air Change: Unlike re-circulated air, this is the total air required to completely replace the air in a room or building. Air Conditioner: Equipment

More information

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems DFC Technology Used as Electrochemical Membrane for CO 2 Purification and Capture during Power Generation FCE s Direct

More information

REFRIGERATION (& HEAT PUMPS)

REFRIGERATION (& HEAT PUMPS) REFRIGERATION (& HEAT PUMPS) Refrigeration is the 'artificial' extraction of heat from a substance in order to lower its temperature to below that of its surroundings Primarily, heat is extracted from

More information

High-performance steam boiler and hot water boiler plants for industry

High-performance steam boiler and hot water boiler plants for industry High-performance steam boiler and hot water boiler plants for industry Information 2/3 HKB leading manufacturer of industrial boiler plants in Europe and Asia Steam boilers with outputs up to 120 t/h and

More information

COGENERATION. This section briefly describes the main features of the cogeneration system or a Combined Heat & Power (CHP) system. 36 Units.

COGENERATION. This section briefly describes the main features of the cogeneration system or a Combined Heat & Power (CHP) system. 36 Units. COGENERATION 1. INTRODUCTION... 1 2. TYPES OF COGENERATION SYSTEMS... 2 3. ASSESSMENT OF COGENERATION SYSTEMS... 10 4. ENERGY EFFICIENCY OPPORTUNITIES... 14 5. OPTION CHECKLIST... 16 6. WORKSHEETS... 17

More information

Steam System Efficiency. Bill Lumsden Leidos Engineering

Steam System Efficiency. Bill Lumsden Leidos Engineering Steam System Efficiency Bill Lumsden Leidos Engineering Steam System Efficiency Steam System Efficiency Key Take-aways: Review of the properties of ice, water, and steam Learn the basics of steam trap

More information