Formal Methods at Intel An Overview
|
|
|
- Melissa Short
- 9 years ago
- Views:
Transcription
1 Formal Methods at Intel An Overview John Harrison Intel Corporation Second NASA Formal Methods Symposium NASA HQ, Washington DC 14th April 2010 (09:00 10:00) 0
2 Table of contents Intel s diverse verification problems Verifying hardware with FEV and STE Verifying protocols with model checking and SMT Verifying floating-point firmware with HOL Perspectives and future prospects 1
3 Overview 2
4 A diversity of activities Intel is best known as a hardware company, and hardware is still the core of the company s business. However this entails much more: Microcode Firmware Protocols Software 3
5 A diversity of activities Intel is best known as a hardware company, and hardware is still the core of the company s business. However this entails much more: Microcode Firmware Protocols Software If the Intel Software and Services Group (SSG) were split off as a separate company, it would be in the top 10 software companies worldwide. 4
6 A diversity of verification problems This gives rise to a corresponding diversity of verification problems, and of verification solutions. Propositional tautology/equivalence checking (FEV) Symbolic simulation Symbolic trajectory evaluation (STE) Temporal logic model checking Combined decision procedures (SMT) First order automated theorem proving Interactive theorem proving Most of these techniques (trading automation for generality / efficiency) are in active use at Intel. 5
7 A spectrum of formal techniques Traditionally, formal verification has been focused on complete proofs of functional correctness. But recently there have been notable successes elsewhere for semi-formal methods involving abstraction or more limited property checking. Airbus A380 avionics Microsoft SLAM/SDV One can also consider applying theorem proving technology to support testing or other traditional validation methods like path coverage. These are all areas of interest at Intel. 6
8 Models and their validation We have the usual concerns about validating our specs, but also need to pay attention to the correspondence between our models and physical reality. Actual requirements Formal specification Design model Actual system 7
9 Physical problems Chips can suffer from physical problems, usually due to overheating or particle bombardment ( soft errors ). In 1978, Intel encountered problems with soft errors in some of its DRAM chips. 8
10 Physical problems Chips can suffer from physical problems, usually due to overheating or particle bombardment ( soft errors ). In 1978, Intel encountered problems with soft errors in some of its DRAM chips. The cause turned out to be alpha particle emission from the packaging. The factory producing the ceramic packaging was on the Green River in Colorado, downstream from the tailings of an old uranium mine. 9
11 Physical problems Chips can suffer from physical problems, usually due to overheating or particle bombardment ( soft errors ). In 1978, Intel encountered problems with soft errors in some of its DRAM chips. The cause turned out to be alpha particle emission from the packaging. The factory producing the ceramic packaging was on the Green River in Colorado, downstream from the tailings of an old uranium mine. However, these are rare and apparently well controlled by existing engineering best practice. 10
12 The FDIV bug Formal methods are more useful for avoiding design errors such as the infamous FDIV bug: Error in the floating-point division (FDIV) instruction on some early Intel Pentium processors Very rarely encountered, but was hit by a mathematician doing research in number theory. Intel eventually set aside US $475 million to cover the costs. This did at least considerably improve investment in formal verification. 11
13 Layers of verification If we want to verify from the level of software down to the transistors, then it s useful to identify and specify intermediate layers. Implement high-level floating-point algorithm assuming addition works correctly. Implement a cache coherence protocol assuming that the abstract protocol ensures coherence. Many similar ideas all over computing: protocol stack, virtual machines etc. If this clean separation starts to break down, we may face much worse verification problems... 12
14 How some of our verifications fit together For example, the fma behavior is the assumption for my verification, and the conclusion for someone else s. sin correct fma correct gate-level description But this is not quite trivial when the verifications use different formalisms! 13
15 I: Hardware with SAT and STE O Leary, Zhao, Gerth, Seger, Formally verifying IEEE compliance of floating-point hardware, ITJ Yang and Seger, Introduction to Generalized Symbolic Trajectory Evaluation, FMCAD Schubert, High level formal verification of next-generation microprocessors, DAC Slobodova, Challenges for Formal Verification in Industrial Setting, FMCAD Kaivola et al., Replacing Testing with Formal Verification in Intel Core TM i7 Processor Execution Engine Validation, CAV
16 Simulation The traditional method for testing and debugging hardware designs is simulation. This is just testing, done on a formal circuit model input AND gate 0 Feed sets of arguments in as inputs, and check whether the output is as expected. 15
17 Generalizations of simulation We can generalize basic simulation in two different ways: Ternary simulation, where as well as 0 and 1 we have a don t care value X. Symbolic simulation, where inputs may be parametrized by Boolean variables, and outputs are functions of those variables (usually represented as BDDs). Rather surprisingly, it s especially useful to do both at the same time, and have ternary values parametrized by Boolean variables. This leads on to symbolic trajectory evaluation (STE) and its generalizations. 16
18 Example of symbolic simulation We might use Boolean variables for all, or just some, inputs: a 6 a 5 a 4 a 3 a 2 a 1 a 0 7-input AND gate a 0 a x input AND gate x 17
19 Example of ternary simulation If some inputs are undefined, the output often is too, but not always: X X 1 X 1 X X 7-input AND gate X X X X X 0 X X 7-input AND gate 0 18
20 Economies Consider the 7-input AND gate. To verify it exhaustively: In conventional simulation, we would need 128 test cases, , ,..., In symbolic simulation, we only need 1 symbolic test case, a 0 a 1 a 2 a 3 a 4 a 5 a 6, but need to manipulate expressions, not just constants. In ternary simulation, we need 8 test cases, XXXXXX0, XXXXX0X,..., 0XXXXXX and If we combine symbolic and ternary simulation, we can parametrize the 8 test cases by just 3 Boolean variables. This makes the manipulation of expressions much more economical. 19
21 Quaternary simulation It s theoretically convenient to generalize ternary to quaternary simulation, introducing an overconstrained value T. We can think of each quaternary value as standing for a set of possible values: T = {} 0 = {0} 1 = {1} X = {0, 1} This is essentially a simple case of an abstraction mapping, and we can think of the abstract values partially ordered by information. 20
22 Extended truth tables The truth-tables for basic gates are extended: p q p q p q p q p q X X X X X X X 0 0 X X X X 1 X 1 1 X 0 X 0 X 1 X X X 1 X X Composing gates in this simple way, we may lose information. 21
23 Symbolic trajectory evaluation Symbolic trajectory evaluation (STE) is a further development of ternary symbolic simulation. The user can write specifications in a restricted temporal logic, specifying the behavior over bounded-length trajectories (sequences of circuit states). A typical specification would be: if the current state satisfies a property P, then after n time steps, the state will satisfy the property Q. The circuit can then be checked against this specification by symbolic quaternary simulation. 22
24 STE plus theorem proving STE (sometimes its extension GSTE) is the basic hardware verification workhorse at Intel However, it often needs to be combined with theorem-proving for effective problem decomposition. Intel has its own custom tool integrating lightweight theorem proving with STE, GSTE and other model checking engines. This combination has been applied successfully to many hardware components, including floating-point units and many others. 23
25 II: Protocols with model checking and SMT Chou, Mannava and Park: A simple method for parameterized verification of cache coherence protocols, FMCAD Krstic, Parametrized System Verification with Guard Strengthening and Parameter Abstraction, AVIS Talupur, Krstic, O Leary and Tuttle, Parametric Verification of Industrial Strength Cache Coherence Protocols, DCC Bingham, Automatic non-interference lemmas for parameterized model checking, FMCAD Talupur and Tuttle, Going with the Flow: Parameterized Verification Using Message Flows, FMCAD
26 Parametrized systems Important target for verification is parametrized systems. N equivalent replicated components, so the state space involves some Cartesian product Σ = Σ 0 N times { }} { Σ 1 Σ 1 and the transition relation is symmetric between the replicated components. Sometimes we have subtler symmetry, but we ll just consider full symmetry. 25
27 Multiprocessors with private cache Example: multiprocessor where each processor has its own cache. We have N cacheing agents with state space Σ 1 each, and maybe some special home node with state space Σ 0. We can consider Σ 1 as finite with two radical but not unreasonable simplifications: Assume all cache lines are independent (no resource allocation conflicts) Ignore actual data and consider only state of cache line (dirty, clean, whatever) 26
28 Coherence The permitted transitions are constrained by a protocol designed to ensure that all caches have a coherent view of memory. On some simplifying assumptions, we can express this adequately just using the cache states. In classic MESI protocols, each cache can be in four states: Modified, Exclusive, Shared and Invalid. Coherence means: i. Cache(i) IN {Modified, Exclusive} j. (j = i) Cache(j) = Invalid 27
29 Parametrized verification For a specific N, the overall state space is finite. We can specify the protocol and verify coherence using a traditional model checker (Murphi, SPIN,... ). This is already very useful and works well for small N. But: For a complex protocol, model checking may only be practical for very small N. In principle, the protocol is designed to work for any N, and we should like a general proof. How can we do this? 28
30 Inductive proof Find an inductive invariant I such that I(σ) R(σ, σ ) I(σ ) The inductive invariant I is universally quantified, and occurs in both antecedent and consequent. The transition relation has outer existential quantifiers i. because we have a symmetric choice between all components. Inside, we may also have universal quantifiers if we choose to express array updates a(i) := Something as relations between functions: a (i) = Something j. (j = i) a (j) = a(j) 29
31 Our quantifier prefix So our inductiveness claim may look like ( i, j,.... ) ( i. j. ) ( i, j,.... ) If we put this into prenex normal form in the right way, the quantifier prefix is of the form. If the function symbols have the right type structure, the Herbrand universe is finite and one can instantiate quantifiers in a complete way and solve it by SMT. Only works for certain classes of protocols; even quite simple ones like FLASH have arrays of nodes. Still the difficult job of finding the inductive invariant 30
32 Chou-Mannava-Park method One practical approach that has been used extensively at Intel: Method due to Chou, Mannava and Park Draws inspiration from McMillan s work Made more systematic by Krstic Further generalized, extended and applied by Bingham, Talupur, Tuttle and others. 31
33 Basic idea of the method Consider an abstraction of the system as a product of isomorphic finite-state systems parametrized by a view, which is a 2-element set of node indices. Basically, for each pair of nodes {i, j}, we modify the real system by: Using as node indices the two elements i and j plus one additional node Other. Conservatively interpreting the transition relation, using Other in place of the ignored nodes. Too crude to deduce the desired invariant, but it is supplemented with noninterference lemmas in an interactive process. Symmetric between components of the Cartesian product, so only need consider a finite-state system. 32
34 III: Floating-point firmware with HOL Harrison, A Machine-Checked Theory of Floating Point Arithmetic, TPHOLs Harrison, Formal verification of IA-64 division algorithms, TPHOLs Harrison, Formal verification of floating point trigonometric functions, FMCAD Harrison, Floating-Point Verification using Theorem Proving, SFM summer school
35 Our work We have formally verified correctness of various floating-point algorithms. Division and square root (Marstein-style, using fused multiply-add to do Newton-Raphson or power series approximation with delicate final rounding). Transcendental functions like log and sin (table-driven algorithms using range reduction and a core polynomial approximations). Proofs use the HOL Light prover 34
36 Our HOL Light proofs The mathematics we formalize is mostly: Elementary number theory and real analysis Floating-point numbers, results about rounding etc. Needs several special-purpose proof procedures, e.g. Verifying solution set of some quadratic congruences Proving primality of particular numbers Proving bounds on rational approximations Verifying errors in polynomial approximations 35
37 Example: tangent algorithm The input number X is first reduced to r with approximately r π/4 such that X = r + Nπ/2 for some integer N. We now need to calculate ±tan(r) or ±cot(r) depending on N modulo 4. If the reduced argument r is still not small enough, it is separated into its leading few bits B and the trailing part x = r B, and the overall result computed from tan(x) and pre-stored functions of B, e.g. tan(b + x) = tan(b) + 1 sin(b)cos(b) tan(x) cot(b) tan(x) Now a power series approximation is used for tan(r), cot(r) or tan(x) as appropriate. 36
38 Overview of the verification To verify this algorithm, we need to prove: The range reduction to obtain r is done accurately. The mathematical facts used to reconstruct the result from components are applicable. Stored constants such as tan(b) are sufficiently accurate. The power series approximation does not introduce too much error in approximation. The rounding errors involved in computing with floating point arithmetic are within bounds. Most of these parts are non-trivial. Moreover, some of them require more pure mathematics than might be expected. 37
39 Why mathematics? Controlling the error in range reduction becomes difficult when the reduced argument X Nπ/2 is small. To check that the computation is accurate enough, we need to know: How close can a floating point number be to an integer multiple of π/2? Even deriving the power series (for 0 < x < π): cot(x) = 1/x 1 3 x 1 45 x x5... is much harder than you might expect. 38
40 Why HOL Light? We need a general theorem proving system with: High standard of logical rigor and reliability Ability to mix interactive and automated proof Programmability for domain-specific proof tasks A substantial library of pre-proved mathematics Other theorem provers such as ACL2, Coq and PVS have also been used for verification in this area. 39
41 Conclusions 40
42 The value of formal verification Formal verification has contributed in many ways, and not only the obvious ones: Uncovered bugs, including subtle and sometimes very serious ones Revealed ways that algorithms could be made more efficient Improved our confidence in the (original or final) product Led to deeper theoretical understanding This experience seems quite common. 41
43 What s missing? Hardware verification proofs use STE as the workhorse, but sometimes want greater theorem-proving power than the current framework provides. The CMP method uses model checking with an ad hoc program for doing the abstraction and the successive refinements, not formally proved correct. The high-level HOL verifications assumes the correctness of the basic FP operations, but this is not the same as the low-level specs used in the hardware verification. 42
44 What s missing? Hardware verification proofs use STE as the workhorse, but sometimes want greater theorem-proving power than the current framework provides. The CMP method uses model checking with an ad hoc program for doing the abstraction and the successive refinements, not formally proved correct. The high-level HOL verifications assumes the correctness of the basic FP operations, but this is not the same as the low-level specs used in the hardware verification. All in all, Intel has achieved a lot in the field of FV, but we could achieve even more with a completely seamless combination of all our favorite techniques! 43
45 The End 44
Model Checking based Software Verification
Model Checking based Software Verification 18.5-2006 Keijo Heljanko [email protected] Department of Computer Science and Engineering Helsinki University of Technology http://www.tcs.tkk.fi/~kepa/ 1/24
Introduction to Formal Methods. Các Phương Pháp Hình Thức Cho Phát Triển Phần Mềm
Introduction to Formal Methods Các Phương Pháp Hình Thức Cho Phát Triển Phần Mềm Outline Introduction Formal Specification Formal Verification Model Checking Theorem Proving Introduction Good papers to
T-79.186 Reactive Systems: Introduction and Finite State Automata
T-79.186 Reactive Systems: Introduction and Finite State Automata Timo Latvala 14.1.2004 Reactive Systems: Introduction and Finite State Automata 1-1 Reactive Systems Reactive systems are a class of software
CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs
CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce
Automated Theorem Proving - summary of lecture 1
Automated Theorem Proving - summary of lecture 1 1 Introduction Automated Theorem Proving (ATP) deals with the development of computer programs that show that some statement is a logical consequence of
System-on-Chip Design Verification: Challenges and State-of-the-art
System-on-Chip Design Verification: Challenges and State-of-the-art Prof. Sofiène Tahar Hardware Verification Group Concordia University Montréal, QC, CANADA MCSOC 12 Aizu-Wakamatsu, Fukushima, Japan September
Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
Name: Class: Date: 9. The compiler ignores all comments they are there strictly for the convenience of anyone reading the program.
Name: Class: Date: Exam #1 - Prep True/False Indicate whether the statement is true or false. 1. Programming is the process of writing a computer program in a language that the computer can respond to
Mathematical Induction
Mathematical Induction In logic, we often want to prove that every member of an infinite set has some feature. E.g., we would like to show: N 1 : is a number 1 : has the feature Φ ( x)(n 1 x! 1 x) How
Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students
Eastern Washington University Department of Computer Science Questionnaire for Prospective Masters in Computer Science Students I. Personal Information Name: Last First M.I. Mailing Address: Permanent
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
Numerical Matrix Analysis
Numerical Matrix Analysis Lecture Notes #10 Conditioning and / Peter Blomgren, [email protected] Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research
Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1
Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse
6.080/6.089 GITCS Feb 12, 2008. Lecture 3
6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my
A Static Analyzer for Large Safety-Critical Software. Considered Programs and Semantics. Automatic Program Verification by Abstract Interpretation
PLDI 03 A Static Analyzer for Large Safety-Critical Software B. Blanchet, P. Cousot, R. Cousot, J. Feret L. Mauborgne, A. Miné, D. Monniaux,. Rival CNRS École normale supérieure École polytechnique Paris
Model Checking of Software
Model Checking of Software Patrice Godefroid Bell Laboratories, Lucent Technologies SpecNCheck Page 1 August 2001 A Brief History of Model Checking Prehistory: transformational programs and theorem proving
Static Program Transformations for Efficient Software Model Checking
Static Program Transformations for Efficient Software Model Checking Shobha Vasudevan Jacob Abraham The University of Texas at Austin Dependable Systems Large and complex systems Software faults are major
Automated Program Behavior Analysis
Automated Program Behavior Analysis Stacy Prowell [email protected] March 2005 SQRL / SEI Motivation: Semantics Development: Most engineering designs are subjected to extensive analysis; software is
Computer-Assisted Theorem Proving for Assuring the Correct Operation of Software
1 Computer-Assisted Theorem Proving for Assuring the Correct Operation of Software Amy Felty University of Ottawa Introduction to CSI5110 2 The General Problem From Evan I. Schwartz, Trust Me, I m Your
The Model Checker SPIN
The Model Checker SPIN Author: Gerard J. Holzmann Presented By: Maulik Patel Outline Introduction Structure Foundation Algorithms Memory management Example/Demo SPIN-Introduction Introduction SPIN (Simple(
Factoring & Primality
Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount
Testing LTL Formula Translation into Büchi Automata
Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland
8 Square matrices continued: Determinants
8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You
Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
Verifying Specifications with Proof Scores in CafeOBJ
Verifying Specifications with Proof Scores in CafeOBJ FUTATSUGI, Kokichi 二 木 厚 吉 Chair of Language Design Graduate School of Information Science Japan Advanced Institute of Science and Technology (JAIST)
The Classes P and NP
The Classes P and NP We now shift gears slightly and restrict our attention to the examination of two families of problems which are very important to computer scientists. These families constitute the
Introduction to computer science
Introduction to computer science Michael A. Nielsen University of Queensland Goals: 1. Introduce the notion of the computational complexity of a problem, and define the major computational complexity classes.
Handout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
InvGen: An Efficient Invariant Generator
InvGen: An Efficient Invariant Generator Ashutosh Gupta and Andrey Rybalchenko Max Planck Institute for Software Systems (MPI-SWS) Abstract. In this paper we present InvGen, an automatic linear arithmetic
Notes on Complexity Theory Last updated: August, 2011. Lecture 1
Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look
CHAPTER 5 Round-off errors
CHAPTER 5 Round-off errors In the two previous chapters we have seen how numbers can be represented in the binary numeral system and how this is the basis for representing numbers in computers. Since any
Sudoku puzzles and how to solve them
Sudoku puzzles and how to solve them Andries E. Brouwer 2006-05-31 1 Sudoku Figure 1: Two puzzles the second one is difficult A Sudoku puzzle (of classical type ) consists of a 9-by-9 matrix partitioned
Generic Polynomials of Degree Three
Generic Polynomials of Degree Three Benjamin C. Wallace April 2012 1 Introduction In the nineteenth century, the mathematician Évariste Galois discovered an elegant solution to the fundamental problem
Formal Verification Coverage: Computing the Coverage Gap between Temporal Specifications
Formal Verification Coverage: Computing the Coverage Gap between Temporal Specifications Sayantan Das Prasenjit Basu Ansuman Banerjee Pallab Dasgupta P.P. Chakrabarti Department of Computer Science & Engineering
CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12
CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.
Universality in the theory of algorithms and computer science
Universality in the theory of algorithms and computer science Alexander Shen Computational models The notion of computable function was introduced in 1930ies. Simplifying (a rather interesting and puzzling)
The Course. http://www.cse.unsw.edu.au/~cs3153/
The Course http://www.cse.unsw.edu.au/~cs3153/ Lecturers Dr Peter Höfner NICTA L5 building Prof Rob van Glabbeek NICTA L5 building Dr Ralf Huuck NICTA ATP building 2 Plan/Schedule (1) Where and When Tuesday,
Adversary Modelling 1
Adversary Modelling 1 Evaluating the Feasibility of a Symbolic Adversary Model on Smart Transport Ticketing Systems Authors Arthur Sheung Chi Chan, MSc (Royal Holloway, 2014) Keith Mayes, ISG, Royal Holloway
Introducing Formal Methods. Software Engineering and Formal Methods
Introducing Formal Methods Formal Methods for Software Specification and Analysis: An Overview 1 Software Engineering and Formal Methods Every Software engineering methodology is based on a recommended
COMPUTER SCIENCE TRIPOS
CST.98.5.1 COMPUTER SCIENCE TRIPOS Part IB Wednesday 3 June 1998 1.30 to 4.30 Paper 5 Answer five questions. No more than two questions from any one section are to be answered. Submit the answers in five
Sequence of Mathematics Courses
Sequence of ematics Courses Where do I begin? Associates Degree and Non-transferable Courses (For math course below pre-algebra, see the Learning Skills section of the catalog) MATH M09 PRE-ALGEBRA 3 UNITS
Regression Verification: Status Report
Regression Verification: Status Report Presentation by Dennis Felsing within the Projektgruppe Formale Methoden der Softwareentwicklung 2013-12-11 1/22 Introduction How to prevent regressions in software
CHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
Mathematical Induction
Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,
each college c i C has a capacity q i - the maximum number of students it will admit
n colleges in a set C, m applicants in a set A, where m is much larger than n. each college c i C has a capacity q i - the maximum number of students it will admit each college c i has a strict order i
Offline 1-Minesweeper is NP-complete
Offline 1-Minesweeper is NP-complete James D. Fix Brandon McPhail May 24 Abstract We use Minesweeper to illustrate NP-completeness proofs, arguments that establish the hardness of solving certain problems.
Computer Organization
Computer Organization and Architecture Designing for Performance Ninth Edition William Stallings International Edition contributions by R. Mohan National Institute of Technology, Tiruchirappalli PEARSON
8 Primes and Modular Arithmetic
8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.
MATH. ALGEBRA I HONORS 9 th Grade 12003200 ALGEBRA I HONORS
* Students who scored a Level 3 or above on the Florida Assessment Test Math Florida Standards (FSA-MAFS) are strongly encouraged to make Advanced Placement and/or dual enrollment courses their first choices
TPCalc : a throughput calculator for computer architecture studies
TPCalc : a throughput calculator for computer architecture studies Pierre Michaud Stijn Eyerman Wouter Rogiest IRISA/INRIA Ghent University Ghent University [email protected] [email protected]
MATH10040 Chapter 2: Prime and relatively prime numbers
MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive
Formal Verification and Linear-time Model Checking
Formal Verification and Linear-time Model Checking Paul Jackson University of Edinburgh Automated Reasoning 21st and 24th October 2013 Why Automated Reasoning? Intellectually stimulating and challenging
Mathematics Georgia Performance Standards
Mathematics Georgia Performance Standards K-12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by
CISC, RISC, and DSP Microprocessors
CISC, RISC, and DSP Microprocessors Douglas L. Jones ECE 497 Spring 2000 4/6/00 CISC, RISC, and DSP D.L. Jones 1 Outline Microprocessors circa 1984 RISC vs. CISC Microprocessors circa 1999 Perspective:
http://aejm.ca Journal of Mathematics http://rema.ca Volume 1, Number 1, Summer 2006 pp. 69 86
Atlantic Electronic http://aejm.ca Journal of Mathematics http://rema.ca Volume 1, Number 1, Summer 2006 pp. 69 86 AUTOMATED RECOGNITION OF STUTTER INVARIANCE OF LTL FORMULAS Jeffrey Dallien 1 and Wendy
Multi-core architectures. Jernej Barbic 15-213, Spring 2007 May 3, 2007
Multi-core architectures Jernej Barbic 15-213, Spring 2007 May 3, 2007 1 Single-core computer 2 Single-core CPU chip the single core 3 Multi-core architectures This lecture is about a new trend in computer
İSTANBUL AYDIN UNIVERSITY
İSTANBUL AYDIN UNIVERSITY FACULTY OF ENGİNEERİNG SOFTWARE ENGINEERING THE PROJECT OF THE INSTRUCTION SET COMPUTER ORGANIZATION GÖZDE ARAS B1205.090015 Instructor: Prof. Dr. HASAN HÜSEYİN BALIK DECEMBER
Trust but Verify: Authorization for Web Services. The University of Vermont
Trust but Verify: Authorization for Web Services Christian Skalka X. Sean Wang The University of Vermont Trust but Verify (TbV) Reliable, practical authorization for web service invocation. Securing complex
The Fundamental Theorem of Arithmetic
The Fundamental Theorem of Arithmetic 1 Introduction: Why this theorem? Why this proof? One of the purposes of this course 1 is to train you in the methods mathematicians use to prove mathematical statements,
Computing exponents modulo a number: Repeated squaring
Computing exponents modulo a number: Repeated squaring How do you compute (1415) 13 mod 2537 = 2182 using just a calculator? Or how do you check that 2 340 mod 341 = 1? You can do this using the method
The ProB Animator and Model Checker for B
The ProB Animator and Model Checker for B A Tool Description Michael Leuschel and Michael Butler Department of Electronics and Computer Science University of Southampton Highfield, Southampton, SO17 1BJ,
Software testing. Objectives
Software testing cmsc435-1 Objectives To discuss the distinctions between validation testing and defect testing To describe the principles of system and component testing To describe strategies for generating
Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
Chapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
Why? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us
6.852: Distributed Algorithms Fall, 2009. Class 2
.8: Distributed Algorithms Fall, 009 Class Today s plan Leader election in a synchronous ring: Lower bound for comparison-based algorithms. Basic computation in general synchronous networks: Leader election
Code Generation for High-Assurance Java Card Applets
Code Generation for High-Assurance Java Card Applets Alessandro Coglio Kestrel Institute 3260 Hillview Avenue, Palo Alto, CA 94304, USA Ph. +1-650-493-6871 Fax +1-650-424-1807 http://www.kestrel.edu/ coglio
Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com
CSCI-GA.3033-012 Graphics Processing Units (GPUs): Architecture and Programming Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com Modern GPU
Ian Stewart on Minesweeper
Ian Stewart on Minesweeper It's not often you can win a million dollars by analysing a computer game, but by a curious conjunction of fate, there's a chance that you might. However, you'll only pick up
Introduction to Automata Theory. Reading: Chapter 1
Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a
INF5140: Specification and Verification of Parallel Systems
Motivation INF5140: Specification and Verification of Parallel Systems Lecture 1 Introduction: Formal Methods Gerardo Schneider Department of Informatics University of Oslo INF5140, Spring 2009 Outline
Lecture 13 - Basic Number Theory.
Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted
Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit.
Objectives The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Identify the components of the central processing unit and how they work together and interact with memory Describe how
Midterm Practice Problems
6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator
Programmable Logic Controllers Definition. Programmable Logic Controllers History
Definition A digitally operated electronic apparatus which uses a programmable memory for the internal storage of instructions for implementing specific functions such as logic, sequencing, timing, counting,
CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen
CONTINUED FRACTIONS AND FACTORING Niels Lauritzen ii NIELS LAURITZEN DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF AARHUS, DENMARK EMAIL: [email protected] URL: http://home.imf.au.dk/niels/ Contents
Lies My Calculator and Computer Told Me
Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing
ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION
ALGEBRAIC APPROACH TO COMPOSITE INTEGER FACTORIZATION Aldrin W. Wanambisi 1* School of Pure and Applied Science, Mount Kenya University, P.O box 553-50100, Kakamega, Kenya. Shem Aywa 2 Department of Mathematics,
Secure Software Programming and Vulnerability Analysis
Secure Software Programming and Vulnerability Analysis Christopher Kruegel [email protected] http://www.auto.tuwien.ac.at/~chris Testing and Source Code Auditing Secure Software Programming 2 Overview
Integer Factorization using the Quadratic Sieve
Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 [email protected] March 16, 2011 Abstract We give
ECE 0142 Computer Organization. Lecture 3 Floating Point Representations
ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,
Model Checking: An Introduction
Announcements Model Checking: An Introduction Meeting 2 Office hours M 1:30pm-2:30pm W 5:30pm-6:30pm (after class) and by appointment ECOT 621 Moodle problems? Fundamentals of Programming Languages CSCI
Software Verification and System Assurance
Software Verification and System Assurance John Rushby Based on joint work with Bev Littlewood (City University UK) Computer Science Laboratory SRI International Menlo Park CA USA John Rushby, SR I Verification
Foundational Proof Certificates
An application of proof theory to computer science INRIA-Saclay & LIX, École Polytechnique CUSO Winter School, Proof and Computation 30 January 2013 Can we standardize, communicate, and trust formal proofs?
The Application of Visual Basic Computer Programming Language to Simulate Numerical Iterations
Leonardo Journal of Sciences ISSN 1583-0233 Issue 9, July-December 2006 p. 125-136 The Application of Visual Basic Computer Programming Language to Simulate Numerical Iterations Department of Mechanical
So let us begin our quest to find the holy grail of real analysis.
1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers
CHAPTER 4 MARIE: An Introduction to a Simple Computer
CHAPTER 4 MARIE: An Introduction to a Simple Computer 4.1 Introduction 195 4.2 CPU Basics and Organization 195 4.2.1 The Registers 196 4.2.2 The ALU 197 4.2.3 The Control Unit 197 4.3 The Bus 197 4.4 Clocks
Formal Verification by Model Checking
Formal Verification by Model Checking Natasha Sharygina Carnegie Mellon University Guest Lectures at the Analysis of Software Artifacts Class, Spring 2005 1 Outline Lecture 1: Overview of Model Checking
Structure of Presentation. Stages in Teaching Formal Methods. Motivation (1) Motivation (2) The Scope of Formal Methods (1)
Stages in Teaching Formal Methods A. J. Cowling Structure of Presentation Introduction to Issues Motivation for this work. Analysis of the Role of Formal Methods Define their scope; Review their treatment
Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like
Chapter II. Controlling Cars on a Bridge
Chapter II. Controlling Cars on a Bridge 1 Introduction The intent of this chapter is to introduce a complete example of a small system development. During this development, you will be made aware of the
