Discovering Block-Structured Process Models From Event Logs Containing Infrequent Behaviour

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Discovering Block-Structured Process Models From Event Logs Containing Infrequent Behaviour"

Transcription

1 Disovring Blok-Strutur Pross Mols From Evnt Logs Contining Infrqunt Bhviour Snr J.J. Lmns, Dirk Fhln, n Wil M.P. vn r Alst Einhovn Univrsity of Thnology, th Nthrlns {s.j.j.lmns,.fhln, Astrt Givn n vnt log sriing osrv hviour, pross isovry ims to fin pross mol tht st sris this hviour. A lrg vrity of pross isovry lgorithms hs n propos. Howvr, no xisting lgorithm rturns soun mol in ll ss (fr of loks n othr nomlis), hnls infrqunt hviour wll n finishs quikly. W prsnt thniqu l to op with infrqunt hviour n lrg vnt logs, whil nsuring sounnss. Th thniqu hs n implmnt in ProM n w ompr th thniqu with xisting pprohs in trms of qulity n prformn. Kywors: pross mining, pross isovry, lok-strutur pross mols, sounnss, fitnss, prision, gnrlistion Introution Pross mining thniqus im to support orgnistions in improving thir usinss prosss. Evnt logs of historil hviour n us to isovr pross mols of th rl prosss s prsnt in th orgnistion, s oppos to mnully rt mols tht rflt wishful thinking, shoul- or s-it-ws-two-yrs-go hviour. Auiting of isovr mols n prov omplin with orgnistionl n govrnmntl rgultions [3], n rply of historil hviour on th isovr mol n rvl soil ntworks n ottlnks [7,5,4]. Th hllng in pross isovry is to fin th st pross mol givn ror historil hviour. Whih pross mol is st is typilly vlut using svrl qulity ritri. Four importnt qulity ritri r fitnss, prision, gnrlistion n simpliity. An unfitting mol nnot rprou ll hviour ror in th log. An impris mol llows for too muh τ Figur : Unsoun pross mol. itionl hviour tht is not sri in th log. A non-gnrl mol only sris th hviour in th log n thrfor might isllow futur hviour snt in th log. A non-simpl mol ns lot of pls, trnsitions n rs to xprss its hviour n might hr to r. Anothr importnt qulity ritrion is sounnss: ll pross stps n xut n som stisftory n stt, th finl mrking, is lwys rhl. For instn, th f

2 Snr J.J. Lmns, Dirk Fhln, n Wil M.P. vn r Alst Ptri nt in Figur is not soun s it ontins lok from whih th finl mrking with only singl tokn in th finl pl n nvr rh. An unsoun pross mol n still usful, ut pplying tsks suh s vlution, uiting, fining soil ntworks n ottlnks n iffiult if not impossil. Thrfor, for most us ss n unsoun pross mol n isr without vn onsiring th vnt log it is suppos to rprsnt. Trs in log might follow mny iffrnt pths through th pross. In most rllif vnt logs, som pths r tkn infrquntly, or trs only iffr y ourrn of infrqunt tivitis. Suh logs ontin infrqunt hviour n hllng isovry lgorithms, s pross mol soring wll on ll qulity ritri might not xist. If infrqunt hviour is inlu in th mol, simpliity might srifi, if infrqunt hviour is xlu from th mol, fitnss might srifi. Fortuntly, th Prto prinipl (lso known s th 800 rul) oftn pplis to vnt logs. Typilly, 80% of th osrv hviour n xplin y mol tht is only 0% of th mol rquir to sri ll hviour. Th 80% mol shows th highwys in th pross. Hn, it is mor intuitiv, ut n lso us s strting point for outlir ttion. []. To otin n 80% mol, lssil pproh is to glolly filtr th log for isovring mol. This hs numrous isvntgs, s it is iffiult to intify infrqunt hviour, n vn whn infrqunt hviour is filtr out, isovry lgorithms (α [6], B [6], ILP []) might still prou unsirl mols. Othr pprohs wr sign to ignor infrqunt hviour n n prou n 80% mol ut my prform lss on othr qulity ritri: gnti pprohs [5,9] hv long run tims n huristi pproh [0] prous unsoun mols. As of toy, no thniqu hs n propos tht isovrs soun 80% mol, os tht fst n is l to filtr infrqunt hviour. Svrl xisting pprohs pply ivi-n-onqur thniqus [0,,6], in whih th vnt log is split n mol is onstrut rursivly. In this ppr w prsnt n xtnsion of suh n pproh, IM, ll Inutiv Minr - infrqunt (IMi), tht ims to isovr soun 80% mol fst. W introu infrqunt hviour filtrs in ll stps of IM, suh tht infrqunt hviour is filtr lolly. IMi is implmnt in th InutivMinr pkg of th ProM frmwork [4]. To vlut IMi, w ompr its prformn n its isovr mols to othr isovry lgorithms y mns of th qulity ritri using rl-lif logs. Th rminr of this ppr strts with sription of logs, pross trs n IM. In Stion 3, IMi is introu. In Stion 4 IMi is ompr to xisting mining lgorithms. Stion 5 onlus th ppr. Prliminris Evnt Logs. An vnt log is olltion of trs. Eh tr is squn of vnts tht rprsnt ourrns of tivitis of pross xution in th rsptiv orr. Not tht tr might ppr multipl tims in n vnt log. Th tr without vnts is not with ɛ.

3 Disovring Pross Mols Construtivly Without Infrqunt Bhviour 3 Pross trs. Th lok-strutur pross mols isovr y IM, ETM n IMi r pross trs. A pross tr is n strt rprsnttion of soun lok-strutur workflow nt [6]. A tr rprsnts lngug, lf sris th singlton lngug of n tivity, n non-lf no is n oprtor tht sris how th lngugs of its hilrn r omin. In this ppr, w will onsir four oprtors:,, n. Th oprtor nots th xlusiv hoi twn its hilrn, th squntil omposition n th intrlv prlll omposition. Th (m, m... m n ) hs two groups of hilrn: m is th loop oy n m... m n is th loop ro prt. A tr in th lngug of (m, m... m n ) strts with tr from m, follow y rptition of tr from ny m... m n n tr from m gin. For instn, th lngug of (,, ) is {,,,,,,,,,,,...}. Anothr xmpl of pross tr is ( (, ), (, ), (, f)), noting th lngug () () () ((f) ). For forml finition, pls rfr to [6]. Inutiv Minr In this ppr, w xtn n xisting ivi-n-onqur pproh to pross isovry. Divi-n-onqur hs n us in pross isovry for. For instn, [?] omins it with trnsition systms n rgions; [] omins it with tr lignmnts. In this ppr w xtn th Inutiv Minr (IM) [6], of whih w first giv its si lgorithmi i n illustrt it with running xmpl. IM works y rursivly ) slting th root oprtor tht st fits L, ) iviing th tivitis in log L into isjoint sts n ) splitting L using ths sts into sulogs. Ths sulogs r thn min rursivly, until sulog ontins just singl tivity. W first introu how IM slts n oprtor n n tivity ivision, n illustrt it with running xmpl. Consir log L: [,,,,,, f,,, f, 00,,, f 00,, f, 00 ]. In irtly-follows grph, h no rprsnts n tivity n n g from no to no is prsnt if n only if is irtly follow y somwhr in L. Th frquny of g (, ) is how oftn this hppns. Figur shows th irtly-follows grph of L. IM srhs for hrtristi ivision of tivitis into isjoint sts, ut, of th irtly-follows grph. Eh oprtor (,, or ) hs hrtristi ut of th irtly-follows grph. If suh hrtristi mths, IM slts th orrsponing oprtor. Othrwis, flowr mol, llowing for ll squns of tivitis, is rturn. Th sh lin in Figur is ut: ll gs rossing it go from lft to right. Using th ut {,,, }, {, f}, IM splits th log y splitting h tr orrsponing to th ut: L = [,,,,,, 00, 00 ] for th lft rnh, L = [, f, f, 00 ] for th right rnh. Thn, IM rurss. W first onsir L. Figur shows its irtly-follows grph, th sh lin nots n ut, s no g rosss th ut. Th log L is split in L 3 = [,,,,,, 00 ] n L 4 = [ 00 ]. L 4 onsists of only singl tivity, so for L 4 IM isovrs th lf. Th isovr pross tr up till now is ( (..., ),...). IM rurss furthr. Figur shows th irtly-follows grph of L with its ut, whih splits L into L 5 = [ 3 ] n L 6 = f 3 ]. Figur shows th irtlyfollows grph of L 3 with its ut. IM splits L 3 into L 7 = [, 00 ] n L 8 = [ ]. Th omplt pross tr isovr y IM is ( ( ( (, ), ), ), (, f)). Figur shows th orrsponing Ptri nt. For mor tils, s [6].

4 4 Snr J.J. Lmns, Dirk Fhln, n Wil M.P. vn r Alst f 00 () L with ut f () L with ut () L with ut τ () L3 with ut τ τ f τ () Disovr Ptri nt Figur : Dirtly-follows grphs. Dsh lins not uts. Egs hv thir frqunis not. () is th min Ptri nt. 3 Extning IM In this stion, w introu Inutiv Minr - infrqunt (IMi) y ing infrqunt hviour filtrs to ll stps of IM. For h of th oprtionl stps of IM it is sri how infrqunt hviour ffts th stp n how istinguishing frqunt n infrqunt hviour n us to improv isovry of th 80% mol. In h rursion stp, IMi first pplis th stps of IM unltr. Only if this fils n IM woul rturn flowr mol, th filtrs r ppli. Frqunis of trs n vnts r ignor y IM ut r tkn into ount y IMi in orr to istinguish frqunt n infrqunt hviour. In th oprtor n ut sltion stps, two thniqus r ppli: filtring th irtly-follows grph for infrqunt gs n using vrint of th irtly-follows grph for sltion of. Filtrs r to s s ttion to filtr umult rtifts of filtring ovr rursions. In th following, k nots usr-fin thrshol vlu twn 0 n to sprt frqunt n infrqunt hviour. Filtrs on th oprtor n ut sltion stps r sri first, follow y filtrs on s ss, n filtrs on log splitting. 3. Filtrs on Oprtor & Cut Sltion In th oprtor n ut sltion stps, huristis-styl filtr is ppli y IMi. In s of, vrition of th irtly-follows grph n us. Huristis-styl Filtring. Consir log L : [h,,,,,, f i, h,, f, i00, h,, f i00, h, f, i00, h,,, f i ], whih is th log us in Stion xtn with n infrqunt tr h,,, f i. Figur 3 shows its irtly-follows grph. Compr to Figur, th infrqunt tr introus th g (, ), n thrfor th sh lin is not ut. Similr to th thniqu us in HM, IMi filtrs th irtly-follows grph to only ontin th most frqunt gs. Th g (, ) is rltivly infrqunt ompr to th othr outgoing gs of. An outgoing g of no is too infrqunt if it hs frquny of lss thn k tims th frquny of th strongst outgoing g of tht no. All too infrqunt gs r filtr out in IMi for uts of, n r tt.

5 Disovring Pross Mols Construtivly Without Infrqunt Bhviour 5 Evntully-follows Grph. Dspit huristis-styl filtring, infrqunt gs might rmin in th irtly-follows grph. Consir log L = [,,,,,,,,,,,,,,,,,,,, ]. Th son tr is th only tr ontining two s: th son is infrqunt. Figur 3 shows th irtly-follows grph of L. Th sh lin in Figur 3 is not squn ut s g (, ), introu y th infrqunt, rosss it in th wrong irtion. As ll outgoing gs of hv frquny, no vlu of k oul filtr g (, ). Similr to thniqu us in [9] ( wk orr rltion ), IMi uss th vntullyfollows grph, whih is th trnsitiv losur of th irtly-follows rltion: n g (, ) is prsnt if n only if is follow y somwhr in th log. Th vntully-follows grph of L is shown in Figur 3. In this grph, ll outgoing gs of r mplifi, xpt th infrqunt g (, ), whih n thn filtr out. In this xmpl, using th vntully-follows grph llows IMi to l with infrqunt hviour. An infrqunt ourrn of n tivity still inrss frquny of infrqunt gs, ut s t most to h of thm. Th vntully-follows grph mplifis ll othr hviour, so using th vntully-follows grph for ut ttion inrss roustnss ginst infrqunt hviour. IMi uss filtr vntully-follows grph to tt uts n if it fins on, slts s oprtor f 00 () Dirtly-follows grph with n infrqunt g. Th sh lin is not ut s (, ) rosss it in th wrong irtion. () irtly-follows grph Figur 3: Dirtly n vntully follows grphs. 5 () vntully-follows grph 3. Filtrs on Bs Css In ition to th singl-tivity s s in IM, s n rtift of filtring it is possil tht trs without vnts, ɛ, rmin. On oth s ss filtrs r introu. Singl Ativitis. Assum th following two logs: L = [ɛ 00, 00,, 00,,, 00 ] L = [ɛ, 00,,,,, ] Both L n L onsist of singl tivity, nnot split furthr n r s ss. Givn th rprsnttionl is of IMi, for oth logs ithr flowr mol or singl

6 6 Snr J.J. Lmns, Dirk Fhln, n Wil M.P. vn r Alst tivity n isovr. In L, ll trs r frqunt n flowr mol is oviously th st hoi. In L howvr, only is frqunt n st rprsnts th frqunt hviour. Choosing ithr option influns qulity imnsions: isovring for L srifis fitnss, whil isovring flowr mol for L srifis prision. is only isovr y IMi if th vrg numr of ourrns pr tr of in th log is los nough to, pnnt on th rltiv thrshol k. Empty Trs. Assum th following log: L = [,, 00,,, 00,, ]. In th first rursion, IMi slts th oprtor n splits L into L = [ 0 ], L = [ɛ, 00, 00 ] n L 3 = [ 0 ]. Consir L. A fitting solution for th mpty tr in L woul to min (τ,...) n rurs on L \{ɛ}. For L, ɛ is infrqunt n isovring (τ,...) woul srifi simpliity. This is troff, ut for L lrly (τ,...) is prfrr. To ovrom this prolm, IMi only isovrs (τ,...) if ɛ is frqunt nough ompr to th numr of trs in th log n with rspt to k. If ɛ is not frqunt nough, IMi filtrs ɛ from L n rurss on L \ {ɛ}. 3.3 Filtrs on Log Splitting Assuming th oprtor n ut hv n slt, som infrqunt hviour in th log might not fit th hosn oprtor n ut. If not filtr out, this unfitting hviour might umult ovr rursions n osur frqunt hviour. This stion sris how infrqunt hviour n filtr uring log splitting. It is ssum tht th oprtor n ut r orrtly slt n tht ny hviour tht violts this sltion is infrqunt. For h oprtor, w sri th typs of violtions tht n tt n how thy r filtr y IMi, illustrt y n xmpl. In ths xmpls, Σ = {}, Σ = {} is th hosn ut n L, L r th sulogs to--rt. Bhviour tht violts th oprtor is th prsn of tivitis from mor thn on sutr in singl tr. For instn, th tr t =,,,,,,,, ontins tivitis from oth Σ n Σ. Σ xplins th most tivitis, is most frqunt. All tivitis not from Σ r onsir infrqunt n r isr:,,,,,,, L. Bhviour tht violts th oprtor is th prsn of vnts out of orr oring to th sutrs. For instn, in th tr t =,,,,,,,,,, th lst ours ftr, whih violts th. Filtring infrqunt hviour is n optimistion prolm: th tr is to split in th lst-vnts-rmoving wy. In t, th split,,, L,,,,, L isrs th lst vnts. A prlll oprtor llows for ny squn of hviour of its sutrs. Thrfor, no hviour violts n infrqunt hviour n nithr tt nor filtr whil splitting th log. Bhviour tht violts th oprtor is whn tr os not strt or n with th loop oy: For instn, (, ), is violt y ll trs tht o not strt n n with n. For h suh invli strt or n of tr, n mpty tr is to

7 Disovring Pross Mols Construtivly Without Infrqunt Bhviour 7 L to inrs fitnss of th rsulting mol. Consiring th tr t 3 =,,, thn [ɛ, ] L n [ ] L. In h rursion stp, first th oprtor n ut sltion stps of IM r prform y IMi. If tht woul rsult in th flowr mol, th prour is ppli gin, with th infrqunt hviour filtrs in oprtor n ut sltion, s ss n log splitting, suh tht in ll stps of IM filtrs r ppli y IMi. In th nxt stion, IMi is ompr to xisting pross isovry mining thniqus. 4 Comprison to Othr Disovry Algorithms In this stion, w ompr IMi to xisting mining lgorithms on prformn n qulity ritri of isovr mols, using is from [8,]. W first sri th xprimntl stup n th us logs, n finish with isussion of th rsults. 4. Exprimntl stup W ompr th mining lgorithms IM, IMi, HM, ILP n ETM using th following qulity ritri: w ompr prformn n msur sounnss, fitnss, prision, gnrlistion n simpliity. To provi slin, w inlu flowr mol (FM), llowing for ll squns of tivitis. n tr mol (TM). Figur 4 givs n ovrviw of th xprimntl stup. prpross log pply minr onvrt to Ptri nt msur fitnss, prision, gnrlistion trmin simpliity trmin sounnss mining tim Figur 4: Exprimntl stup Prprossing. As prprossing stp, w rtifiil strt n n vnts to th logs. Mining lgorithms might rquir singl strt n n vnts, n ths vnts hlp to trmin sounnss. Mining. Sonly, th minrs r ppli: IM IMi, ILP, HM, ETM, FM n TM. W ompr ll mining lgorithms using thir fult sttings. Lik in [], prmtr optimistion is outsi th sop of this ppr. HM n ETM o not prou Ptri nt. Thrfor th output of h of ths minrs is onvrt to Ptri nt, msur mining tim inlus this onvrsion. W rport n initiv mining tim on ul Intl Xon E5-630 hxor, hving 64GB of RAM, running 64-it Winows 7. As w wnt to min mols fst, w st mximum mining tim of two hours. ILP is stopp ruptly ftr this oun, ETM is llow to finish its roun of gnti stps. A tr mol llows for ll trs in th vnt log, ut no othr hviour.

8 8 Snr J.J. Lmns, Dirk Fhln, n Wil M.P. vn r Alst Msuring. W r prmissiv in th sounnss hk: w ovious finl mrkings to th isovr mols if th mining lgorithm os not provi it, n h rsonl finl mrking in th isovr mols is onsir to vli finl mrking to rh y th pross. To msur fitnss [7], prision [8] n gnrlistion [] of th min mols w us th PNtRplyr pkg in th ProM frmwork [4]. For ths msurs, first projtion of th log on th isovr mol is omput, n lignmnt. Th thniqu sri in [7] provis n lignmnt tht shows th lst vition twn log n mol. For omputtion of th lignmnt, th finl mrking to rh is rlvnt. On th mols isovr y minrs tht o not provi finl mrking, w omput th lignmnt ssuming tht vry mrking is finl mrking. For fitnss, this yils n uppr oun. Exprimnts show tht th uppr oun is not nssrily tight: w foun iffrns of 0.3 in fitnss twn msur with n without finl mrking. In th rsults, w not ths uppr oun fitnss vlus using itlis. From th lignmnt, grph of rh n rhl mrkings, n gs twn thm is omput. On th mrkings in this grph, th numr of gs tht is nvr us in th lignmnt is msur for prision [8], whil th frquny of th gs us in th lignmnt is msur for gnrlistion. Th vlus of prision n gnrlistion highly pn on th hosn optiml lignmnt. Thrfor, th rsults with n without finl mrking shoul not ompr for prision n gnrlistion. Exprimnts show tht th vlus r quit los: w foun iffrns with mximum of out 0. in prision whn thr is no finl mrking, n for gnrlistion. W not vlus otin without finl mrking in itlis. W ssss simpliity y msuring th numr of rs, pls n trnsitions in th Ptri nts. 4. Logs To ompr th mining lgorithms, w us rl-lif vnt logs. Tl hrtriss th iffrnt logs. A pross from th gynology prtmnt of n mi hospitl is logg in th BPIC log []. Th BPIC log [3] origints from n pplition pross for prsonl lon or ovrrft within glol finnil orgnistion. Furthrmor, w us non-puli logs of uiling prmit pprovl pross in fiv muniiplitis, rsulting from th CoSLog projt 3. W inlu ths fiv oth untouh, WABO through 5, n filtr to ontin only tivitis ommon to ll fiv, WABO through Rsults Tl shows th rsults. inits n unsoun mol, soun. A sh (-) inits tht th minr i not prou rsult, n mpty sp inits tht msurmnt oul not otin on our mhin u to mmory rstritions. For som xprimnts, W pt th fitnss omputtion in th PNtRplyr pkg to hiv this. 3 S

9 Disovring Pross Mols Construtivly Without Infrqunt Bhviour 9 mining took longr thn two hours. This is not with (). Th xprimnts for whih finl mrking h to guss r not with (). A mol with lok is not with (0). () nots tht th mol ontins trnsition, () tht th mol ontins ithr n unoun or n unrhl trnsition. Tl : Log sizs n rsults. BPIC BPIC WABO WABO WABO trs vnts tivitis IM IMi HM () () () () () () () () () () () () ILP () () () () () ETM FM TM () () IM IMi HM - () (0) () (0) () () () () () () () ILP - () - () () () () ETM FM TM - - IM IMi HM ILP ETM FM TM IM IMi HM ILP ETM FM TM IM IMi HM ILP ETM FM TM IM IMi HM ILP ETM FM TM rmrks sounnss mining tim (s) fitnss prision gnrlistion WABO WABO 3 WABO 3 WABO 4 WABO 4 WABO 5 WABO Disussion First osrvtion is tht for ll logs mol ws isovr within two hours y IM, IMi, FM n ETM. IMi ws for ll logs it slowr thn IM, whil tking lot lss tim

10 0 Snr J.J. Lmns, Dirk Fhln, n Wil M.P. vn r Alst Tl : Simpliity (#rs,#pls,#trnsitions). IM IMi HM ILP ETM FM TM BPIC 56,5,68 90,7, ,7,8 56,3,68 - BPIC 80,7,40 66,4, ,76, ,88,38,, 80,3,40 - WABO 368,,84 474,97,37 07,3,496-3,5,6 354,3,77 958,953,979 WABO 96,5,48,37,6 49,9, 80,73,46 7,3,35 96,3, ,890,308 WABO 336,8,68 406,43,0 870,34, ,5,6 56,8,6 38,3, ,8454,8670 WABO 0,6,60,5,56 35,9,6 770,6,46 44,, 96,3, ,766,877 WABO 3 378,8,89 358,4,79 946,344,459 -,4,3 348,3,74 08,983,0064 WABO 3,5,6 6,3,58 79,9,35-4,,8 96,3, ,56,530 WABO 4 304,3,5 90,,45 764,70,36-34,6,7 74,3,37 86,5907,6093 WABO 4 00,7, 08,33,54 30,9,4 39,80,46 78,35,3 96,3,48 474,55,37 WABO 5 368,8,84 39,30,96 90,356, ,33,78 46,, 360,3,80 68,636,634 WABO 5 96,5,48 6,36,58 54,9, 786,60,46 64,3,7 96,3,48 5,48,56 thn ILP, ETM n TM. A notil iffrn xists twn ETM n IMi; ETM took muh longr for h log. Son osrvtion is tht, not onsiring FM n TM, no minr hs log on whih it prforms st on ll fitnss, prision n gnrlistion. Troffs hv to m. IM n ILP i not mng to isovr goo 80% mol: to hiv prft fitnss, IM srifis prision, whil ILP srifis prision n simpliity. An 80% mol ws isovr for most logs y HM, ut wr lss simpl, not soun, n for som logs isovry took long tim. ETM, with its fult sttings s tst, fouss on prision n thrfor hivs lowr fitnss. Morovr, isovry took long tim. IMi isovr soun 80% mols quikly in ll ss. Rgring prision, two groups of vnt logs n intifi: BPIC n WABO to WABO 5. On ths logs, IMi prous 80% mols with ttr prision thn IM n th slin FM. Fitnss of IMi on ll ths logs is, s xpt for 80% mols, highr thn ETM, ut lowr thn IM. A mnul insption of th rsulting mols shows tht IMi rturns squn of tivitis, whrs IM rturns flowr mol. Still, som squntil lmnts r flowr mols, using th low prision. Figur 5 shows prt of th mol isovr y IMi for WABO 4. BPIC n WABO to WABO 5. On ths logs, IMi isovrs goo 80% mols tht n kp up with othr minrs. Figur 5 shows th rsults of thr minrs on th WABO log. Th mol isovr y ETM ontins th lst numr of trnsitions n is oviously th simplst mol, ut its fitnss (0.6) is onsirly lowr thn of IMi (0.946). Th min iffrn is tht IMi s two flowr sumols not isovr y ETM, giving prision of for IMi n for ETM. For gnrlistion, oth mols hv th prft sor. Of th 44 tivitis in WABO, 3 r not in th mol isovr y ETM n only r not in th mol isovr y IMi. Thrfor, futur tr is mor likly to pt y th IMi-mol thn y th ETM-mol. Also, not tht IMi rturn mol in 0. sons n ETM n 4 minuts, showing tht IMi n hiv ttr rsults in signifintly lss tim.

11 Disovring Pross Mols Construtivly Without Infrqunt Bhviour () IMi on WABO () IMi on WABO 4 (prt of). () ILP on WABO (prt of) 5 Conlusion () ETM on WABO Figur 5: Rsults of isovry. In this ppr, w prsnt th Inutiv Minr - infrqunt (IMi), n xtnsion of th Inutiv Minr (IM, ll B in [6]) tht filtrs infrqunt hviour lolly in h lgorithmi stp of IM: slting n oprtor n ut, splitting th log n th s ss of th rursion. Unlik othr pprohs, IMi n rt th so-ll 80% mol using th Prto prinipl whil gurnting to rturn soun pross mol in short tim. W ompr IMi to svrl xisting thniqus using prformn n sounnss, fitnss, prision, gnrlistion n simpliity of th isovr mols. IM, HM, ILP n ETM wr ppli to twlv rl-lif logs. Compr with IM, mols isovr y IMi hv lowr fitnss, highr prision, qul gnrlistion n omprl simpliity. IMi lwys rturn soun 80% mol fst, n on ll logs sors goo on ll qulity ritri xpt prision. Rsults for prision r twofol: on hlf of th logs, IMi isovr soun 80% mols fst, hving lowr prision u to isovry of flowr mols rly in th rursion. Not tht for mny logs, mol soring wll on ll qulity ritri osn t xist: pross isovry is troff. On th othr hlf of th logs, IMi isovr ttr 80% mols fstr thn ny othr isovry thniqu, showing th potntil of th onstrutiv pproh. Futur Work. Th prlll oprtor rmins prolmti in oprtor n ut sltion, s non of th fturs propos in this ppr n filtr infrqunt hviour n inompltnss rlt to this onstrut. Effiint ttion of non-omplt prlll logs rmins sujt of furthr rsrh. Rfrns. vn r Alst, W., Arinsyh, A., vn Dongn, B.: Rplying history on pross mols for onformn hking n prformn nlysis. Wily Intrisiplinry Rviws: Dt Mining n Knowlg Disovry (), 8 9 (0). vn r Alst, W.M.P., t l.: Pross mining mnifsto. In: Businss Pross Mngmnt Workshops (). Ltur Nots in Businss Informtion Prossing, vol. 99, pp Springr (0)

12 Snr J.J. Lmns, Dirk Fhln, n Wil M.P. vn r Alst 3. vn Alst, W.M., vn H, K.M., vn Wrf, J.M., Vronk, M.: Auiting.0: Using pross mining to support tomorrow s uitor. Computr 43(3), (00) 4. Vn r Alst, W.M., Song, M.: Mining soil ntworks: Unovring intrtion pttrns in usinss prosss. In: Businss Pross Mngmnt, LNCS, vol. 3080, pp Springr (004) 5. vn r Alst, W., Miros, A., Wijtrs, A.: Gnti pross mining. Applitions n Thory of Ptri Nts , (005) 6. vn r Alst, W., Wijtrs, T., Mrustr, L.: Workflow mining: Disovring pross mols from vnt logs. Knowlg n Dt Enginring, IEEE Trnstions on 6(9), 8 4 (004) 7. Arinsyh, A., vn Dongn, B., vn r Alst, W.: Conformn hking using ost-s fitnss nlysis. In: Entrpris Distriut Ojt Computing Confrn (EDOC), 0 5th IEEE Intrntionl. pp IEEE (0) 8. Arinsyh, A., Munoz-Gm, J., Crmon, J., vn Dongn, B.F., vn r Alst, W.M.: Alignmnt s prision hking. In: Businss Pross Mngmnt Workshops. pp Springr (03) 9. Buijs, J., vn Dongn, B., vn r Alst, W.: A gnti lgorithm for isovring pross trs. In: Evolutionry Computtion (CEC), 0 IEEE Congrss on. pp. 8. IEEE (0) 0. Crmon, J.: Projtion pprohs to pross mining using rgion-s thniqus. Dt Mining n Knowlg Disovry 4(), 8 46 (0). D Wrt, J., D Bkr, M., Vnthinn, J., Bsns, B.: A multi-imnsionl qulity ssssmnt of stt-of-th-rt pross isovry lgorithms using rl-lif vnt logs. Informtion Systms 37, (0). vn Dongn, B.: BPI Chllng 0 Dtst (0), 3. vn Dongn, B.: BPI Chllng 0 Dtst (0), 4. vn Dongn, B., Miros, A., Vrk, H., Wijtrs, A., vn r Alst, W.: Th ProM frmwork: A nw r in pross mining tool support. Applitions n Thory of Ptri Nts , (005) 5. vn Dongn, B.F., Arinsyh, A.: Pross mining: fuzzy lustring n prformn visuliztion. In: Businss Pross Mngmnt Workshops. pp Springr (00) 6. Lmns, S.J.J., Fhln, D., vn r Alst, W.M.P.: Disovring lok-strutur pross mols from vnt logs - onstrutiv pproh. In: Ptri Nts. Ltur Nots in Computr Sin, vol. 797, pp Springr (03) 7. Mns, R., Shonnrg, M., Song, M., Vn r Alst, W., Bkkr, P.: Applition of pross mining in hlthr s stuy in uth hospitl. In: Biomil Enginring Systms n Thnologis, pp Springr (009) 8. Miros, A., Wijtrs, A., vn r Alst, W.: Gnti pross mining: n xprimntl vlution. Dt Mining n Knowlg Disovry 4(), (007) 9. Smirnov, S., Wilih, M., Mnling, J.: Businss pross mol strtion s on synthsis from wll-strutur hviorl profils. Intrntionl Journl of Cooprtiv Informtion Systms (0), (0) 0. Wijtrs, A., vn r Alst, W., Miros, A.: Pross mining with th huristis minrlgorithm. Thnish Univrsitit Einhovn, Th. Rp. WP 66 (006). vn r Wrf, J., vn Dongn, B., Hurkns, C., Srrnik, A.: Pross isovry using intgr linr progrmming. Funmnt Informti 94, 3874 (00). Yzquiro-Hrrr, R., Silvrio-Cstro, R., Lzo-Cortés, M.: Su-pross isovry: Opportunitis for pross ignostis. In: Entrpris Informtion Systms of th Futur, pp Springr (03)

Graph Theory Definitions

Graph Theory Definitions Grph Thory Dfinitions A grph is pir of sts (V, E) whr V is finit st ll th st of vrtis n E is st of 2-lmnt susts of V, ll th st of gs. W viw th gs s st of onntions twn th nos. Hr is n xmpl of grph G: G

More information

Discovering Petri Nets From Event Logs

Discovering Petri Nets From Event Logs Disovring Ptri Nts From Evnt Logs W.M.P. vn r Alst n B.F. vn Dongn Dprtmnt of Mthmtis n Computr Sin, Thnish Univrsitit Einhovn, Th Nthrlns. {W.M.P.v..Alst,B.F.v.Dongn}@tu.nl Astrt. As informtion systms

More information

Batch Printing. Creating New Batch Print Jobs

Batch Printing. Creating New Batch Print Jobs Bth Printing Bth printing llows you to print svrl rports t on. You n print rports to printr or to PDF or PRN fil. First, though, you must st up th th print jo, n thn you must xut it. Follow th instrutions

More information

Lecture 7: Minimum Spanning Trees and Prim s Algorithm

Lecture 7: Minimum Spanning Trees and Prim s Algorithm Ltur : Minimum Spnning Trs n Prim s Algorithm CLRS Chptr 3 Outlin o this Ltur Spnning trs n minimum spnning trs. Th minimum spnning tr (MST) prolm. Th gnri lgorithm or MST prolm. Prim s lgorithm or th

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Nikolus Augstn Fr Univrsity of Bozn-Bolzno Fulty of Computr Sin DIS 1 Binry Rprsnttion of Tr Binry Brnhs Lowr Boun for th Eit Distn Unit 10 My 17, 2012 Nikolus Augstn (DIS) Similrity

More information

Oracle PL/SQL Programming Advanced

Oracle PL/SQL Programming Advanced Orl PL/SQL Progrmming Avn In orr to lrn whih qustions hv n nswr orrtly: 1. Print ths pgs. 2. Answr th qustions. 3. Sn this ssssmnt with th nswrs vi:. FAX to (212) 967-3498. Or. Mil th nswrs to th following

More information

Cayley s Formula. Graphs - II The number of labeled trees on n nodes is n n-2. Planar Graphs. Is K 5 planar? Outline. K 5 can be embedded on the torus

Cayley s Formula. Graphs - II The number of labeled trees on n nodes is n n-2. Planar Graphs. Is K 5 planar? Outline. K 5 can be embedded on the torus Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Crngi Mllon Univrsity Cyly s Formul Grphs - II Th numr of ll trs on n nos is n n-2 Put nothr wy, it ounts th numr of spnning trs of omplt grph K n. 4

More information

Uses for Binary Trees -- Binary Search Trees

Uses for Binary Trees -- Binary Search Trees CS122 Algorithms n Dt Struturs MW 11:00 m 12:15 pm, MSEC 101 Instrutor: Xio Qin Ltur 10: Binry Srh Trs n Binry Exprssion Trs Uss or Binry Trs Binry Srh Trs n Us or storing n rtriving inormtion n Insrt,

More information

Math 316 Solutions To Sample Final Exam Problems

Math 316 Solutions To Sample Final Exam Problems Solutions to Smpl Finl Exm Prolms Mth 16 1 Mth 16 Solutions To Smpl Finl Exm Prolms 1. Fin th hromti polynomils o th thr grphs low. Clrly show your stps. G 1 G G () p = p p = k(k 1) k(k 1)(k ) () Atr simpliying,

More information

Early Profile Pruning on XML- Aware Publish-Subscribe Systems

Early Profile Pruning on XML- Aware Publish-Subscribe Systems Erly Profil Pruning on XML- Awr Pulish-Susri Systms Authors: Mirll M. Moro Ptko Bklov Vssilis J. Tsotrs Prsntd y: Snjy Kulhri Outlin Pulish-Susri Systms Bottom-Up Filtring FSM (BUFF) Bounding-Bsd XML Filtring

More information

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6 Rin Stion 9.6 Minimum Spnnin Trs Outlin Minimum Spnnin Trs Prim s Alorithm Kruskl s Alorithm Extr:Distriut Shortst-Pth Alorithms A Fil Shrin Prolm Sy unh o usrs wnt to istriut il monst thmslvs. Btwn h

More information

Operational Terms: Annex G- Process diagrams for part G (Trade Effluent)

Operational Terms: Annex G- Process diagrams for part G (Trade Effluent) Oprtionl Trms: Annx G- Pross igrms for prt G (Tr Efflunt) Sptmr 2015 Pross G1 Tr Efflunt nquiris A. Tr Efflunt nquiry riv y th Rtilr Sumits Tr Efflunt nquiry rlt to issus list t (*) using Form G/ 01 Form

More information

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993 (Rul 5(10)) Shul C Noti in trms o Rul 5(10) o th Cpitl Gins Ruls, 1993 Sttmnt to sumitt y trnsror o shrs whr thr is trnsr o ontrolling intrst Prt 1 - Dtils o Trnsror Nm Arss ROC No (ompnis only) Inom Tx

More information

Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems. Distributed File Systems. Example: NFS Architecture

Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems. Distributed File Systems. Example: NFS Architecture Distriut Systms Prinipls n Prigms Mrtn vn Stn VU mstrm, Dpt. Computr Sin stn@s.vu.nl Chptr 11: Vrsion: Dmr 10, 2012 1 / 14 Gnrl gol Try to mk fil systm trnsprntly vill to rmot lints. 1. Fil mov to lint

More information

Preorder Traversal. Binary Tree Traversal Methods. Binary Tree Traversal Methods. Binary Tree Traversal Methods

Preorder Traversal. Binary Tree Traversal Methods. Binary Tree Traversal Methods. Binary Tree Traversal Methods Binry Tr Trvrsl Mthos Mny inry tr oprtions r on y prorming trvrsl o th inry tr. Possil Binry Tr Oprtions: Dtrmin th hight. Dtrmin th numr o nos. Mk lon. Evlut th rithmti xprssion rprsnt y inry tr. Binry

More information

Functions. A is called domain of f, and B is called codomain of f. If f maps element a A to element b B, we write f (a) = b

Functions. A is called domain of f, and B is called codomain of f. If f maps element a A to element b B, we write f (a) = b Funtions CS311H: Disrt Mthmtis Funtions Instrutor: Işıl Dilli untion rom st to st ssins h lmnt o to xtly on lmnt o. is ll omin o, n is ll oomin o. I mps lmnt to lmnt, w writ () = I () =, is ll im o ; is

More information

Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis

Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis Flow-Insnsitiv Pointr Anlysis Lst tim Intrprocurl nlysis Dimnsions of prcision (flow- n contxt-snsitivity) Flow-Snsitiv Pointr Anlysis Toy Flow-Insnsitiv Pointr Anlysis CIS 570 Lctur 12 Flow-Insnsitiv

More information

Usability Test Checklist

Usability Test Checklist Crtifi Profssionl for Usility n Usr Exprin Usility Tsting (CPUX-UT) Vrsion.0, Jun 0 Pulishr: UXQB. V. Contt: info@uxq.org www.uxq.org Autorn: R. Molih, T. Gis, B. Rumml, O. Klug, K. Polkhn Contnt Lgn...

More information

Predicting Current User Intent with Contextual Markov Models

Predicting Current User Intent with Contextual Markov Models Priting Currnt Usr Intnt with Contxtul Mrkov Mols Juli Kislv, Hong Thnh Lm, Mykol Phnizkiy Dprtmnt of Computr Sin Einhovn Univrsity of Thnology P.O. Box 513, NL-5600MB, th Nthrlns {t.l.hong, j.kislv, m.phnizkiy}@tu.nl

More information

Algorithmic Aspects of Access Networks Design in B3G/4G Cellular Networks

Algorithmic Aspects of Access Networks Design in B3G/4G Cellular Networks Algorithmi Aspts o Ass Ntworks Dsign in BG/G Cllulr Ntworks Dvi Amzllg, Josph (Si) Nor,DnnyRz Computr Sin Dprtmnt Thnion, Hi 000, Isrl {mzllg,nny}@s.thnion..il Mirosot Rsrh On Mirosot Wy, Rmon, WA 980

More information

String Fingering Diagrams

String Fingering Diagrams STRIN FINRIN IRMS F..J. sil Strin Finrin irms F..J. sil 2n Jnury 200 strt This oumnt ontins st of strin instrumnt finrin irms tht my us for hkin multipl stops n omintions with nturl hrmonis. irms (fittin

More information

Link-Disjoint Paths for Reliable QoS Routing

Link-Disjoint Paths for Reliable QoS Routing Link-Disjoint Pths or Rlil QoS Routing Yuhun Guo, Frnno Kuiprs n Pit Vn Mighm # Shool o Eltril n Inormtion Enginring, Northrn Jiotong Univrsity, Bijing, 000, P.R. Chin Fulty o Inormtion Thnology n Systms,

More information

Hospitals. Internal Revenue Service Information about Schedule H (Form 990) and its instructions is at www.irs.gov/form990.

Hospitals. Internal Revenue Service Information about Schedule H (Form 990) and its instructions is at www.irs.gov/form990. SCHEDULE H Hospitls OMB No. 1545-0047 (Form 990) Complt if th orgniztion nswr "Ys" to Form 990, Prt IV, qustion 20. Atth to Form 990. Opn to Puli Dprtmnt of th Trsury Intrnl Rvnu Srvi Informtion out Shul

More information

Approximation Algorithms

Approximation Algorithms Prsnttion or us with th txtook, Alorithm Dsin n Applitions, y M. T. Goorih n R. Tmssi, Wily, 2015 Approximtion Alorithms 1 Bik Tour Suppos you i to ri iyl roun Irln you will strt in Dulin th ol is to visit

More information

Enhancing Downlink Performance in Wireless Networks by Simultaneous Multiple Packet Transmission

Enhancing Downlink Performance in Wireless Networks by Simultaneous Multiple Packet Transmission Enhning Downlink Prormn in Wirlss Ntworks y Simultnous Multipl Pkt Trnsmission Zhngho Zhng n Yunyun Yng Dprtmnt o Eltril n Computr Enginring, Stt Univrsity o Nw York, Stony Brook, NY 11794, USA Astrt In

More information

Sample Pages from. Leveled Texts for Mathematics: Geometry

Sample Pages from. Leveled Texts for Mathematics: Geometry Smpl Pgs rom Lvl Txts or Mthmtis: Gomtry Th ollowing smpl pgs r inlu in this ownlo: Tl o Contnts Rility Chrt Smpl Pssg For orrltions to Common Cor n Stt Stnrs, pls visit http://www.thrrtmtrils.om/orrltions.

More information

Operational Procedure: ACNC Data Breach Response Plan

Operational Procedure: ACNC Data Breach Response Plan OP 2015/03 Oprtionl Prour: ACNC Dt Brh Rspons Pln This Oprtionl Prour is issu unr th uthority of th Assistnt Commissionr Gnrl Counsl n shoul r togthr with th ACNC Poliy Frmwork, whih sts out th sop, ontxt

More information

IncrEase: A Tool for Incremental Planning of Rural Fixed Broadband Wireless Access Networks

IncrEase: A Tool for Incremental Planning of Rural Fixed Broadband Wireless Access Networks InrEs: A Tool or Inrmntl Plnning o Rurl Fix Bron Wirlss Ass Ntworks Giomo Brnri n Mhsh K. Mrin Shool o Inormtis Th Univrsity o Einurgh, UK Frnso Tlmon n Dmitry Rykovnov EOLO L NGI SpA, Miln, Itly Astrt

More information

Talk Outline. Taxon coverage pattern. Part I: Partial taxon coverage. Lassoing a tree: Phylogenetic theory for sparse patterns of taxon coverage

Talk Outline. Taxon coverage pattern. Part I: Partial taxon coverage. Lassoing a tree: Phylogenetic theory for sparse patterns of taxon coverage Lssoing tr: Phylognti thory for sprs pttrns of ton ovrg Joint work with Tlk Outlin Prt 1: Disivnss Prt 2: Lssoing tr Mik Stl Anrs Drss Kthrin Hur Prt 3: Quntifying LGT [if tim?] Phylomni Novmr 10, 2011

More information

P U B L I C A T I O N I N T E R N E 1800 PARTIAL ORDER TECHNIQUES FOR DISTRIBUTED DISCRETE EVENT SYSTEMS: WHY YOU CAN T AVOID USING THEM

P U B L I C A T I O N I N T E R N E 1800 PARTIAL ORDER TECHNIQUES FOR DISTRIBUTED DISCRETE EVENT SYSTEMS: WHY YOU CAN T AVOID USING THEM I R I P U B L I C A T I O N I N T E R N E 1800 N o S INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES A PARTIAL ORDER TECHNIQUES FOR DISTRIBUTED DISCRETE EVENT SYSTEMS: WHY YOU CAN T AVOID

More information

On the Representational Bias in Process Mining

On the Representational Bias in Process Mining On t Rprsnttionl Bis in Pross Minin W.M.P. vn r Alst Dprtmnt of Mtmtis n Computr Sin Einovn Univrsity of Tnoloy, Einovn, T Ntrlns Emil: w.m.p.v..lst@tu.nl, WWW: vlst.om Astrt Pross minin srvs ri twn t

More information

Distributed Process Discovery and Conformance Checking

Distributed Process Discovery and Conformance Checking Distriut Pross Disovry n Conormn Chkin Wil M.P. vn r Alst 1,2 1 Einhovn Univrsity o Thnoloy, Einhovn, Th Nthrlns 2 Qunsln Univrsity o Thnoloy, Brisn, Austrli www.vlst.om Astrt. Pross minin thniqus hv mtur

More information

EZ 4AXIS DRIVER CONTROLLER

EZ 4AXIS DRIVER CONTROLLER MOTOR POWR INPUT N RS85 OMMUNITION INX HN +5V HN MOTOR UPPR LIMIT POWR MOTOR UPPR LIMIT IN MOTOR LOWR LIMIT POWR MOTOR LOWR LIMIT IN +9V TO +0V RS85 RS85 NOR IGITL I/O ONNTOR POWR OUTPUT RIVRS OPTO SNSOR

More information

The Mathematics of Origami

The Mathematics of Origami Puish y th Appi Proiity Trust Appi Proiity Trust 2013 12 Th Mthmtis of Origmi SUDHARAKA PALAMAKUMBURA Origmi is wispr rt form gining popurity mong mthmtiins for its rmrk iity to prform gomtri onstrutions.

More information

Process Mining Making Sense of Processes Hidden in Big Event Data

Process Mining Making Sense of Processes Hidden in Big Event Data Pross Minin Mkin Sns o Prosss Hin in Bi Evnt Dt EIS Colloquium, 7-12-2012, TU/, Einovn Wil vn r Alst www.prossminin.or omplin-orint qustions, prolms n solutions prormn-orint qustions, prolms n solutions

More information

Network Decoupling for Secure Communications in Wireless Sensor Networks

Network Decoupling for Secure Communications in Wireless Sensor Networks Ntwork Doupling for Sur Communitions in Wirlss Snsor Ntworks Wnjun Gu, Xiol Bi, Srirm Chllppn n Dong Xun Dprtmnt of Computr Sin n Enginring Th Ohio-Stt Univrsity, Columus, Ohio 43210 1277 Emil: gu, ixi,

More information

Set Notation Element v is a member of set Element v is not a member of set Cardinality (number of members) of set V Set is a subset of set

Set Notation Element v is a member of set Element v is not a member of set Cardinality (number of members) of set V Set is a subset of set CS/EE 5740/6740: Computr Ai Dsign of Digitl Ciruits Chris J. Myrs Ltur 3: Sts, Rltions, n Funtions Ring: Chptr 3.1 v v S S St Nottion Elmnt v is mmr of st Elmnt v is not mmr of st Crinlity (numr of mmrs)

More information

Cost Efficient Fault Tolerant Decoder in Reversible Logic Synthesis

Cost Efficient Fault Tolerant Decoder in Reversible Logic Synthesis Intrntionl Journl of Computr Applitions (975 8887) olum 8 No. 2, Dmr 24 Cost Effiint Fult Tolrnt Dor in Rvrsil Logi Synthsis M. Rizur Rhmn Dprtmnt of Computr Sin n Enginring Dffoil Intrntionl Univrsity

More information

Survey and Taxonomy of IP Address Lookup Algorithms

Survey and Taxonomy of IP Address Lookup Algorithms Survy n Txonomy of IP Arss Lookup Algorithms Migul Á. Ruiz-Sánhz, 2 3 Ernst W. Birsk, 4 Wli Dbbous 2 mruiz@sophi.inri.fr rbi@urom.fr bbous@sophi.inri.fr Jnury 5, 2 2 INRIA Sophi Antipolis Frn. 3 Univrsi

More information

Some Useful Integrals of Exponential Functions

Some Useful Integrals of Exponential Functions prvious indx nxt Som Usful Intgrls of Exponntil Functions Michl Fowlr W v shown tht diffrntiting th xponntil function just multiplis it by th constnt in th xponnt, tht is to sy, d x x Intgrting th xponntil

More information

Revised Conditions (January 2009) LLOYDS BANKING GROUP SHARE ISA CONDITIONS

Revised Conditions (January 2009) LLOYDS BANKING GROUP SHARE ISA CONDITIONS Rvis Conitions (Jnury 2009) LLOYDS BANKING GROUP SHARE ISA CONDITIONS Contnts 1 Who r th prtis?... 2 Wht o wors n phrss in ol typ mn?... 3 Whn i my pln strt?... 4 How o I invst in my pln?... 5 Who owns

More information

3. Building a Binary Search Tree. 5. Splay Trees: A Self-Adjusting Data Structure

3. Building a Binary Search Tree. 5. Splay Trees: A Self-Adjusting Data Structure Chptr 10 BINARY TREES 1. Gnrl Binry Trs 2. Binry Srch Trs 3. Builing Binry Srch Tr 4. Hight Blnc: AVL Trs 5. Sply Trs: A Slf-Ajusting Dt Structur Outlin Trnsp. 1, Chptr 10, Binry Trs 243 1999 Prntic-Hll,

More information

Diagram Editing with Hypergraph Parser Support

Diagram Editing with Hypergraph Parser Support Copyright 1997 IEEE. Pulish in th Proings o VL 97, Sptmr 23-26, 1997 in Cpri, Itly. Prsonl us o this mtril is prmitt. Howvr, prmission to rprint/rpulish this mtril or vrtising or promotionl purposs or

More information

One Ring to Rule them All: Service Discovery and Binding in Structured Peer-to-Peer Overlay Networks

One Ring to Rule them All: Service Discovery and Binding in Structured Peer-to-Peer Overlay Networks On Ring to Rul thm All: Srvi Disovry n Bining in Strutur Pr-to-Pr Ovrly Ntworks Migul Cstro Mirosot Rsrh, J J Thomson Clos, Cmrig, CB 0FB, UK. mstro@mirosot.om Ptr Drushl Ri Univrsity, 100 Min Strt, MS-1,

More information

Higher. Exponentials and Logarithms 160

Higher. Exponentials and Logarithms 160 hsn uknt Highr Mthmtics UNIT UTCME Eponntils nd Logrithms Contnts Eponntils nd Logrithms 6 Eponntils 6 Logrithms 6 Lws of Logrithms 6 Eponntils nd Logrithms to th Bs 65 5 Eponntil nd Logrithmic Equtions

More information

Industry regulations Jurisdictional regulations Legal defensibility Legal frameworks Legal research

Industry regulations Jurisdictional regulations Legal defensibility Legal frameworks Legal research A Dutis, Tsks, n Stps Mnging Informtion Risk n Complin 1 Monitor lgl n rgultory lnsp Engg with lgl prtmnt n othr stkholrs Intify n intrprt xisting pplil lws of ll jurisitions n rgultions Intify rsours

More information

c d b a f(a,b,c,d,e) d e d e e b b c

c d b a f(a,b,c,d,e) d e d e e b b c 85 Chptr 6 Exri 6. From Exri 5., w know tht th ingl-rror ttor for 2-out-of-5 o (; ; ; ; ) i implmnt y th xprion: E(; ; ; ; ) = + + + + + + + + + + + + + Uing only gt from Tl 4. of th txtook w n gnrt ll

More information

Change Your History How Can Soccer Knowledge Improve Your Business Processes?

Change Your History How Can Soccer Knowledge Improve Your Business Processes? Symposium Inuurl Lctur o Hjo Rijrs, VU, 26-6-2015 Chn Your History How Cn Soccr Knowl Improv Your Businss Procsss? Wil vn r Alst TU/ n DSC/ 1970 born Oostrbk 1988-1992 CS TU/ 1992-1994 TS TU/ 1994-1996

More information

Section 5-5 Inverse of a Square Matrix

Section 5-5 Inverse of a Square Matrix - Invrs of a Squar Matrix 9 (D) Rank th playrs from strongst to wakst. Explain th rasoning hind your ranking. 68. Dominan Rlation. Eah mmr of a hss tam plays on math with vry othr playr. Th rsults ar givn

More information

11 + Non-verbal Reasoning

11 + Non-verbal Reasoning Prti Tst + Non-vrl Rsoning R th instrutions rfully. Do not gin th tst or opn th ooklt until tol to o so. Work s quikly n s rfully s you n. Cirl th orrt lttr from th options givn to nswr h qustion. You

More information

1. Number of questions to be answered: ALL Multiple Choice (Section A) and 3 from 5 of the short answer questions (Section B)

1. Number of questions to be answered: ALL Multiple Choice (Section A) and 3 from 5 of the short answer questions (Section B) LEEDS METROPOLITAN UNIVERSITY UK Cntr for Evnts Mngmnt (RESIT) Moul Titl: Evnts Mrkting Ativitis Ami Yr: 2011/12 Lvl: 4 Smstr: 2 Cours: BA(Hons)/ HND Evnt Mngmnt Intrnl Exminrs: Exmintion Dt: 2 n July

More information

Where preparation meets opportunity. My Academic Planner. Early Academic Outreach Program (EAOP)

Where preparation meets opportunity. My Academic Planner. Early Academic Outreach Program (EAOP) Whr prprtion mts opportunity. My Ami Plnnr Erly Ami Outrh Prorm (EAOP) Follow this 4-stp pln to prpr or mission to th Univrsity o Cliorni (UC), Cliorni Stt Univrsity (CSU) n mny inpnnt olls with similr

More information

MANAGEMENT OF INFORMATION SECURITY AND FORENSICS

MANAGEMENT OF INFORMATION SECURITY AND FORENSICS MANAGEMENT OF INFORMATION SECURITY AND FORENSICS CS 307 Ctlog Dsription PREREQUISITE: CS 0. Stuy of informtion surity n igitl fornsis using prtil s stuis. Emphsis is on vloping surity poliis, surity mngmnt

More information

Fractions: Arithmetic Review

Fractions: Arithmetic Review Frtions: Arithmeti Review Frtions n e interprete s rtios omprisons of two quntities. For given numer expresse in frtion nottion suh s we ll the numertor n the enomintor n it is helpful to interpret this

More information

CompactPCI Connectors acc. to PIGMG 2.0 Rev. 3.0

CompactPCI Connectors acc. to PIGMG 2.0 Rev. 3.0 Ctlog E 074486 08/00 Eition ComptPCI Conntors. to PIGMG.0 Rv. 3.0 Gnrl Lt in 999 PCI Inustril Computr Mnufturrs Group (PICMG) introu th nw rvision 3.0 of th ComptPCI Cor Spifition. Vrsion 3.0 of this spifition

More information

University of Mumbai Application for selection as Best College

University of Mumbai Application for selection as Best College Univrsity o Mumi Applition or sltion s Bst Collg 1 Inormtion o th Sponsoring Soity Nm o th Sponsoring Soity with Rgistrtion No. Nms o th Bor o Trusts Whthr Sponsoring Soity is running ny othr Institutions

More information

Detection and Counting of Red Blood Cells in Blood Cell Images using Hough Transform

Detection and Counting of Red Blood Cells in Blood Cell Images using Hough Transform Dttion n Counting of R Bloo Clls in Bloo Cll Imgs using Hough Trnsform Musumi Mitr Informtion Thnology Govt. Collg of Enginring n Crmi Thnology 73, A. C. Bnrj Ln, Kolkt, Ini Rhul Kumr Gupt Computr Sin

More information

GENERAL REGULATIONS FOR DEGREES BY RESEARCH AND THESIS

GENERAL REGULATIONS FOR DEGREES BY RESEARCH AND THESIS REG/14/463(1) 2014-15 GENERAL REGULATIONS FOR DEGREES BY RESEARCH AND THESIS Applil to stunts in ll Stgs/yrs of progrmms Ths Gnrl Rgultions, pprov y th Univrsity Snt, st out th rquirmnts for rsrh wrs ssss

More information

Approximate Subtree Identification in Heterogeneous XML Document Collections

Approximate Subtree Identification in Heterogeneous XML Document Collections Approximat Sutr Intiiation in Htrognous XML Doumnt Colltions Ismal Sanz 1, Maro Msiti 2, Giovanna Gurrini 3 an Raal Brlanga 1 1 Univrsitat Jaum I, Spain 2 Univrsità gli Stui i Milano, Italy 3 Univrsità

More information

Turkish Keyphrase Extraction Using Multi-Criterion Ranking

Turkish Keyphrase Extraction Using Multi-Criterion Ranking Turkish Kyphrs Extrtion Using Multi-Critrion Rnking Bhır Özmir Dpt. of Computr Enginring Bilknt Univrsity 06800 Bilknt Ankr, Turky Emil: ozmir@s.ilknt.u.tr Ilys Cikli Dpt. of Computr Enginring Bilknt Univrsity

More information

Homeomorphic Alignment of Weighted Trees

Homeomorphic Alignment of Weighted Trees Author mnusript, pulish in "Pttrn Rogn., 8 (00) 97--99" DOI : 0.06/j.ptog.00.0.05 Homomorphi Alignmnt o Wight Trs Bnjmin Rynl, Mihl Coupri, Vnsls Biri Univrsité Pris-Est,Lortoir Inormtiqu Gspr Mong, Equip

More information

Upward Planar Drawings of Series-Parallel Digraphs with Maximum Degree Three

Upward Planar Drawings of Series-Parallel Digraphs with Maximum Degree Three Upwr Plnr Drwins of ris-prlll Dirps wit Mximum Dr Tr (Extn Astrt) M. Aul Hssn m n M. iur Rmn Dprtmnt of Computr in n Eninrin, Bnls Univrsity of Eninrin n Tnoloy (BUET). {sm,siurrmn}@s.ut.. Astrt. An upwr

More information

Menu Structure. Section 5. Introduction. General Functions Menu

Menu Structure. Section 5. Introduction. General Functions Menu Menu Structure Section 5 Introduction General Functions Menu Most workstation functions are accessed by menu selections. This section explains the menu structure and provides a tree structured view of

More information

Back left Back right Front left Front right. Blue Shield of California. Subscriber JOHN DOE. a b c d

Back left Back right Front left Front right. Blue Shield of California. Subscriber JOHN DOE. a b c d Smpl ID r n sription o trms Bk lt Bk right Front lt Front right Provirs: Pls il ll lims with your lol BluCross BluShil lins in whos srvi r th mmr riv srvis or, whn Mir is primry, il ll Mir lims with Mir.

More information

Level 3. Monday FRACTIONS ⅔ ⅗ 2) ⅔ =?/18. 1) What is a) ⅕ of 30? b) ⅖ of 30?

Level 3. Monday FRACTIONS ⅔ ⅗ 2) ⅔ =?/18. 1) What is a) ⅕ of 30? b) ⅖ of 30? 2014 Th Wkly Pln. All rights rsrv. Mony 2) ⅔ =?/18 1) Wht is ) ⅕ o 30? ) ⅖ o 30? 4) Us or = to show th rltionship twn th ollowing rtions: 3) Writ n quivlnt rtion or ½ ⅔ ⅗ 5) Brook pik ouqut o 24 lowrs.

More information

tion only xists t th two n-points. Opn onntions onsum sokt n llot mmory or sokt urs, t h n. Sin mmory n sokts r limit, h ntity { iniviul lint, proxy,

tion only xists t th two n-points. Opn onntions onsum sokt n llot mmory or sokt urs, t h n. Sin mmory n sokts r limit, h ntity { iniviul lint, proxy, Conntion Ching Eith Cohn Him Kpln Uri Zwik AT&T Ls{Rsrh Tl-Aviv Univrsity 180 Prk Avnu Tl-Aviv 69978 Florhm Prk, NJ 07932 USA Isrl ith,hklg@rsrh.tt.om zwik@mth.tu..il Astrt Communition twn lints n srvrs

More information

Economics 340: International Economics Andrew T. Hill Nontariff Barriers to Trade

Economics 340: International Economics Andrew T. Hill Nontariff Barriers to Trade Eonomis 340: Intrntionl Eonomis Anrw T. Hill Nontri Brrirs to Tr Txtook Rings: ugl & Linrt, Intrntionl Eonomis, 11th Eition, pp. 139-162. 10th Eition, pp. 133-153. Txtook W Sit: Ky Grph 3 t http://www.mhh.om/onomis/pugl

More information

Summary of changes to Regulations recommended to the Senate by Graduate School Management Committee. Changed wording is shown in bold italics.

Summary of changes to Regulations recommended to the Senate by Graduate School Management Committee. Changed wording is shown in bold italics. Summry of hngs to Rgultions rommn to th Snt y Grut Shool Mngmnt Committ. Chng woring is shown in ol itlis. Gnrl Rgultions for Dgrs y Rsrh n Thsis 1. Inlusion of th Dotor of Miin (MD) wr throughout. 2.

More information

The Swedish Radiation Protection Institute s Regulations on X- ray Diagnostics;

The Swedish Radiation Protection Institute s Regulations on X- ray Diagnostics; SSI FS 2000:2 Th Swish Rition Prottion Institut s Rgultions on X- ry Dignostis; issu on April 28, 2000. On th sis of 7 of th Rition Prottion Orinn (1988:293) n ftr onsulttion with th Ntionl Bor of Hlth

More information

SKILL TEST IR(H) HELICOPTER SE ME Application and report form A. Udfyldes af ansøgeren/to be filled out by the applicant:

SKILL TEST IR(H) HELICOPTER SE ME Application and report form A. Udfyldes af ansøgeren/to be filled out by the applicant: SKILL TEST IR(H) HELICOPTER SE ME Applition n rport orm A. Uyls nsørn/to ill out y th pplint: CPR-nr./Dt o Birth: Crtiikt nr./lin no.: (I ny) Ustn Stt/Stt o Lin Issu: Fornvn/First nm(s): Etrnvn/Lst nm:

More information

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES A

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES A 0V TO 0V SUPPLY +0V TO +0V RS85 ONVRTR 9 TO OM PORT ON P TO P OM PORT US 9600 U 8IT, NO PRITY, STOP, NO FLOW TRL. OPTO SNSOR # +0V TO +0V RS85 RS85 OPTO SNSOR # PHOTO TRNSISTOR OPTO SNSOR # L TO OTHR Z

More information

Chapter 3 Chemical Equations and Stoichiometry

Chapter 3 Chemical Equations and Stoichiometry Chptr Chmicl Equtions nd Stoichiomtry Homwork (This is VERY importnt chptr) Chptr 27, 29, 1, 9, 5, 7, 9, 55, 57, 65, 71, 75, 77, 81, 87, 91, 95, 99, 101, 111, 117, 121 1 2 Introduction Up until now w hv

More information

Attachment 1 Package D1-1 (Five (5) Locations) 9-26-13Revised 11-1-13

Attachment 1 Package D1-1 (Five (5) Locations) 9-26-13Revised 11-1-13 Space Identifier Near Gate ttachment Package - (Five (5) Locations) 9-26-3Revised --3 Proposed oncept Square Footage Minimum nnual Guarantee Term in Years --Z0 ustoms urrency xchange 98 $20,500 75-2-S06

More information

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST: .4 Eponntial Functions: Diffrntiation an Intgration TOOTLIFTST: Eponntial functions ar of th form f ( ) Ab. W will, in this sction, look at a spcific typ of ponntial function whr th bas, b, is.78.... This

More information

Functional Valuation of Ecosystem Services on Bonaire

Functional Valuation of Ecosystem Services on Bonaire Funtionl Vlution of Eosystm Srvis on Bonir - An ologil nlysis of osystm funtions provi y orl rfs - Ingri J.M. vn Bk MS Aquultur n Fishris Spilistion Mrin Rsours n Eology Wgningn Univrsity Th Nthrlns MS-

More information

A MESSAGE FROM CLAIMTEK

A MESSAGE FROM CLAIMTEK A MESSAGE FROM CLAIMTEK Dr Hlthr Billing Profssionl, Thnk you for tking tim to rviw this rohur. If you'v n looking for mil prti mngmnt n illing softwr tht mks your work sy, urt, n njoyl, MOffi is your

More information

1 Fractions from an advanced point of view

1 Fractions from an advanced point of view 1 Frtions from n vne point of view We re going to stuy frtions from the viewpoint of moern lger, or strt lger. Our gol is to evelop eeper unerstning of wht n men. One onsequene of our eeper unerstning

More information

Dinh Hong Giang 1,2, Ed Sarobol 2, * and Sutkhet Nakasathien 2 ABSTRACT

Dinh Hong Giang 1,2, Ed Sarobol 2, * and Sutkhet Nakasathien 2 ABSTRACT Kstsrt J. (Nt. Si.) 49 : 1-12 (215) Et o Plnt Dnsity n Nitrogn Frtilizr Rt on Growth, Nitrogn Us Eiiny n Grin Yil o Dirnt Miz Hyris unr Rin Conitions in Southrn Vitnm Dinh Hong Ging 1,2, E Srool 2, * n

More information

SecurView 6-0-6 Antivirus Software Installation

SecurView 6-0-6 Antivirus Software Installation SurViw 6-0-6 Antivirus Sotwr Instlltion 1. Introdution Antivirus sotwr is n tiv wy to ombt omputr viruss, trojns, worms, nd othr mliious sotwr tht my ttmpt to ompromis th intgrity o systm. It is ssntil

More information

A122 MARION COUNTY HEALTH BUILDING HVAC, GLAZING AND LIGHTING RENOVATION 75% DOCUMENTS 08/31/2015

A122 MARION COUNTY HEALTH BUILDING HVAC, GLAZING AND LIGHTING RENOVATION 75% DOCUMENTS 08/31/2015 7 ' 7 /" ' " ' /" ' 9 /" ' 0" ' 0" ' 0" ' 0" ' " ' /" 0 NRL SHT NOTS IL VRIY XISTIN PRIOR TO WORK N NOTIY RHITT/NINR O ISRPNIS TWN RWINS N XISTIN ONITIONS. 0 0 0 PTH LOTIONS N IR PROOIN WHR XISTIN WLLS

More information

CSE 421: Introduction to Algorithms

CSE 421: Introduction to Algorithms Grdy Algorithms CSE : Introdution to Algorithms Grdy Algorithms Pul Bm Hrd to dfin xtly ut n giv gnrl proprtis Solution is uilt in smll stps Disions on how to uild th solution r md to mximiz som ritrion

More information

Problem Set 2 Solutions

Problem Set 2 Solutions University of Cliforni, Berkeley Spring 2012 EE 42/100 Prof. A. Niknej Prolem Set 2 Solutions Plese note tht these re merely suggeste solutions. Mny of these prolems n e pprohe in ifferent wys. 1. In prolems

More information

excenters and excircles

excenters and excircles 21 onurrene IIi 2 lesson 21 exenters nd exirles In the first lesson on onurrene, we sw tht the isetors of the interior ngles of tringle onur t the inenter. If you did the exerise in the lst lesson deling

More information

MATH PLACEMENT REVIEW GUIDE

MATH PLACEMENT REVIEW GUIDE MATH PLACEMENT REVIEW GUIDE This guie is intene s fous for your review efore tking the plement test. The questions presente here my not e on the plement test. Although si skills lultor is provie for your

More information

Know the sum of angles at a point, on a straight line and in a triangle

Know the sum of angles at a point, on a straight line and in a triangle 2.1 ngle sums Know the sum of ngles t point, on stright line n in tringle Key wors ngle egree ngle sum n ngle is mesure of turn. ngles re usully mesure in egrees, or for short. ngles tht meet t point mke

More information

A SOLUTION TO THE ARITHMETIC PROBLEM OF FINDING A NUMBER WHICH, DIVIDED BY GIVEN NUMBERS, LEAVES BEHIND GIVEN REMAINDERS

A SOLUTION TO THE ARITHMETIC PROBLEM OF FINDING A NUMBER WHICH, DIVIDED BY GIVEN NUMBERS, LEAVES BEHIND GIVEN REMAINDERS A SOLUTION TO THE ARITHMETIC PROBLEM OF FINDING A NUMBER WHICH DIVIDED BY GIVEN NUMBERS LEAVES BEHIND GIVEN REMAINDERS LEONHARD EULER 0 Prolms o this sort an oun in ommon ooks o arithmti rywhr ut thir

More information

Differential Equations (MTH401) Lecture That a non-homogeneous linear differential equation of order n is an equation of the form n

Differential Equations (MTH401) Lecture That a non-homogeneous linear differential equation of order n is an equation of the form n Diffrntial Equations (MTH40) Ltur 7 Mthod of Undtrmind Coffiints-Surosition Aroah Rall. That a non-homognous linar diffrntial quation of ordr n is an quation of th form n n d d d an + a a a0 g( ) n n +

More information

A Note on Approximating. the Normal Distribution Function

A Note on Approximating. the Normal Distribution Function Applid Mathmatical Scincs, Vol, 00, no 9, 45-49 A Not on Approimating th Normal Distribution Function K M Aludaat and M T Alodat Dpartmnt of Statistics Yarmouk Univrsity, Jordan Aludaatkm@hotmailcom and

More information

Graph Theoretical Analysis and Design of Multistage Interconnection Networks

Graph Theoretical Analysis and Design of Multistage Interconnection Networks 637 I TRNSTIONS ON OMPUTRS, VOL. -32, NO. 7, JULY 1983 [39].. svnt,.. jski, n. J. Kuck, "utomtic sign wit pnnc grps," in Proc. 17t s. utomt. on, I omput. Soc. TMSI, 1980, pp. 506-515. [40] M.. Mcrln, "

More information

ROBERT D. MCHUGH, JR., Ph.D. FINANCIAL MARKETS FORECAST & ANALYSIS A Publication of Main Line Investors, Inc.

ROBERT D. MCHUGH, JR., Ph.D. FINANCIAL MARKETS FORECAST & ANALYSIS A Publication of Main Line Investors, Inc. ROBERT D. MCHUGH, JR., Ph.D. FINANCIAL MARKETS FORECAST & ANALYSIS A Pulition of Min Lin Invstors, In. Mjor Stok Mrkt Tops of th Pst Cntury y Rort D. MHugh, Ph.D. Frury 12th, 2007 Thr is stok pri pttrn

More information

Standard Conditions for Street Traders The Royal Borough of Kensington and Chelsea. Revised standard conditions for street trading

Standard Conditions for Street Traders The Royal Borough of Kensington and Chelsea. Revised standard conditions for street trading Stnr Conitions or Strt Trrs Th Royl Borough o Knsington n Chls Rvis stnr onitions or strt tring Th Royl Borough o Knsington n Chls strt tring linss stnr onitions 2006 1 Dinitions Th ollowing xprssions

More information

1. Area under a curve region bounded by the given function, vertical lines and the x axis.

1. Area under a curve region bounded by the given function, vertical lines and the x axis. Ares y Integrtion. Are uner urve region oune y the given funtion, vertil lines n the is.. Are uner urve region oune y the given funtion, horizontl lines n the y is.. Are etween urves efine y two given

More information

CRITO PLATO KRITWN PLATWN

CRITO PLATO KRITWN PLATWN CRITO KRITWN PLATO PLATWN CRITO KRITWN PLATO PLATWN Translat y Cathal Woos an Ryan Pak 2007-2012 This work is lins unr th Crativ Commons Attriution-Nonommrial-No Drivativ Works 3.0 Lins. To viw a opy of

More information

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13)

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13) con 37: Answr Ky for Problm St (Chaptr 2-3) Instructor: Kanda Naknoi Sptmbr 4, 2005. (2 points) Is it possibl for a country to hav a currnt account dficit at th sam tim and has a surplus in its balanc

More information

Particle size distributions by laser diffraction: sensitivity of granular matter strength to analytical operating procedures

Particle size distributions by laser diffraction: sensitivity of granular matter strength to analytical operating procedures Soli Erth, 1, 5 8, 1 www.soli-rth.nt/1/5/1/ Author(s) 1. This work is istriut unr th Crtiv Commons Attriution 3. Lins. Soli Erth Prtil siz istriutions y lsr iffrtion: snsitivity of grnulr mttr strngth

More information

Chi-Square. Hypothesis: There is an equal chance of flipping heads or tails on a coin. Coin A. Expected (e) (o e) (o e) 2 (o e) 2 e

Chi-Square. Hypothesis: There is an equal chance of flipping heads or tails on a coin. Coin A. Expected (e) (o e) (o e) 2 (o e) 2 e Why? Chi-Squar How do you know if your data is th rsult of random chanc or nvironmntal factors? Biologists and othr scintists us rlationships thy hav discovrd in th lab to prdict vnts that might happn

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) 92.222 - Linar Algbra II - Spring 2006 by D. Klain prliminary vrsion Corrctions and commnts ar wlcom! Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial

More information

STANDARD ENGINEERING DETAILS. Part 2 - Wastewater

STANDARD ENGINEERING DETAILS. Part 2 - Wastewater STNR NGINRING TILS Part 2 - Wastewater Revised Index to Sheets SHT TITL No. Sanitary Sewer Structures Sanitary Sewer Structures Sanitary Sewer Structures Sanitary Sewer Structures 2 Sanitary Sewer Structures

More information

25/8/94 (previous title) 08/06/12 [15/05/13 Formal Delegations amended] 15/12/95 13/10/00 2/11/01, 9/9/05, 14/12/11 5 yearly Immediately

25/8/94 (previous title) 08/06/12 [15/05/13 Formal Delegations amended] 15/12/95 13/10/00 2/11/01, 9/9/05, 14/12/11 5 yearly Immediately Corport Poliis & Prours Finn Doumnt CPP301 Corport Trvl First Prou: Currnt Vrsion: Pst Rvisions: Rviw Cyl: Applis From: 25/8/94 (prvious titl) 08/06/12 [15/05/13 Forml Dlgtions mn] 15/12/95 13/10/00 2/11/01,

More information

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES

SEE PAGE 2 FOR BRUSH MOTOR WIRING SEE PAGE 3 FOR MANUFACTURER SPECIFIC BLDC MOTOR WIRING EXAMPLES V TO 0V SUPPLY TO P OM PORT GROUN +0V TO +0V RS85 ONVRTR 9 TO OM PORT ON P US 9600 U 8IT, NO PRITY, STOP, NO FLOW TRL. NOT: INSTLL SHORTING JUMPR ON FOR V-5V OPRTION. JUMPR MUST RMOV FOR VOLTGS >5V TO

More information