2.) In general, what do most simple machines do? Simple machines make work easier by reducing the force needed.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "2.) In general, what do most simple machines do? Simple machines make work easier by reducing the force needed."

Transcription

1 Name: Simple Machines Study Guide Force and Work- 1.) To be considered work, you have to have a force and a distance through which the force acts. 2.) What is the formula for work? work = force x distance_ What is the unit for work? joules_ 3.) What does something have to do to be considered a machine? A machine is any device that makes doing work easier. 4.) Decide if work is done for each of the following: (Are the requirements for WORK met?) a. Someone is sitting on a cushion on the floor. Work or NO work b. A baseball is hit into the bleachers. Work or NO work c. Ms. Jarrett holds a doorstop in one place to show you an example of a wedge. Work or NO work d. A little girl is pushed on a swing. Work or NO work Simple Machines Basics 1.) What are the 2 basic types of simple of machines, of which all other simple machines are variations of? Also list the other simple machines in the correct category under the heading. inclined planes & levers Wedge pulley Screw wheel and axle 2.) In general, what do most simple machines do? Simple machines make work easier by reducing the force needed. 3.) Do simple machines make less work? Explain. No. Simple machines make work easier, they do not decrease the amount of work. Simple machines can actually make more work due to friction. 4.) What do we mean when we say machines make work easier? (force vs. distance) Simple machines make work easier to do by decreasing the force required by increasing the distance over which the work is done. 5.) A force applied by a machine to an object is the? a.) resistance force b.) effort force c.) force field d.) Jedi force 6.) A force applied to a machine by a person is the? a.) resistance force b.) effort force c.) force field d.) Jedi force 7.) Simple machines make work easier, however there are 2 exceptions to this rule. What are the exceptions, and in each case, what is the advantage each machine gives us? 1. single fixed pulley changes the direction of a force 2. 3 rd class lever gives us increased speed

2 Inclined Plane 1.) An inclined plane decreases the force needed to lift an object by increasing the distance that force is applied. 2.) In general, less force = more distance, and more force = less distance 3.) If the force required to lift a barrel into the back of a truck was 124 Newtons without a simple machine, what would the force required to get the barrel into the back of the truck using a ramp? (Think in general, you don t have enough info to calculate.) a.) less than 124 Newtons b.) more than 124 Newtons c.) 124 Newtons 4.) Inclined planes can increase the amount of work done due to friction. 5.) If it takes joules of work to lift a barrel into the back of a truck without using a simple machine, how much work would be required to get the barrel into the back of the truck using a ramp? (Think in general again, and CONSIDER FRICTION) a.) less than Joules b.) more than Joules c.) Joules If we consider friction, we can conclude that the work would be slightly more due to the friction. Lever 1.) A lever turns on a fixed point, called the fulcrum. 2.) Other than multiplying a force, what else can levers do? Change the direction of a force 3.) Explain how you would determine what class a lever is. (Look where and be what?) Look in the middle and be FRE --- fulcrum in middle = class one, resistance in middle=2, effort in the middle = class 3 4.) What happens to the force needed to move an object as you increase the length of effort arm? force needed would DECREASE as you increase the effort arm 5.) What would happen to the force required if you decreased the length of the effort arm? If you decreased the effort arm, the force needed would increase 6.) True or False and explain- ALL LEVERS make work easier. FALSE. The third class lever does NOT make work easier. They give you increased speed. 7.) Label the effort, resistance and fulcrum in the pictures below an identify what class of lever it is.

3 Pulley 1.) Pulleys can multiply a force or change is direction. 2.) What are the three types of pulleys? Single movable, single fixed, block and tackle 3.) How do you find the mechanical advantage of a block and tackle? Count the sections of rope supporting the weight 4.) True or False and explain-all PULLEYS make work easier. FALSE. Fixed pulleys do not make work easier, they only change the direction of the force. 5.) How does the distance of the string you pull compare to the distance the weight is lifted when using a block and tackle system? The distance of the string you pull is much greater than the distance the object is lifted. (Trading increased distance for decreased force.) 6.) What is the MA of a single fixed pulley? 1 single movable pulley? 2 7.) Find the effort force required to lift the 300 N weight in the diagram N N Simple vs. Compound Machines (mentioned in machines reading) 1.) What makes something a compound machine instead of a simple machine? Composed of 2 or more simple machines 2.) Label each machine with S for simple and C for compound. a. scissors C d. pry bar S b. ramp S e. bicycle C c. single fixed pulley S f. shovel S 3.) List 3 of your own examples of compound machines. (Remember: Machines help make WORK easier. Bull dozer, wheelbarrow, nail clippers, etc Mechanical Advantage Basics 1.) Mechanical advantage is how much the machine multiplies your force. 2.) What does it mean about a machine if it has a mechanical advantage of 1? The machines doesn t increased your effort/ input force. The force the machine applies to an object is the same as the force you put in. It doesn t help you by making you stronger. 3.) Would Machines with higher mechanical advantage would take more or less effort force to make something move? A.) more b.) Less c.) the same

4 4.) Would machines with higher mechanical advantage would take more or less work to make something move? A.) more (with friction) b.) Less c.) the same 5.) If you have a choice between a machine with a MA of 4 and a machine with an MA of 6, which machine would it make more sense to use? MA of 6 you would not have to use as much effort force Wheel and Axle- 1.) Object with larger radius= wheel, object with smaller radius= axle 2.) What would be easier (take less force) to turn and why: An axle with a diameter of 10cm using a 100cm wheel An axle with a diameter of 10cm using a 50cm wheel Why?- It has a larger effort wheel (large wheel). When you increase the effort distance, you decrease the effort force needed. 3.) What would require the least amount of work to turn and why: An axle with a diameter of 10cm using a 100cm wheel An axle with a diameter of 10cm using a 50cm wheel Why?-Both amounts of work are the same due to the axles being the same. The 100cm wheel would just be easier because it travels a greater distance. 4.) Calculate the IMA for the following machines. Show your work. Rw = 11 cm Ra = 0.5 m dw = 2.4 m Ra = 3 cm Rw = 3 m da = 0.8 m IMA=3.7 IMA = 6 IMA = 3 The Screw- 1.) Which of the screws to the right (A or B) would require the greatest amount of force to drive into a piece of wood? Why? A There are less threads so there is less distance. There is more force required for a screw with less distance. 2.) Which of the screws to the right (A or B) would be the easiest to drive into a piece of wood? Why? B There are more threads so there is more distance. Since the rule is the greater the distance, the less the force, there is LESS force required for the screw with more threads. 3.) Which of the above screws (A or B) would have the greatest mechanical advantage? B more threads, more distance, less force 4.) What is a specific advantage we discussed of using a screw instead of an inclined plane? (Think staircases) completing the same goal using a smaller space

5 The Wedge 1.) What does the wedge do as it moves into a material? Separates the material 2.) Of the two wedges to the right, which do you think would require the least amount of force if you wanted to separate those objects 8cm and why? B- it has a greater distance (length) and the rule is when you increase the distance, you decrease the force (make work easier) 4.) What is a major difference between the wedge and an inclined plane? The wedge moves 3.) Measure and calculate the IMA of the wedges. Height = 2.6 cm Slope = 2.4 cm IMA = 2.4cm/2.6 cm =.92 Height = 1.8 cm Slope = 3 cm IMA = 3 cm/1.8 cm = 1.7 Calculations: Show your work! You will be given the following on your test: Work = force x distance Length of slope IMA wedge = FR DE Height or thickness Radius wheel MA x FE IMA x DR IMA wheel and axle = MA = Resistance Force Effort Force I.M.A = Effort Distance Resistance Distance 1.) A clown is trying to lift a refrigerator full of wigs a height of 2M. It would take him a force of 60 Newtons to lift the fridge without a simple machine. a.) Exactly How much work would be required to lift this fridge of wigs without a machine? Radius axle Force= 60 N Distance= 2 M Work = Force x Distance W= 60 Newtons x 2 M Work= 120 Joules b.) Assuming no friction, how much work would be required to lift the fridge of wigs with a lever that has a mechanical advantage of 6? 120 joules the amount of work would not change by using the machine, the work would just be easier c.) Assuming no friction, how much effort force would be required to lift the fridge of wigs with a lever that has a mechanical advantage of 6? 60 N / 6 Force = 10 N

6 2.) What is the force needed to lift a magic school bus if you use a lever with a mechanical advantage 25. The force required to lift the magic school bus without a lever would be 1000 N. Resistance= 1000 N Effort=? M.A = 25 M.A = Resistance effort or effort= resistance M.A 25 = 1000N Effort or Effort=1000N 25 M.A = 40 3.) How much work is being done by a penguin pushing a purple piano with a force of 50 N up a ramp that is 8 meters long? Force= 50 N Distance= 8 M Work = Force x Distance W= 50 Newtons x 8 M Work= 400 Joules 4.) What is the mechanical advantage if a unicorn uses its horn as a lever to open a door 2 feet wide using 300 N of force, which would normally take about 900N to open without a simple machine? Resistance= 900 N Effort= 300 N M.A =? M.A = Resistance effort M.A = 900 N 300 N M.A = 3 5.)How much work is required to lift a bag of cat litter 2 meters, if the bag has a force of 40N? Force= 40 Distance= 2 M Work = Force x Distance W= 40 Newtons x 2 M Work= 80 Joules 6.) Melvin the mighty monkey is trying to get a big bag of bananas into his tree house. It takes 90 Newtons of force to lift into a tree without using a simple machine. He then makes the work easier by putting a ramp that is 10 feet long up to his tree house, which allows him to move the bag of bananas with 10 Newtons of force. What is the Mechanical Advantage of this inclined plane? Resistance= 90 N Effort= 10 N M.A =? M.A = Resistance effort M.A = 90 N 10 N M.A = 9 7.) What is the Ideal Mechanical Advantage of a lever whose effort arm measures 55cm and whose resistance arm measures 5 cm? Resistance= 5 cm Effort= 55 cm I.M.A Lever =? I.M.A= Effort Arm Resistance Arm I.M.A = 55 cm 5 cm I.M.A = 11 8.) What is the Ideal Mechanical Advantage of an inclined plane that has a length of 400cm and a height of 50cm? Resistance= 50 cm Effort= 400c m I.M.A Lever =? I.M.A= Effort dist(length) Resistance dist(height) I.M.A = 400 cm 50 cm I.M.A = 8 9.) What is the ideal mechanical advantage for a lever whose fulcrum is at 20cm? Resistance= 20cm Effort= 80cm I.M.A Lever =? I.M.A= Effort Arm I.M.A = 80cm Resistance Arm 20 cm I.M.A = 4

The Lever. The law of conservation of energy applies to all machines!

The Lever. The law of conservation of energy applies to all machines! Simple Machines A machine is a device for multiplying forces or simply changing the direction of forces. Many machines can increase the speed with which work is done. The Lever The law of conservation

More information

ANSWER KEY. Work and Machines

ANSWER KEY. Work and Machines Chapter Project Worksheet 1 1. inclined plane, wedge, screw, lever, wheel and axle, pulley 2. pulley 3. lever 4. inclined plane 5. Answers will vary: top, side, or bottom 6. Answers will vary; only one

More information

Directed Reading A. Section: Types of Machines LEVERS

Directed Reading A. Section: Types of Machines LEVERS Skills Worksheet Directed Reading A Section: Types of Machines 1. A knife is actually a very sharp. 2. What are the six simple machines that all other machines are made from? LEVERS 3. A simple machine

More information

Name Class Date. Pulley. Wedge

Name Class Date. Pulley. Wedge CHAPTER 13 2 Simple Machines SECTION Work and Energy KEY IDEAS As you read this section, keep these questions in mind: What are simple machines? What simple machines are in the lever family? What simple

More information

Mechanical Reasoning Review

Mechanical Reasoning Review Mechanical Reasoning Review Work can be made easier or faster through practical applications of simple and/or compound machines. This is called mechanical advantage - in other words, using the principal

More information

Simple Machines. What are simple machines?

Simple Machines. What are simple machines? Definitions to know: Simple Machines Work done when an applied force causes an object to move in the direction of the force Energy ability to cause change; can change the speed, direction, shape, or temperature

More information

Unit 8A: Systems in Action (Pg. 2 85) Chapter 2: Getting to Work (pg. 28 55)

Unit 8A: Systems in Action (Pg. 2 85) Chapter 2: Getting to Work (pg. 28 55) Unit 8A: Systems in Action (Pg. 2 85) Chapter 2: Getting to Work (pg. 28 55) Name: Date: 2.1: Physical Systems: Simple Machines (Pg. 30 35): Read Pages 30-35. Answer the following questions on pg. 35:

More information

EVALUAT ING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING Revised for ACCESS TO APPRENTICESHIP

EVALUAT ING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING Revised for ACCESS TO APPRENTICESHIP EVALUAT ING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING for ACCESS TO APPRENTICESHIP SCIENCE SKILLS SIMPLE MACHINES & MECHANICAL ADVANTAGE AN ACADEMIC SKILLS MANUAL for The Construction Trades: Mechanical

More information

Compound Machine: Two or more simple machines working together to make work easier. Examples: Wheelbarrow, Can Opener, Bicycle

Compound Machine: Two or more simple machines working together to make work easier. Examples: Wheelbarrow, Can Opener, Bicycle Name SOL 4.2 Simple and Compound Machines NOTE - Simple machines are NOT included in the 5 th REVISED Science Standards Simple Machine: A machine with few or no moving parts. Simple machines make work

More information

The origin of the wedge is unknown, because it has been in use as early as the stone age.

The origin of the wedge is unknown, because it has been in use as early as the stone age. Simple Machines Compiled and edited from Wikipedia Inclined Plane An inclined plane is a plane surface set at an angle, other than a right angle, against a horizontal surface. The inclined plane permits

More information

Pre and Post-Visit Activities

Pre and Post-Visit Activities Pre and Post-Visit Activities Simple Machines Table of Contents: Important Information: 2 Vocabulary: 3 Pre-Visit Activities: 4 Post-Visit Activities: 5 Vocabulary Word Search: 6 2 Important Information

More information

Inclined Plane: Distance vs. Force

Inclined Plane: Distance vs. Force 1a Inclined Plane: Distance vs. Force Look at the inclined plane model you built for Card 2. It s a ramp, so it s easy to slide or roll things up and down it. As you noticed, it is a little more difficult

More information

Simple Machines Quiz

Simple Machines Quiz Simple Machines Quiz Part 1. Write the name of the simple machine that is described questions 1-4 below. Word Bank: Wheel & Axle Screw Pulley Inclined Plane Lever 1. These two parts act as one simple machine.

More information

What are simple machines? primary

What are simple machines? primary What are simple machines? primary Here you will discover all sorts of interesting things about simple machines and how they work. There are some great diagrams as well! A machine is something that makes

More information

You ll have leverage as you guide

You ll have leverage as you guide Teacher s Guide Simple Machines Dear Educator, You ll have leverage as you guide students in the exploration of simple machines. In KIDS DISCOVER Simple Machines, your young scientists will learn about

More information

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Supported by: National Science Foundation Simple Machines: 4.G.2 _ Inclined Planes and Pulleys Grade

More information

Mechanical Systems. Grade 8 Unit 4 Test. 1. A wheelbarrow is an example of what simple machine? Class 1 lever. Class 2 lever.

Mechanical Systems. Grade 8 Unit 4 Test. 1. A wheelbarrow is an example of what simple machine? Class 1 lever. Class 2 lever. Mechanical Systems Grade 8 Unit 4 Test Student Class 1. A wheelbarrow is an example of what simple machine? D Wheel and Axle 2. A hockey stick is an example of what simple machine? D Inclined plane 3.

More information

Everyday Simple Machines

Everyday Simple Machines Everyday Simple Machines Teacher's Guide Editors: Brian A. Jerome Ph.D. Stephanie Zak Jerome Assistant Editors: Louise Marrier Hannah Fjeld Graphics: Fred Thodal Heidi Berry Lyndsey Canfield www.visuallearningco.com

More information

F output. F input. F = Force in Newtons ( N ) d output. d = distance ( m )

F output. F input. F = Force in Newtons ( N ) d output. d = distance ( m ) Mechanical Advantage, Speed Ratio, Work and Efficiency Machines Make Work Easier Machines help people do things that they normally couldn t do on their own. Mechanical Advantage A machine makes work easier

More information

Questions: Does it always take the same amount of force to lift a load? Where should you press to lift a load with the least amount of force?

Questions: Does it always take the same amount of force to lift a load? Where should you press to lift a load with the least amount of force? Lifting A Load 1 NAME LIFTING A LOAD Questions: Does it always take the same amount of force to lift a load? Where should you press to lift a load with the least amount of force? Background Information:

More information

Fulcrum Effort or Applied Force. Fulcrum Load or Resistance. Effort or Applied Force. Load or Resistance. Other First Class Lever Examples.

Fulcrum Effort or Applied Force. Fulcrum Load or Resistance. Effort or Applied Force. Load or Resistance. Other First Class Lever Examples. First Class Lever Second Class Lever Load or Resistance Fulcrum Effort or Applied Force Fulcrum Load or Resistance Effort or Applied Force Other First Class Lever Examples Action Spring Force Load Applied

More information

Simple machines provide a mechanical advantage that makes our work faster and easier, and they are all around us every day.

Simple machines provide a mechanical advantage that makes our work faster and easier, and they are all around us every day. LEARNING MODULE: SIMPLE MACHINES Pre-Visit Activities We suggest that you use these pre-visit classroom acitivites to prepare your students for a rewarding Museum visit. Before your visit, introduce your

More information

7 TH GRADE SCIENCE REVIEW

7 TH GRADE SCIENCE REVIEW 7 TH GRADE SCIENCE REVIEW The motion of an object is always judged with respect to some other object or point. When an object changes position over time relative to a reference point, the object is in

More information

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Supported by: National Science Foundation Simple Machines: 4.G.1 Introduction to Simple Machines

More information

Levers and Pulleys. 5 th Grade Science Investigation. Unit

Levers and Pulleys. 5 th Grade Science Investigation. Unit Levers and Pulleys 5 th Grade Science Investigation Unit What Do We Already Know? A lever and pulley are mechanical advantages=makes work easier, and helps lift things you couldn t t normally lift Combined

More information

Overall Indicator: The student: recognizes the effects of forces acting on structures and mechanisms

Overall Indicator: The student: recognizes the effects of forces acting on structures and mechanisms Grade 5 Performance Task: Disaster Recovery Content Connections Assessment Criterion Understanding of basic concepts Overall Indicator: The student: recognizes the effects of forces acting on structures

More information

When you have completed this lesson you will be able to: identify some common simple machines explain how simple machines make work easier

When you have completed this lesson you will be able to: identify some common simple machines explain how simple machines make work easier Simple machines OBJECTIVES When you have completed this lesson you will be able to: identify some common simple machines explain how simple machines make work easier A machine is an invention that makes

More information

PUSH AND PULL: SIMPLE MACHINES AT WORK

PUSH AND PULL: SIMPLE MACHINES AT WORK PUSH AND PULL: SIMPLE MACHINES AT WORK 1 videocassette... 23 minutes Copyright MCMXC Rainbow Educational Media 4540 Preslyn Drive Raleigh, NC 27616-3177 Distributed by: United Learning 1560 Sherman Ave.,

More information

Student Exploration: Pulleys

Student Exploration: Pulleys Name: Date: Student Exploration: Pulleys Vocabulary: effort, load, mechanical advantage, pulley, pulley system Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1. Suppose you had to haul a

More information

Levers for Lifting BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN ACTIVITY ASSESSMENT OPPORTUNITIES. Grade 3 Quarter 3 Activity 23

Levers for Lifting BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN ACTIVITY ASSESSMENT OPPORTUNITIES. Grade 3 Quarter 3 Activity 23 activity Levers for Lifting BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN Grade Quarter Activity SC.C... The student understands that the motion of an object can be described and measured. SC.H... The

More information

Simple Machines. Student s worksheets. Carles Egusquiza Bueno. IES Rocagrossa Lloret de Mar. CLIL Course. Norwich Institute for Language Education

Simple Machines. Student s worksheets. Carles Egusquiza Bueno. IES Rocagrossa Lloret de Mar. CLIL Course. Norwich Institute for Language Education Simple Machines IES Rocagrossa Lloret de Mar CLIL Course Norwich Institute for Language Education January March 2010 CONTENTS Contents...2 Unit 1: Force, work and machines...3 Lesson 1: Force...4 Lesson

More information

Using mechanical energy for daily

Using mechanical energy for daily unit 3 Using mechanical energy for daily activities Physics Chapter 3 Using mechanical energy for daily activities Competency Uses mechanical energy for day-to-day activities Competency level 3.1 Investigates

More information

Engineer III Simple Machines

Engineer III Simple Machines Harford District 2014 Cub Scout Day Camp June 23-78 Knights of the Roundtable Engineer III Simple Machines Station Volunteer s Guide Thank you for being a station volunteer! The stations are the heart

More information

Simple Machines. Preparation. Objectives. Standards. Grade Level: 3-5 Group Size: 25-30 Time: 60 Minutes Presenters: 3-4

Simple Machines. Preparation. Objectives. Standards. Grade Level: 3-5 Group Size: 25-30 Time: 60 Minutes Presenters: 3-4 Simple Machines Preparation Grade Level: 3-5 Group Size: 25-30 Time: 60 Minutes Presenters: 3-4 Objectives This lesson will enable students to: Describe and define simple machines. Identify simple machines

More information

Christa s Lost Lessons Simple Machines

Christa s Lost Lessons Simple Machines Christa s Lost Lessons Simple Machines Introduction: Among the six lost lessons, the simple machines demonstration was most rudimentary. Perhaps, it is because most earth-based simple machines are crafted

More information

PuLLeys. SaraH TieCK. Simple Machines

PuLLeys. SaraH TieCK. Simple Machines PuLLeys i p e m h e SaraH TieCK s m l a c i n s Simple Machines s i m p e m l a c h i n e s PuLLeyS A Buddy Book by SaraH TieCK VISIT US AT www.abdopublishing.com Published by ABDO Publishing Company,

More information

Simple and Complex Machines

Simple and Complex Machines Simple and Complex Machines A Science A Z Physical Series Word Count: 1,230 Simple and Complex Machines Written by Ned Jensen Visit www.sciencea-z.com www.sciencea-z.com Simple and Complex Machines Key

More information

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES Simple machines: lifting devices e.g. lever systems, inclined plane, screw jack, pulley blocks, Weston differential

More information

Simple Machines. Figure 2: Basic design for a mousetrap vehicle

Simple Machines. Figure 2: Basic design for a mousetrap vehicle Mousetrap Vehicles Figure 1: This sample mousetrap-powered vehicle has a large drive wheel and a small axle. The vehicle will move slowly and travel a long distance for each turn of the wheel. 1 People

More information

Workshop Stand, Pulleys, Bolts, Pulley String, Pinch Markers, 500g Hooked Mass, 500g Spring Scale, 250g Spring Scale, Meterstick.

Workshop Stand, Pulleys, Bolts, Pulley String, Pinch Markers, 500g Hooked Mass, 500g Spring Scale, 250g Spring Scale, Meterstick. Pulleys: Work and Energy Main Topic Subtopic Learning Level Technology Level Activity Type Forces Simple Machines Middle Low Student Teacher s Notes Description: Investigate a complex block-and-tackle

More information

Machines. Simple. What is a machine?

Machines. Simple. What is a machine? Simple Machines Worksheet 2 A worksheet produced by the Native Access to Engineering Programme Concordia University, Montreal What is a machine? Webster s Dictionary defines a machine as 1. a structure

More information

CHAPTER 2 BLOCK AND TACKLE CHAPTER LEARNING OBJECTIVES

CHAPTER 2 BLOCK AND TACKLE CHAPTER LEARNING OBJECTIVES CHAPTER 2 BLOCK AND TACKLE CHAPTER LEARNING OBJECTIVES Upon completion of this chapter, you should be able to do the following: Describe the advantage of block and tackle afloat and ashore Blocks pulleys

More information

Ropes and Pulleys Investigations. Level A Investigations. Level B Investigations

Ropes and Pulleys Investigations. Level A Investigations. Level B Investigations Ropes and Pulleys Investigations Level A Investigations Ropes and Pulleys How can you use the ropes and pulleys to lift large weights with small forces? In this Investigation, students learn to define

More information

TORQUE AND FIRST-CLASS LEVERS

TORQUE AND FIRST-CLASS LEVERS TORQUE AND FIRST-CLASS LEVERS LAB MECH 28.COMP From Physics, Eugene Hecht and Physical Science with Computers, Vernier Software & Technology INTRODUCTION In Figure 1, note force F acting on a wrench along

More information

Simple Kitchen Machines

Simple Kitchen Machines Provided by TryEngineering - Lesson Focus Lesson focuses on simple machines and how they can be found in many everyday items. Students explore the different types of simple machines, how they work, and

More information

Lesson Plans. Teacher: High School Physical Science Grade: 9th. Curricular Areas/s: Simple machines and mechanical advantages

Lesson Plans. Teacher: High School Physical Science Grade: 9th. Curricular Areas/s: Simple machines and mechanical advantages Lesson Plans Teacher: High School Physical Science Grade: 9th Curricular Areas/s: Simple machines and mechanical advantages Standard/s: Understand and apply knowledge of motions and forces Objects change

More information

3rd/4th Grade Science Unit: Forces and Motion. Melissa Gucker TE 804 Spring 2007

3rd/4th Grade Science Unit: Forces and Motion. Melissa Gucker TE 804 Spring 2007 3rd/4th Grade Science Unit: Forces and Motion Melissa Gucker TE 804 Spring 2007 Part I: Learning Goals Documentation Unit Title: Forces and Motion Grade Level: 3 rd Designer: Melissa Gucker The Main Idea(s)/Importance

More information

SCIENCE STD. V (2015) More About Force Energy and Simple Machines. Name Roll No. Date Std. V

SCIENCE STD. V (2015) More About Force Energy and Simple Machines. Name Roll No. Date Std. V SCIENCE STD. V (2015) More About Force Energy and Simple Machines Name Roll No. Date Std. V Q1.What is Force? Force is a push or a pull that makes the things move. Q2.What effect does Force has on our

More information

Clipper Creations. Provided by TryEngineering - www.tryengineering.org Click here to provide feedback on this lesson.

Clipper Creations. Provided by TryEngineering - www.tryengineering.org Click here to provide feedback on this lesson. Provided by TryEngineering - Click here to provide feedback on this lesson. Lesson Focus Develop a working model of a nail clipper. Note: This lesson plan is designed for classroom use only, with supervision

More information

Georgia Performance Standards Framework for Physical Science 8 th GRADE. Unit: Fast and Furious Forces General Task Life is Easy with Simple Machines

Georgia Performance Standards Framework for Physical Science 8 th GRADE. Unit: Fast and Furious Forces General Task Life is Easy with Simple Machines Subject Area: Physical Science Grade: 8 Unit: Fast and Furious Forces General Task Life is Easy with Simple Machines S8P3. Students will investigate relationship between force, mass, and the motion of

More information

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster. 1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

More information

Playful machines A Facilitator s Guide to Simple Machines in the Playground

Playful machines A Facilitator s Guide to Simple Machines in the Playground inspiring discovery Playful machines A Facilitator s Guide to Simple Machines in the Playground Our Vision Canadians recognize that Science 1 is intrinsic to their lives and acknowledge the fundamental

More information

April Cousins Jessica Denson TEDU 414 Unit Plan Unit Plan: Simple Machines 3 rd Grade Unit Introduction: This unit focuses on use and functions of

April Cousins Jessica Denson TEDU 414 Unit Plan Unit Plan: Simple Machines 3 rd Grade Unit Introduction: This unit focuses on use and functions of April Cousins Jessica Denson TEDU 414 Unit Plan Unit Plan: Simple Machines 3 rd Grade Unit Introduction: This unit focuses on use and functions of simple machines and their importance in our everyday lives.

More information

Simple Machines. Integration across the SESE curriculum History Curriculum:

Simple Machines. Integration across the SESE curriculum History Curriculum: Simple Machines Integration across the SESE curriculum History Curriculum: There are natural links between the theme of Simple Machines and a number of strands in the history curriculum: 1) Continuity

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

INCLINED PLANE LEVER SCREW WHEEL & AXLE WEDGE PULLEY

INCLINED PLANE LEVER SCREW WHEEL & AXLE WEDGE PULLEY HANDBOOK Machines are tools that help people do work more easily. In physics, you do work anytime you use force to move an object. Skateboards, cars, bikes, shovels, boats, doors, light switches, and stairs

More information

Tree House Escape. Design Challenge Learning. https://www.thetech.org/educators/design- challenge- learning

Tree House Escape. Design Challenge Learning. https://www.thetech.org/educators/design- challenge- learning A frightened friend is stranded in a treehouse and needs help getting out! In this design challenge students explore how simple machines can make work easier while they design a device to retrieve their

More information

5.1 The First Law: The Law of Inertia

5.1 The First Law: The Law of Inertia The First Law: The Law of Inertia Investigation 5.1 5.1 The First Law: The Law of Inertia How does changing an object s inertia affect its motion? Newton s first law states that objects tend to keep doing

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2 Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

More information

Simple machines. Law of Simple Machines. Resistance Force x resistance distance = effort force x effort distance

Simple machines. Law of Simple Machines. Resistance Force x resistance distance = effort force x effort distance Simple machines A simple machine is a evice that requires only the force of a human to perform work. One of the properties of a simple machine is that it can be use to increase the force that can be applie

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

Roanoke Pinball Museum Key Concepts

Roanoke Pinball Museum Key Concepts Roanoke Pinball Museum Key Concepts What are Pinball Machines Made of? SOL 3.3 Many different materials are used to make a pinball machine: 1. Steel: The pinball is made of steel, so it has a lot of mass.

More information

Quick and Easy Simple Machine Experiments to Share with Your Kids

Quick and Easy Simple Machine Experiments to Share with Your Kids Quick and Easy Simple Machine Experiments to Share with Your Kids By Aurora Lipper Pulleys and levers are simple machines, and they make our lives easier. They make it easier to lift, move and build things.

More information

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work. PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

More information

Name. Most of the bones of the limbs (arms & legs) act as levers. These levers are powered by muscles.

Name. Most of the bones of the limbs (arms & legs) act as levers. These levers are powered by muscles. Bones as Levers 1 Name Bones as Levers You may not think of your limbs as being machines, but they are. The action of a muscle pulling on a bone often works like a type of simple machine called a lever.

More information

Force, Work and Energy

Force, Work and Energy Force, Work and Energy Reference Guide Equipment Setup Ropes and Pulleys.................................................................. 1 Investigation Guides A-1 Ropes and Pulleys................................................................

More information

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of Newton s Second Law Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart will be developed

More information

At which point on the lever should Gina put the box if she wants to use half as much force to lift it? Point A. Point B. Point C.

At which point on the lever should Gina put the box if she wants to use half as much force to lift it? Point A. Point B. Point C. 2010-2011 HIS Interim ssessment Science Grade 7 Learning Focus: 1.2 Student ate 1 Gina has a long day of moving ahead of her and she wants to save her energy. She would normally need to apply a force of

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

What is Energy? 1 45 minutes Energy and You: Energy Picnic Science, Physical Education Engage

What is Energy? 1 45 minutes Energy and You: Energy Picnic Science, Physical Education Engage Unit Grades K-3 Awareness Teacher Overview What is energy? Energy makes change; it does things for us. It moves cars along the road and boats over the water. It bakes a cake in the oven and keeps ice frozen

More information

Rube-Goldberg devices and Simple Machines

Rube-Goldberg devices and Simple Machines Rube-Goldberg devices and Simple Machines Background for Teacher Reuben Lucius Goldberg was a famous cartoonist born in San Francisco in 1883. Many of his cartoons became popular for satirizing the so-called

More information

FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

More information

Understanding Mechanical Advantage in the Single Sheave Pulley Systems Used in Rescue Operations By Ralphie G. Schwartz, Esq.

Understanding Mechanical Advantage in the Single Sheave Pulley Systems Used in Rescue Operations By Ralphie G. Schwartz, Esq. Understanding Mechanical Advantage in the Single Sheave Pulley Systems Used in Rescue Operations By Ralphie G. Schwartz, Esq. Simple Machines Consistent with other simple machines such as inclined planes

More information

Cluster 3: Forces and Simple Machines

Cluster 3: Forces and Simple Machines Grade 5 Cluster 3: Forces and Simple Machines Overview In this cluster, students increase their understanding of forces through the study of simple machines. Emphasis is placed on investigating a variety

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

Work, Energy and Power Practice Test 1

Work, Energy and Power Practice Test 1 Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

More information

Mechanical & Electrical Reasoning Study Guide

Mechanical & Electrical Reasoning Study Guide Mechanical & Electrical Reasoning Study Guide About Mechanical Aptitude Tests Who is likely to take a mechanical reasoning test? Mechanical aptitude tests are commonly administered during pre-employment

More information

GEARS AND GEAR SYSTEMS

GEARS AND GEAR SYSTEMS This file aims to introducing basic concepts of gears and pulleys. Areas covered include spur gears, compound gears, chain drive, rack/pinion systems and pulley systems. GEARS AND GEAR SYSTEMS Gears can

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

Pulleys. Experiment 1 The Lone Pulley

Pulleys. Experiment 1 The Lone Pulley Pulleys Well, I hope you used the lever lesson to get some leverage on this work, energy and simple machines concept. This lesson we re going to pulley ourselves up by our bootstraps and play with these

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

Two-Body System: Two Hanging Masses

Two-Body System: Two Hanging Masses Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.

More information

Rotational Motion: Moment of Inertia

Rotational Motion: Moment of Inertia Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body

More information

Pendulum Investigations. Level A Investigations. Level B Investigations

Pendulum Investigations. Level A Investigations. Level B Investigations Pendulum Investigations Level A Investigations The Pendulum How can you change the period of a pendulum? Students are introduced to the vocabulary used to describe harmonic motion: cycle, period, and amplitude.

More information

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

More information

Experiment 5 ~ Friction

Experiment 5 ~ Friction Purpose: Experiment 5 ~ Friction In this lab, you will make some basic measurements of friction. First you will measure the coefficients of static friction between several combinations of surfaces using

More information

Lift the Load! Make a lever. Measure the amount of force needed to lift up a book when applying a force at different positions on the lever.

Lift the Load! Make a lever. Measure the amount of force needed to lift up a book when applying a force at different positions on the lever. Lift the Load! Computer 28 The Greek philosopher Archimedes said, "Give me a lever long enough, and a place to stand and I can move the world." What did he mean by this? In this activity, you will get

More information

Steps to Solving Newtons Laws Problems.

Steps to Solving Newtons Laws Problems. Mathematical Analysis With Newtons Laws similar to projectiles (x y) isolation Steps to Solving Newtons Laws Problems. 1) FBD 2) Axis 3) Components 4) Fnet (x) (y) 5) Subs 1 Visual Samples F 4 1) F 3 F

More information

Simple Machines. Terri Wakild. South Haven Public Schools

Simple Machines. Terri Wakild. South Haven Public Schools Simple Machines Terri Wakild South Haven Public Schools April, 2006 Participant in Research Experience for Teachers (RET) Workshop at Western Michigan University 2005-06 Academic Year Simple Machines Grade

More information

Torque and Rotation. Physics

Torque and Rotation. Physics Torque and Rotation Physics Torque Force is the action that creates changes in linear motion. For rotational motion, the same force can cause very different results. A torque is an action that causes objects

More information

6. Block and Tackle* Block and tackle

6. Block and Tackle* Block and tackle 6. Block and Tackle* A block and tackle is a combination of pulleys and ropes often used for lifting. Pulleys grouped together in a single frame make up what is called a pulley block. The tackle refers

More information

PART2Machines. Measuring Work on a Cart on an. Inclined Plane 102. Inclined Plane 104. Inquiry 12.1 Using Pulleys To Do Work 112

PART2Machines. Measuring Work on a Cart on an. Inclined Plane 102. Inclined Plane 104. Inquiry 12.1 Using Pulleys To Do Work 112 TERRY G. MCCREA/SMITHSONIAN INSTITUTION PART2Machines LESSON 11 The Inclined Plane 100 Inquiry 11.1 Inquiry 11.2 Measuring Forces on a Cart on an Inclined Plane 102 Measuring Work on a Cart on an Inclined

More information

Chapter 6. Work and Energy

Chapter 6. Work and Energy Chapter 6 Work and Energy ENERGY IS THE ABILITY TO DO WORK = TO APPLY A FORCE OVER A DISTANCE= Example: push over a distance, pull over a distance. Mechanical energy comes into 2 forms: Kinetic energy

More information

PUTTING THE SIMPLE IN SIMPLE MACHINES

PUTTING THE SIMPLE IN SIMPLE MACHINES CORE KNOWLEDGE NATIONAL CONFERENCE ORLANDO, FLORIDA APRIL 29 - MAY 1, 1999 PUTTING THE SIMPLE IN SIMPLE MACHINES Grade Level: Presented by: Length of Unit: Second Lou Tucker, Donna Cueto, Ridge View Elementary,

More information

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

More information

Simple Machines integrated Math & Science lessons

Simple Machines integrated Math & Science lessons Simple Machines integrated Math & Science lessons Activities: Six Do it All Tilling with Tools Description: Students will learn the six simple machines that do it all! After, students will understand that

More information

Rotational Inertia Demonstrator

Rotational Inertia Demonstrator WWW.ARBORSCI.COM Rotational Inertia Demonstrator P3-3545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended

More information