Minimal Walking Technicolor

Size: px
Start display at page:

Download "Minimal Walking Technicolor"

Transcription

1 Dark Matter and LHC Phenomenology University of Oxford CP3-Origins, May 6 th 2010 m.frandsen1@physics.ox.ac.uk

2 Outline 1 Technicolor and Technibaryon Dark Matter 2 3

3 In collaboration with: Alexander Belyaev (Southampton U.), oshan Foadi (Michigan State U.), Matti Ja rvinen (CP3-Origins), Isabella Masina (Ferrara U) Alexander Pukhov (Moscow State U.), Francesco Sannino (CP3-Origins), Subir Sarkar (Oxford U.) Alexander Sherstnev (Oxford U.). ArXiv:1005.XXXX A. Belyaev, M.T.F and A. Sherstnev

4 XENON100 release during Mass 2010

5 The origin of bright and dark mass

6 Bright and Dark connection? v weak 246GeV

7 Bright and Dark connection? v weak 246GeV σ ann v rel α2 W 1TeV 2

8 Bright and Dark connection? v weak 246GeV σ ann v rel α2 W 1TeV 2 Ω DM /Ω B 5

9 Bright and Dark connection? v weak 246GeV σ ann v rel α2 W 1TeV 2 Ω DM /Ω B 5 The baryonic relic density is not of thermal origin!

10 Bright and Dark connection? v weak 246GeV σ ann v rel α2 W 1TeV 2 Ω DM /Ω B 5 The baryonic mass is not (mainly) due to Higgs interactions! The baryonic relic density is not of thermal origin!

11 Bright and Dark connection? v weak 246GeV σ ann v rel α2 W 1TeV 2 Ω DM /Ω B 5 The baryonic mass is not (mainly) due to Higgs interactions! The baryonic relic density is not of thermal origin! Is the origin of mass dynamical?

12 Bright and Dark connection? v weak 246GeV σ ann v rel α2 W 1TeV 2 Ω DM /Ω B 5 The baryonic mass is not (mainly) due to Higgs interactions! The baryonic relic density is not of thermal origin! Is the origin of mass dynamical? Can we test a dynamical origin of mass in the lab?

13 Technicolor Technicolor: (Weinberg 78, Susskind 78) 1 In the SM without a Higgs, QCD breaks the EW symmetry: ū L u + d L d 0 M W = gf π 2. 2 Consider a new strongly interacting gauge theory with F TC Π = v EW = 246GeV. 3 Let the electroweak gauge group be a subgroup of the chiral symmetry group.

14 Technicolor Technicolor: (Weinberg 78, Susskind 78) 1 In the SM without a Higgs, QCD breaks the EW symmetry: ū L u + d L d 0 M W = gf π 2. 2 Consider a new strongly interacting gauge theory with F TC Π = v EW = 246GeV. 3 Let the electroweak gauge group be a subgroup of the chiral symmetry group. Example: Scaled-up QCD!

15 Technicolor 1 The SM gauge group is augmented: G SM SU(3) c SU(2) W U(1) Y G TC.

16 Technicolor 1 The SM gauge group is augmented: G SM SU(3) c SU(2) W U(1) Y G TC. 2 The Higgs sector of the SM is replaced: L Higgs 1 4 F a µν F aµν + i Q L γ µ D µ Q L + i Q γ µ D µ Q +...

17 Technicolor 1 The SM gauge group is augmented: G SM SU(3) c SU(2) W U(1) Y G TC. 2 The Higgs sector of the SM is replaced: L Higgs 1 4 F a µν F aµν + i Q L γ µ D µ Q L + i Q γ µ D µ Q +... Minimal chiral symmetries: 3 GB s + Custodial + DM. SU L (2) SU (2) U TB (1) SU V (2) U TB (1).

18 Technicolor dark matter Technocosmology (Nussinov 85) Lightest Technibaryon as Asymmetric Dark Matter

19 Technicolor dark matter Technocosmology (Nussinov 85) Lightest Technibaryon as Asymmetric Dark Matter The LTB abundance: Ω TB /Ω B = m TB /m B n TB /n B

20 Technicolor dark matter Technocosmology (Nussinov 85) Lightest Technibaryon as Asymmetric Dark Matter The LTB abundance: From initial n B n TB : Ω TB /Ω B = m TB /m B n TB /n B Ω TB /Ω B m TB /m B (m TB /T sphaleron ) 3/2 e m TB/T sphaleron T sphaleron v EW, (Chivukula and Walker 90; Bahr, Chivukula and Farhi 90; Harvey and Turner 90; Ellis et al 95; Sarkar 95; Gudnason, Kouvaris and Sannino 05)

21 Technicolor dark matter Technocosmology (Nussinov 85) Lightest Technibaryon as Asymmetric Dark Matter The LTB abundance: From initial n B n TB : Ω TB /Ω B = m TB /m B n TB /n B Ω TB /Ω B m TB /m B (m TB /T sphaleron ) 3/2 e m TB/T sphaleron T sphaleron v EW, M TB TeV (Chivukula and Walker 90; Bahr, Chivukula and Farhi 90; Harvey and Turner 90; Ellis et al 95; Sarkar 95; Gudnason, Kouvaris and Sannino 05)

22 Technicolor dark matter Technocosmology (Nussinov 85) Lightest Technibaryon as Asymmetric Dark Matter The LTB abundance: From initial n B n TB : Ω TB /Ω B = m TB /m B n TB /n B Ω TB /Ω B m TB /m B (m TB /T sphaleron ) 3/2 e m TB/T sphaleron T sphaleron v EW, M TB TeV (Chivukula and Walker 90; Bahr, Chivukula and Farhi 90; Harvey and Turner 90; Ellis et al 95; Sarkar 95; Gudnason, Kouvaris and Sannino 05) Or Dark Baryon with m TB 5 10GeV? (D.B.Kaplan 92; An, Chen, Mohapatra and Zhang 09; D.E.Kaplan, Luty and Zurek 09; Fitzpatrick, Zurek and Hooper 10; M.T.F and Sarkar 10)

23 Extended Technicolor and fermion masses ETC ETC: (Eichten and Lane 80) New gauge theory with SM and TC fermions in the same multiplet. ψ L, QL Q L Q ψ,q 1 Four fermion operators: QQ QQ α Λ 2 ETC QQ ψψ + β + γ Λ 2 ETC ψψ ψψ Λ 2 ETC +...

24 Extended Technicolor and fermion masses ETC ETC: (Eichten and Lane 80) New gauge theory with SM and TC fermions in the same multiplet. 1 Four fermion operators: ψ L, QL Q L Q ψ,q QQ QQ α Λ 2 ETC Fermion masses: QQ ψψ + β + γ Λ 2 ETC ψψ ψψ Λ 2 ETC +... M ψ QQ ETC Λ 2 ETC d( TC ) Λ3 γ Λ γ ETC Λ 2 ETC (Holdom 81, 85; Yamawaki, Bando and Matumoto 86; Appelquist, Karabali and Wijewardhana 86; Hill and Simmons 02)

25 Extended Technicolor and fermion masses ETC ETC: (Eichten and Lane 80) New gauge theory with SM and TC fermions in the same multiplet. ψ L, QL Q L Q ψ,q 1 Four fermion operators: QQ QQ α Λ 2 ETC QQ ψψ + β + γ Λ 2 ETC ψψ ψψ Λ 2 ETC (Too!) Naively Λ ETC > 10 3 TeV to suppress FCNC s: (King 89; Evans and oss 94; Appelquist and Shrock 02; Evans and Sannino 05; Christensen, Piai and Shrock 06)

26 Extended Technicolor and fermion masses ETC ETC: (Eichten and Lane 80) New gauge theory with SM and TC fermions in the same multiplet. ψ L, QL Q L Q ψ,q 1 Four fermion operators: QQ QQ α Λ 2 ETC QQ ψψ + β + γ Λ 2 ETC ψψ ψψ Λ 2 ETC (Too!) Naively Λ ETC > 10 3 TeV to suppress FCNC s: (King 89; Evans and oss 94; Appelquist and Shrock 02; Evans and Sannino 05; Christensen, Piai and Shrock 06) 3 Focus on Technicolor sector

27 Constraints from LEP 1 A minimal matter content in the TC sector is favored: S 16πΠ W 3 B (0), T 4π s 2 W c2 W M2 Z (Π W 1 W 1(0) Π W 3 W 3(0)) Q, L W 3 B U 0 m t = ± 2.1 GeV m H = GeV m W prel. T 0 Γ ll S naive = N D d( TC ) 6π sin 2 θ lept eff m H m t 68 % CL S (Kennedy and Lynn 89; Peskin and Takeuchi 90; Altarelli and Barbieri 91)

28 Minimal Technicolor Theory Space Minimal Technicolor: 2 Dirac Flavors. No QCD charges. ( ) Q L = U +1/2 L,D 1/2 T +1/2 L, U, D 1/2.

29 Minimal Technicolor Theory Space Minimal Technicolor: 2 Dirac Flavors. No QCD charges. ( ) Q L = U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. Orthogonal TC QCD TC Symplectic TC

30 Minimal Technicolor Theory Space Minimal Technicolor: 2 Dirac Flavors. No QCD charges. ( ) Q L = U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. Orthogonal TC real QCD TC complex Symplectic TC pseudo-real

31 Minimal Technicolor Theory Space Minimal Technicolor: 2 Dirac Flavors. No QCD charges. ( ) Q L = U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. Orthogonal TC real F of SO(N) QCD TC complex F of SU(N) Symplectic TC pseudo-real F of Sp(2N)

32 Minimal Technicolor Theory Space Minimal Technicolor: 2 Dirac Flavors. No QCD charges. ( ) Q L = U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. Orthogonal TC real F of SO(N) SU(4)/SO(4) QCD TC complex F of SU(N) G GB : SU(2) Symplectic TC pseudo-real F of Sp(2N) SU(4)/Sp(4)

33 Minimal Technicolor Theory Space Minimal Technicolor: 2 Dirac Flavors. No QCD charges. ( ) Q L = U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. Orthogonal TC real F of SO(N) SU(4)/SO(4) 3 Π 3 3 QCD TC complex F of SU(N) G GB : SU(2) 3 Π Symplectic TC pseudo-real F of Sp(2N) SU(4)/Sp(4) 3 Π 1 1

34 Minimal Technicolor Theory Space Minimal Technicolor: 2 Dirac Flavors. No QCD charges. ( ) Q L = U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. Orthogonal TC real F of SO(N) SU(4)/SO(4) 3 Π 3 3 ( ) Π Ti T i Π T QCD TC complex F of SU(N) G GB : SU(2) 3 Π ( Π 0 Π Π = + ) Π Π 0 Symplectic TC pseudo-real F of Sp(2N) SU(4)/Sp(4) 3 Π 1 1 ( ) Π Ts Ts Π T

35 Minimal Technicolor Theory Space Minimal Technicolor: 2 Dirac Flavors. No QCD charges. ( ) Q L = U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. Orthogonal TC real F of SO(N) SU(4)/SO(4) 3 Π 3 3 ( ) Π Ti T i Π T ( T 0 T T i = + ) T T 0 QCD TC complex F of SU(N) G GB : SU(2) 3 Π ( Π 0 Π Π = + ) Π Π 0 Symplectic TC T s = pseudo-real F of Sp(2N) SU(4)/Sp(4) 3 Π 1 1 ( ) Π Ts T s Π T ( ) T T 0

36 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (1)

37 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (1) itimp TIMP TIMP (M.T.F and F.Sannino 09) (Bahr, Chivukula and Farhi 90; Nussinov 92) (yttov and Sannino 08; Foadi, M.T.F and Sannino 09)

38 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (1) itimp TIMP 4 of SU(4) TIMP (M.T.F and F.Sannino 09) (Bahr, Chivukula and Farhi 90; Nussinov 92) (yttov and Sannino 08; Foadi, M.T.F and Sannino 09)

39 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (1) itimp TIMP 4 of SU(4) U L D L U L D L TIMP (M.T.F and F.Sannino 09) (Bahr, Chivukula and Farhi 90; Nussinov 92) (yttov and Sannino 08; Foadi, M.T.F and Sannino 09)

40 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (1) itimp TIMP 4 of SU(4) U L D L U L D L SM singlet TIMP (M.T.F and F.Sannino 09) (Bahr, Chivukula and Farhi 90; Nussinov 92) (yttov and Sannino 08; Foadi, M.T.F and Sannino 09)

41 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (1) itimp (M.T.F and F.Sannino 09) TIMP 4 of SU(4) U L D L U L D L SM singlet M T N 3/2 TC F Π (Bahr, Chivukula and Farhi 90; Nussinov 92) TIMP (yttov and Sannino 08; Foadi, M.T.F and Sannino 09)

42 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (1) itimp (M.T.F and F.Sannino 09) TIMP 4 of SU(4) U L D L U L D L SM singlet M T N 3/2 TC F Π (Bahr, Chivukula and Farhi 90; Nussinov 92) TIMP (yttov and Sannino 08; Foadi, M.T.F and Sannino 09)

43 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (1) itimp real (M.T.F and F.Sannino 09) TIMP 4 of SU(4) U L D L U L D L SM singlet M T N 3/2 TC F Π (Bahr, Chivukula and Farhi 90; Nussinov 92) TIMP pseudo-real (yttov and Sannino 08; Foadi, M.T.F and Sannino 09)

44 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (1) itimp real T 0 U L D L (M.T.F and F.Sannino 09) TIMP 4 of SU(4) U L D L U L D L SM singlet M T N 3/2 TC F Π (Bahr, Chivukula and Farhi 90; Nussinov 92) TIMP pseudo-real T 0 U L D L (yttov and Sannino 08; Foadi, M.T.F and Sannino 09)

45 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (1) itimp real T 0 U L D L Iso-singlet GB (M.T.F and F.Sannino 09) TIMP 4 of SU(4) U L D L U L D L SM singlet M T N 3/2 TC F Π (Bahr, Chivukula and Farhi 90; Nussinov 92) TIMP pseudo-real T 0 U L D L SM singlet GB (yttov and Sannino 08; Foadi, M.T.F and Sannino 09)

46 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (1) itimp real T 0 U L D L Iso-singlet GB M T 0 g F Π (M.T.F and F.Sannino 09) TIMP 4 of SU(4) U L D L U L D L SM singlet M T N 3/2 TC F Π (Bahr, Chivukula and Farhi 90; Nussinov 92) TIMP pseudo-real T 0 U L D L SM singlet GB M 2 T 0 g 2 F 2 Π (yttov and Sannino 08; Foadi, M.T.F and Sannino 09)

47 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (1) itimp real T 0 U L D L Iso-singlet GB M T 0 g F Π TIMP 4 of SU(4) U L D L U L D L SM singlet M T N 3/2 TC F Π TIMP pseudo-real T 0 U L D L SM singlet GB M 2 T 0 g 2 F 2 Π (M.T.F and F.Sannino 09) (Bahr, Chivukula and Farhi 90; Nussinov 92) (yttov and Sannino 08; Foadi, M.T.F and Sannino 09) (Other candidates in MWT: Gudnason, Kouvaris and Sannino 05; Kainulainen, Virkajärvi and Tuominen 06, 09, 10; Kouvaris 07; Khlopov and Kouvaris 08)

48 Comment on TC vs ETC for itimps Mass/Vacuum alignment from EW + ETC (Dietrich and Järvinen 09; M.T.F and Sannino 09; Preskill 80; Peskin 80)

49 Comment on TC vs ETC for itimps Mass/Vacuum alignment from EW + ETC (Dietrich and Järvinen 09; M.T.F and Sannino 09; Preskill 80; Peskin 80) Orthogonal TC (in principle!) consistent in the absence of ETC M T 0 g F Π M T ± (g + g )F Π from EW only!

50 Comment on TC vs ETC for itimps Mass/Vacuum alignment from EW + ETC (Dietrich and Järvinen 09; M.T.F and Sannino 09; Preskill 80; Peskin 80) Orthogonal TC (in principle!) consistent in the absence of ETC M T 0 g F Π M T ± (g + g )F Π from EW only! Symplectic TC tied to ETC MT 2 g 2 F 2 0 Π + M2 ETC

51 Comment on TC vs ETC for itimps Mass/Vacuum alignment from EW + ETC (Dietrich and Järvinen 09; M.T.F and Sannino 09; Preskill 80; Peskin 80) Orthogonal TC (in principle!) consistent in the absence of ETC M T 0 g F Π M T ± (g + g )F Π from EW only! Symplectic TC tied to ETC MT 2 g 2 F 2 0 Π + M2 ETC Lower bound on MT 2 lower bounds on M 2 0 ETC (Belyaev, Foadi, M.T.F, Sannino and Sarkar to appear)

52 Direct detection Charge radius L B = ie d B Λ 2 T µ T ν F µν. (Bagnasco, Dine and Thomas 93) T T T T Composite Higgs L H = d H v ev T TH. γ H (Foadi, M.T.F and Sannino 09) N N N N

53 Direct detection Charge radius L B = ie d B Λ 2 T µ T ν F µν. (Bagnasco, Dine and Thomas 93) T T T T Composite Higgs L H = d H v ev T TH. γ H (Foadi, M.T.F and Sannino 09) W exchange for itimps N N N N (M.T.F and Sannino 09) T T ± T T W W W N N N N

54 Direct detection Charge radius L B = ie d B Λ 2 T µ T ν F µν. (Bagnasco, Dine and Thomas 93) T T T T Composite Higgs L H = d H v ev T TH. γ H (Foadi, M.T.F and Sannino 09) W exchange for itimps N N N N (M.T.F and Sannino 09) For colored baryons: Gluonic polarizabilities (Nussinov 92 ; Chivukula et al 92) T T ± T T For spin-1/2 baryons: Dipole moments (Nussinov 92 ; Bagnasco, Dine and Thomas 93) N W N N W W N

55 Direct Detection Limits on itimps Σn cm H Γ W CDMS Si CDMS Ge XENON MT GeV (M.T.F and Sannino 09; Foadi, M.T.F and Sannino 09; Exclusion limits courtesy of C. Mccabe 10)

56 Direct Detection Limits on itimps Σn cm H Γ W CDMS Si CDMS Ge XENON MT GeV (M.T.F and Sannino 09; Foadi, M.T.F and Sannino 09; Exclusion limits courtesy of C. Mccabe 10) Indirect detection of Decaying Dark Matter: (Nardi, Sannino and Strumia 09)

57 Direct Detection Limits on a Dark Baryon H CoGeNT ΣΧ N cm CDMS Si CDMS Ge XENON mχ GeV (M.T.F and Sarkar; Exclusion limits courtesy of C. Mccabe and M. Mccullough)

58 LHC signatures of (i)timps q Z, 1,2 H T T (i)timp Invisible Higgs (Foadi, M.T.F and Sannino 08 ; Godbole, Guchait, Mazumdar, Moretti and oy 03). q Z l + l

59 LHC signatures of (i)timps q Z, 1,2 H T T (i)timp Invisible Higgs (Foadi, M.T.F and Sannino 08 ; Godbole, Guchait, Mazumdar, Moretti and oy 03). q Z l + l itimp Antlers q W ± (M.T.F and Sannino 09 ; Han, Kim and Song 09) T Z, ± 1,2 T 0 q T ± W T 0

60 LHC signatures of (i)timps q Z, 1,2 H T T (i)timp Invisible Higgs (Foadi, M.T.F and Sannino 08 ; Godbole, Guchait, Mazumdar, Moretti and oy 03). itimp Antlers (M.T.F and Sannino 09 ; Han, Kim and Song 09) q q q Z T Z, ± 1,2 Note: The same signatures from a new stable heavy lepton! (M.T.F, Masina and Sannino 09 ; Antipin, Heikinheimo, Tuominen 09) T ± W ± W l + l T 0 T 0

61 Walking Technicolor 1 TC sector: Walking reduces the full S-parameter (Sundrum and Hsu 92; Appelquist and Sannino 98; Harada, Kurachi and Yamawaki 03; Kurachi and Shrock 06)

62 Walking Technicolor 1 TC sector: Walking reduces the full S-parameter (Sundrum and Hsu 92; Appelquist and Sannino 98; Harada, Kurachi and Yamawaki 03; Kurachi and Shrock 06) 2 ETC sector: Walking reduces tension between SM fermion masses and FCNC s (Holdom 81, 85; Yamawaki, Bando and Matumoto 86; Appelquist, Karabali and Wijewardhana 86)

63 Conformal window and Walking (Fig:Sannino, cp3-origins 09)

64 ETC fermion masses and Walking 1 Four fermion operators: α QQ QQ Λ 2 ETC QQ ψψ ψψ ψψ + β Λ 2 + γ ETC Λ ETC

65 ETC fermion masses and Walking 1 Four fermion operators: α QQ QQ Λ 2 ETC 2 Fermion masses: QQ ψψ ψψ ψψ + β Λ 2 + γ ETC Λ ETC M ψ QQ ETC Λ 2 ETC d( TC ) Λ3 γ Λ γ ETC Λ 2 ETC

66 ETC fermion masses and Walking 1 Four fermion operators: α QQ QQ Λ 2 ETC 2 Fermion masses: QQ ψψ ψψ ψψ + β Λ 2 + γ ETC Λ ETC M ψ QQ ETC Λ 2 ETC d( TC ) Λ3 γ Λ γ ETC Λ 2 ETC 3 Condensate enhancement from Walking: < QQ > ETC ( Λ ETC Λ TC ) γ(α ) < QQ > TC (Holdom 81, 85; Yamawaki, Bando and Matumoto 86; Appelquist, Karabali and Wijewardhana 86)

67 ETC fermion masses and Walking 1 Four fermion operators: α QQ QQ Λ 2 ETC 2 Fermion masses: QQ ψψ ψψ ψψ + β Λ 2 + γ ETC Λ ETC M ψ QQ ETC Λ 2 ETC d( TC ) Λ3 γ Λ γ ETC Λ 2 ETC 3 Condensate enhancement from Walking: < QQ > ETC ( Λ ETC Λ TC ) γ(α ) < QQ > TC (Holdom 81, 85; Yamawaki, Bando and Matumoto 86; Appelquist, Karabali and Wijewardhana 86) 4 (Too) Naively Λ ETC > 10 3 TeV to suppress FCNC s: (King 89; Evans and oss 94; Appelquist and Shrock 02; Evans and Sannino 05; Christensen, Piai and Shrock 06)

68 Which gauge theories display walking? 3C 2 (), α 4π = β 0 β 1. (Appelquist, Lane and Muhanta 88; Cohen and Georgi 89; Sannino and 1 Ladder approximation: α c = π Tuominen 04; Dietrich and Sannino 06; yttov and Sannino 07) 2 All-orders beta function conjecture(s) (yttov and Sannino 08; Antipin and Tuominen 09; Dietrich 09) 3 Dualities (Sannino 09) 4 Compactification approach (Unsal and Poppitz 09; Ogilvie and Myers 09;) 5 Worldline formalism (Armoni 09) 6 Holography (Hong and Yee 06; Alvares, Evans, Gebauer and Weatherill 09)

69 Orthogonal Minimal Technicolor Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (2)

70 Orthogonal Minimal Technicolor Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (2) MWT model: (Sannino and Tuominen 04) G TC = SU(2). = Adj. Leptons. (Dietrich, Sannino and Tuominen 05)

71 Orthogonal Minimal Technicolor Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (2) MWT model: (Sannino and Tuominen 04) G TC = SO(3). = F. Leptons. (Dietrich, Sannino and Tuominen 05)

72 Orthogonal Minimal Technicolor Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (2) MWT model: (Sannino and Tuominen 04) G TC = SO(3). = F. Leptons. (Dietrich, Sannino and Tuominen 05) 10 8 A.F N TF 6 4 S.D B.F &Γ 1 B.F &Γ 2 2 MWT N TC

73 Orthogonal Minimal Technicolor Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (2) OMT model: (Sannino and Frandsen 09) G TC = SO(4). = F. itimp 10 8 A.F N TF 6 4 S.D B.F &Γ 1 B.F &Γ 2 2 MWT OMT N TC

74 Orthogonal Minimal Technicolor Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (2) OMT model: (Sannino and Frandsen 09) G TC = SO(4). = F. itimp 10 8 One Family A.F N TF 6 4 S.D B.F &Γ 1 B.F &Γ 2 2 MWT OMT N TC

75 Minimal Models of Walking Technicolor Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (3)

76 Minimal Models of Walking Technicolor Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (3) MWT model: (Sannino and Tuominen 04) G TC = SU(2). = Adj. Leptons. (Dietrich, Sannino and Tuominen 05)

77 Minimal Models of Walking Technicolor Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (3) MWT model: (Sannino and Tuominen 04) G TC = SU(2). = Adj. Leptons. (Dietrich, Sannino and Tuominen 05) OMT model G TC = SO(4) NMWT model G TC = SU(3) UMT model G TC = SU(2) (M.T.F and F.Sannino 09) (Sannino and Tuominen 04) (yttov and Sannino 08)

78 Minimal Models of Walking Technicolor Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (3) MWT model: (Sannino and Tuominen 04) G TC = SU(2). = Adj. Leptons. (Dietrich, Sannino and Tuominen 05) OMT model G TC = SO(4) = F (M.T.F and F.Sannino 09) NMWT model G TC = SU(3) = 2S (Sannino and Tuominen 04) UMT model G TC = SU(2) = F,Adj (yttov and Sannino 08)

79 Minimal Models of Walking Technicolor Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U, D 1/2. (3) MWT model: (Sannino and Tuominen 04) G TC = SU(2). = Adj. Leptons. (Dietrich, Sannino and Tuominen 05) OMT model G TC = SO(4) = F itimp (M.T.F and F.Sannino 09) NMWT model G TC = SU(3) = 2S (Sannino and Tuominen 04) UMT model G TC = SU(2) = F,Adj TIMP (yttov and Sannino 08)

80 Lattice simulations (Dedicated collaborations: Lattice Strong Dynamics (US) ; Strong BSM (EU) )

81 EFT for MWT LHC common sector: SU L (2) SU (2) U TB (1) SU V (2) U TB (1). 1 New states: ±,0 1, ±,0 2, H. itimpsor TIMP 2 Input parameters and constraints: 3 Main free parameters: e, G F, M Z ; S, Sum ules. M A, g, M H. (Foadi, M.T.F, yttov and Sannino 07; Belyaev, Foadi, M.T.F, Järvinen, Pukhov, Sannino 08)

82 Parameter space (Foadi, M.T.F and Sannino 07 ; Belyaev, Foadi, M.T.F, Järvinen, Pukhov, Sannino 08)

83 Towards no-lose for LHC Phenomenology controlled by g/ g and masses.

84 Towards no-lose for LHC Phenomenology controlled by g/ g and masses. Different channels probe 1, 2 and H independently

85 Towards no-lose for LHC Phenomenology controlled by g/ g and masses. Different channels probe 1, 2 and H independently Production

86 Towards no-lose for LHC Phenomenology controlled by g/ g and masses. Different channels probe 1, 2 and H independently Production Drell-Yan: pp 0± 1,2

87 Towards no-lose for LHC Phenomenology controlled by g/ g and masses. Different channels probe 1, 2 and H independently Production Drell-Yan: pp 0± 1,2 Vector Boson Fusion pp 0± 1,2 /H jj

88 Towards no-lose for LHC Phenomenology controlled by g/ g and masses. Different channels probe 1, 2 and H independently Production Drell-Yan: pp 0± 1,2 Vector Boson Fusion pp 0± 1,2 /H jj Decays

89 Towards no-lose for LHC Phenomenology controlled by g/ g and masses. Different channels probe 1, 2 and H independently Production Drell-Yan: pp 0± 1,2 Vector Boson Fusion pp 0± 1,2 /H jj Decays Di-lepton: 0 1,2 l+ l

90 Towards no-lose for LHC Phenomenology controlled by g/ g and masses. Different channels probe 1, 2 and H independently Production Drell-Yan: pp 0± 1,2 Vector Boson Fusion pp 0± 1,2 /H jj Decays Di-lepton: 0 1,2 l+ l tb: ± 1,2 tb

91 Towards no-lose for LHC Phenomenology controlled by g/ g and masses. Different channels probe 1, 2 and H independently Production Drell-Yan: pp 0± 1,2 Vector Boson Fusion pp 0± 1,2 /H jj Decays Di-lepton: 0 1,2 l+ l tb: ± 1,2 tb Di-boson: ± 1,2 ZW ±

92 Towards no-lose for LHC Phenomenology controlled by g/ g and masses. Different channels probe 1, 2 and H independently Production Drell-Yan: pp 0± 1,2 Vector Boson Fusion pp 0± 1,2 /H jj Decays Di-lepton: 0 1,2 l+ l tb: ± 1,2 tb Di-boson: ± 1,2 ZW ± Higgs-Strahlung: 1,2 HZ ZWW

93 Towards no-lose for LHC Phenomenology controlled by g/ g and masses. Different channels probe 1, 2 and H independently Production Drell-Yan: pp 0± 1,2 Vector Boson Fusion pp 0± 1,2 /H jj Decays Di-lepton: 0 1,2 l+ l tb: ± 1,2 tb Di-boson: ± 1,2 ZW ± Higgs-Strahlung: 1,2 HZ ZWW Invisible Decays

94 Towards no-lose for LHC Phenomenology controlled by g/ g and masses. Different channels probe 1, 2 and H independently Production Drell-Yan: pp 0± 1,2 Vector Boson Fusion pp 0± 1,2 /H jj Decays Di-lepton: 0 1,2 l+ l tb: ± 1,2 tb Di-boson: ± 1,2 ZW ± Higgs-Strahlung: 1,2 HZ ZWW Invisible Decays Invisible composite Higgs: H TT, 1,2 TT + WWT 0 T 0

95 Implementation status (N)MWT, UMT and OMT models in: LanHEP (A.Semenov) Feynules (C.Duhr et al) CalcHEP (A.Pukhov) and CompHEP (E.BOOS et al) LHE output available for HEWIG/PYTHIA/SHEPA/...

96 Implementation status (N)MWT, UMT and OMT models in: LanHEP (A.Semenov) Feynules (C.Duhr et al) CalcHEP (A.Pukhov) and CompHEP (E.BOOS et al) LHE output available for HEWIG/PYTHIA/SHEPA/... Here I Focus on di-lepton and tb final states + (i)timps

97 Implementation status (N)MWT, UMT and OMT models in: LanHEP (A.Semenov) Feynules (C.Duhr et al) CalcHEP (A.Pukhov) and CompHEP (E.BOOS et al) LHE output available for HEWIG/PYTHIA/SHEPA/... Here I Focus on di-lepton and tb final states + (i)timps See M. Järvinen s talk for more complete study We use ThePEG/HEWIG++ (Lönnblad/Bahr et al) DELPHES for Fast Detector Simulation (Ovyn and ouby)

98 Vector mass spectrum Mass Spectrum (TeV) ± 2, ±,0 S=0.3 g = M A (TeV) Mass Spectrum (TeV) ± 2, ±,0 S=0.3 g = M A (TeV) Figure: 1,2 spectrum. (Belyaev, Foadi, M.T.F, Järvinen, Pukhov, Sannino 08)

99 Vector Production σ(pb) 10 2 σ(pb) ± ± ± 2 ± S=0.3 g = S=0.3 g = Mass (TeV) Mass (TeV) Figure: DY production of 1,2. (Belyaev, Foadi, M.T.F, Järvinen, Pukhov, Sannino 08)

100 Vector Bs B( ± 1) ff nl tb W ± Z B( ± 1) ff nl W ± H tb 10-3 W ± H 10-3 W ± Z S= S=0.3 g = Mass (TeV) g = Mass (TeV) Figure: B s of 1. (Belyaev, Foadi, M.T.F, Järvinen, Pukhov, Sannino 08)

101 l + l LHC using CalcHEP Number of events/ fb S=0.3 g = M ll (GeV) Figure: Dilepton invariant mass distribution M ll for pp 0 1,2 l+ l (Belyaev, Foadi, M.T.F, Järvinen, Pukhov, Sannino 08)

102 l + l LHC using HEWIG/DELPHES d σ d M 2µ pp µ + µ - (TC, ~ g=2.0) pp µ + µ - (SM) + pp tt µ µ - +X (SM) d σ d M 2µ M 2µ, GeV M 2µ, GeV Figure: Dilepton invariant mass distribution M µµ for pp 0 1,2 l+ l. M A = 1 TeV, g = 2, S = 0.3. Additional Cuts: M µµ > 500GeV and j = 1. (A. Belyaev, M.T.F and A.Sherstnev in preparation)

103 l + l LHC using HEWIG/DELPHES d σ d M 2µ 0.6 pp µ + µ - (TC, ~ g=3.5) 0.5 pp µ + µ - (SM) + pp tt µ µ - +X (SM) d σ d M 2µ M 2µ, GeV M 2µ, GeV Figure: Dilepton invariant mass distribution M µµ for pp 0 1,2 l+ l. M A = 1 TeV, g = 3.5, S = 0.3. Additional Cuts: M µµ > 500GeV and j = 1. (A. Belyaev, M.T.F and A.Sherstnev in preparation)

104 Parton leveltb LHC using CompHEP q b W + + 1,2 µ q t W + + 1,2 b ν σ tot, pb ~ g = 2.0, pp tb, LHC 14 TeV Standard Model TC (S = 0.00) TC (S = 0.25) TC (S = 0.50) TC (S = 0.75) TC (S = 1.00) σ tot, pb ~ g = 3.5, pp tb, LHC 14 TeV Standard Model TC (S = 0.00) TC (S = 0.25) TC (S = 0.50) TC (S = 0.75) TC (S = 1.00) M A M A Figure: tb cross-section

105 Fast Simulation of tb P T (µ) > 20 GeV and η(µ) < 2.4 P T (q) > 20 GeV for all quarks η(b) < 2.5 for both b-quarks (in the case of pp Wjj for both light quarks) P T (b 1 ) > 150 GeV, where b 1 is the higher-p T b-quark (q,q ) > 1.0 for any quarks q, q

106 Neural Network training tb var var var var var var var var var var var var var var var14 pp t+b pp tt Figure: 15 kinematical variables used as input into the neural network. (A. Belyaev, M.T.F and A.Sherstnev in preparation)

107 Neural Network output for tb d σ d ξ d 1 σ pp tb pp tt NN output ξ Figure: Output of the neural network for our signal and main background. top mass window 100 GeV < M inv (t) < 250 GeV 0.35 < ξ NN

108 esults for tb d N ev d M rec (tb) pp tb pp tt pp w+bb pp w+jj M(tb ), GeV rec d N ev d M(tb) M(tb), GeV Figure: econstructed (left plot) and partonic (right plot) invariant mass of top and b-quarks after final cuts. Distributions normalized to 30 fb 1.

109 (i)timp missing energy signals q Z, 1,2 H Z q T T l + l Number of events/5 100 fb WW 10 1 ZZ M H =160 M H =200 M H =300 M A =500,gt=5,S= Missing p T (GeV) Number of events/5 100 fb WW 10 1 ZZ M H =160 M H =300 M H =450 M A =750,gt=5,S= Missing p T (GeV) (Foadi, M.T.F and Sannino 08; Godbole, Guchait, Mazumdar, Moretti and oy 03).

110 Summary MWT models provide candidate dynamical models of EWSB.

111 Summary MWT models provide candidate dynamical models of EWSB. (i)timps of MWT models provide (light) viable dark matter.

112 Summary MWT models provide candidate dynamical models of EWSB. (i)timps of MWT models provide (light) viable dark matter. Compilation of MWT signals for LHC/LCs continues:

113 Summary MWT models provide candidate dynamical models of EWSB. (i)timps of MWT models provide (light) viable dark matter. Compilation of MWT signals for LHC/LCs continues: LHE event files available!

114 Summary MWT models provide candidate dynamical models of EWSB. (i)timps of MWT models provide (light) viable dark matter. Compilation of MWT signals for LHC/LCs continues: LHE event files available! Much to be done

115 Summary MWT models provide candidate dynamical models of EWSB. (i)timps of MWT models provide (light) viable dark matter. Compilation of MWT signals for LHC/LCs continues: LHE event files available! Much to be done Lattice input: g ΠΠ, M V, S, M A.

116 Summary MWT models provide candidate dynamical models of EWSB. (i)timps of MWT models provide (light) viable dark matter. Compilation of MWT signals for LHC/LCs continues: LHE event files available! Much to be done Lattice input: g ΠΠ, M V, S, M A. ETC completions

117 Summary MWT models provide candidate dynamical models of EWSB. (i)timps of MWT models provide (light) viable dark matter. Compilation of MWT signals for LHC/LCs continues: LHE event files available! Much to be done Lattice input: g ΠΠ, M V, S, M A. ETC completions Full Detector level analysis

118 Coldplay has made a choice!

Standard Model of Particle Physics

Standard Model of Particle Physics Standard Model of Particle Physics Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK SUSSP61, St Andrews August 8th 3rd 006 Contents 1. Spontaneous Symmetry

More information

Highlights of Recent CMS Results. Dmytro Kovalskyi (UCSB)

Highlights of Recent CMS Results. Dmytro Kovalskyi (UCSB) Highlights of Recent CMS Results Dmytro Kovalskyi (UCSB) Introduction Number of CMS publication is over 0 already It is very hard to review all the recent results in one talk This talk concentrates on

More information

Higgs and Electroweak Physics

Higgs and Electroweak Physics Higgs and Electroweak Physics [theory summary] Southampton University & Rutherford Appleton LAB WIN2015 June 12, 2015, MPIK Heidelberg 1 Present: impressive success of LHC RUN 1 on the Higgs&EW Physics

More information

Single-Top Production at the Tevatron and the LHC: Results and Prospects

Single-Top Production at the Tevatron and the LHC: Results and Prospects Single-Top Production at the Tevatron and the LHC: Results and Prospects Wolfgang Wagner Bergische Universität Wuppertal DESY Zeuthen, June 16, 2011 Content: 1) Introduction / History 2) Experimental Status

More information

Neil D. Christensen CV 1

Neil D. Christensen CV 1 Neil D. Christensen CV 1 Neil D. Christensen Department of Physics University of Wisconsin - Madison 5213 Chamberlin Hall Madison, WI 53706 Phone: (608) 890-1001 Fax: (608) 262-8628 Email: neil@hep.wisc.edu

More information

Scalar Mediated Fermion Masses for Technicolor

Scalar Mediated Fermion Masses for Technicolor HELSINKI INSTITUTE OF PHYSICS INTERNAL REPORT SERIES HIP-01-04 Scalar Mediated Fermion Masses for Technicolor Matti Antola Helsinki Institute of Physics and Division of Elementary Particle Physics Department

More information

How To Find The Higgs Boson

How To Find The Higgs Boson Dezső Horváth: Search for Higgs bosons Balaton Summer School, Balatongyörök, 07.07.2009 p. 1/25 Search for Higgs bosons Balaton Summer School, Balatongyörök, 07.07.2009 Dezső Horváth MTA KFKI Research

More information

A SUSY SO(10) GUT with 2 Intermediate Scales

A SUSY SO(10) GUT with 2 Intermediate Scales A SUSY SO(10) GUT with 2 Intermediate Scales Manuel Drees Bonn University & Bethe Center for Theoretical Physics SUSY SO(10) p. 1/25 Contents 1 Motivation: SO(10), intermediate scales SUSY SO(10) p. 2/25

More information

Top rediscovery at ATLAS and CMS

Top rediscovery at ATLAS and CMS Top rediscovery at ATLAS and CMS on behalf of ATLAS and CMS collaborations CNRS/IN2P3 & UJF/ENSPG, LPSC, Grenoble, France E-mail: julien.donini@lpsc.in2p3.fr We describe the plans and strategies of the

More information

How To Teach Physics At The Lhc

How To Teach Physics At The Lhc LHC discoveries and Particle Physics Concepts for Education Farid Ould- Saada, University of Oslo On behalf of IPPOG EPS- HEP, Vienna, 25.07.2015 A successful program LHC data are successfully deployed

More information

Middle East Technical University. Studying Selected Tools for HEP: CalcHEP

Middle East Technical University. Studying Selected Tools for HEP: CalcHEP Middle East Technical University Department of Physics Advanced Selected Problems in Physics Studying Selected Tools for HEP: CalcHEP Author: Jack Yakup Araz Supervisor: Assoc. Prof Ismail Turan December

More information

Bounding the Higgs width at the LHC

Bounding the Higgs width at the LHC Bounding the Higgs width at the LHC Higgs XSWG workshop, June 2014 John Campbell, Fermilab with K. Ellis, C. Williams 1107.5569, 1311.3589, 1312.1628 Reminder of the method This is the essence of the original

More information

arxiv:hep-ph/0310021v2 4 Oct 2003

arxiv:hep-ph/0310021v2 4 Oct 2003 Physics in Collision - Zeuthen, Germany, June 6-8, 003 arxiv:hep-ph/0300v 4 Oct 003 SEARCHES FOR NEW PARTICLES AT THE ENERGY FRONTIER AT THE TEVATRON Patrice VERDIER LAL, Université Paris-Sud, 9898 Orsay

More information

α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =

More information

Channels & Challenges New Physics at LHC

Channels & Challenges New Physics at LHC Channels & Challenges New Physics at LHC Jürgen Reuter Carleton University, Ottawa Southampton, 15. January 2007 The success of the Standard Model Standard Model describes microcosm gauge interactions:

More information

Gauge theories and the standard model of elementary particle physics

Gauge theories and the standard model of elementary particle physics Gauge theories and the standard model of elementary particle physics Mark Hamilton 21st July 2014 1 / 35 Table of contents 1 The standard model 2 3 2 / 35 The standard model The standard model is the most

More information

Lepton Flavour Violation @ LHC?

Lepton Flavour Violation @ LHC? m ν (charged) lepton flavour change happens, and the LHC exists...so look for Lepton Flavour Violation @ LHC? Sacha Davidson, P Gambino, G Grenier, S Lacroix, ML Mangano, S Perries, V Sordini, P Verdier

More information

Search for Dark Matter at the LHC

Search for Dark Matter at the LHC Search for Dark Matter at the LHC Steven Lowette Vrije Universiteit Brussel - IIHE 19 November 2014 3rd CosPa Meeting Université de Liège Content Introduction Generic DM searches at the LHC Explicit DM

More information

Spontaneous symmetry breaking in particle physics: a case of cross fertilization

Spontaneous symmetry breaking in particle physics: a case of cross fertilization Spontaneous symmetry breaking in particle physics: a case of cross fertilization Yoichiro Nambu lecture presented by Giovanni Jona-Lasinio Nobel Lecture December 8, 2008 1 / 25 History repeats itself 1960

More information

Perfect Fluids: From Nano to Tera

Perfect Fluids: From Nano to Tera Perfect Fluids: From Nano to Tera Thomas Schaefer North Carolina State University 1 2 Perfect Fluids sqgp (T=180 MeV) Neutron Matter (T=1 MeV) Trapped Atoms (T=0.1 nev) 3 Hydrodynamics Long-wavelength,

More information

Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15

Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15 Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15 Examples of The questions are roughly ordered by chapter but are often connected across the different chapters. Ordering is as in

More information

Single Top Production at the Tevatron

Single Top Production at the Tevatron Single Top Production at the Tevatron Daniel Wicke (Bergische Universität Wuppertal) Introduction Outline DØ Cross Section CDF Results DØ V tb Conclusions Revision : 1.7 DESY-Zeuthen, 21-Feb-2007 1 Introduction

More information

Selected Topics in Elementary Particle Physics ( Haupt-Seminar )

Selected Topics in Elementary Particle Physics ( Haupt-Seminar ) Selected Topics in Elementary Particle Physics ( Haupt-Seminar ) Paola Avella, Veronika Chobanova, Luigi Li Gioi, Christian Kiesling, Hans-Günther Moser, Martin Ritter, Pit Vanhoefer Time: Do, 12 ct -14

More information

Non-Supersymmetric Seiberg Duality in orientifold QCD and Non-Critical Strings

Non-Supersymmetric Seiberg Duality in orientifold QCD and Non-Critical Strings Non-Supersymmetric Seiberg Duality in orientifold QCD and Non-Critical Strings, IAP Large N@Swansea, July 2009 A. Armoni, D.I., G. Moraitis and V. Niarchos, arxiv:0801.0762 Introduction IR dynamics of

More information

Aspects of Electroweak Symmetry Breaking in Physics Beyond the Standard Model

Aspects of Electroweak Symmetry Breaking in Physics Beyond the Standard Model Aspects of Electroweak Symmetry Breaking in Physics Beyond the Standard Model Peter Athron Department of Physics and Astronomy University of Glasgow Presented as a thesis for the degree of Ph.D. in the

More information

Risultati recenti dell'esperimento CMS ad LHC e prospettive per il run a 14 TeV

Risultati recenti dell'esperimento CMS ad LHC e prospettive per il run a 14 TeV Risultati recenti dell'esperimento CMS ad LHC e prospettive per il run a 14 TeV Luca Lista INFN Napoli 1 78 reconstructed vertices CMS experiment CMS recorded 5fb-1 at 7 TeV and 20 fb-1 at 8 TeV 2 Electroweak

More information

Measurement of Neutralino Mass Differences with CMS in Dilepton Final States at the Benchmark Point LM9

Measurement of Neutralino Mass Differences with CMS in Dilepton Final States at the Benchmark Point LM9 Measurement of Neutralino Mass Differences with CMS in Dilepton Final States at the Benchmark Point LM9, Katja Klein, Lutz Feld, Niklas Mohr 1. Physikalisches Institut B RWTH Aachen Introduction Fast discovery

More information

Concepts in Theoretical Physics

Concepts in Theoretical Physics Concepts in Theoretical Physics Lecture 6: Particle Physics David Tong e 2 The Structure of Things 4πc 1 137 e d ν u Four fundamental particles Repeated twice! va, 9608085, 9902033 Four fundamental forces

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Elliptic Flow Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy Anisotropy

More information

Flavour Physics. Tim Gershon University of Warwick. 31 March 2014

Flavour Physics. Tim Gershon University of Warwick. 31 March 2014 Flavour Physics Tim Gershon University of Warwick 31 March 2014 Outline Lecture 1 what is flavour physics? some history, some concepts, some theory charged lepton physics What is flavour physics? Parameters

More information

Vector-like quarks t and partners

Vector-like quarks t and partners Vector-like quarks t and partners Luca Panizzi University of Southampton, UK Outline Motivations and Current Status 2 Couplings and constraints 3 Signatures at LHC Outline Motivations and Current Status

More information

Searching for Physics Beyond the Standard Model at GlueX

Searching for Physics Beyond the Standard Model at GlueX Searching for Physics Beyond the Standard Model at GlueX Justin Stevens & Mike Williams Department of Physics Massachusetts Institute of Technology GlueX Physics Meeting August 13 th, 2012 Mike Williams

More information

Why the high lying glueball does not mix with the neighbouring f 0. Abstract

Why the high lying glueball does not mix with the neighbouring f 0. Abstract Why the high lying glueball does not mix with the neighbouring f 0. L. Ya. Glozman Institute for Theoretical Physics, University of Graz, Universitätsplatz 5, A-800 Graz, Austria Abstract Chiral symmetry

More information

t th signal: theory status

t th signal: theory status t th signal: theory status M.V. Garzelli MTA - DE Particle Physics Research Group, Univ. Debrecen, Hungary e-mail: garzelli@to.infn.it LHC HXSWG Workshop CERN, June 12-13th, 2014 t th production at LHC

More information

Real Time Tracking with ATLAS Silicon Detectors and its Applications to Beauty Hadron Physics

Real Time Tracking with ATLAS Silicon Detectors and its Applications to Beauty Hadron Physics Real Time Tracking with ATLAS Silicon Detectors and its Applications to Beauty Hadron Physics Carlo Schiavi Dottorato in Fisica - XVII Ciclo Outline The ATLAS Experiment The SiTrack Algorithm Application

More information

From Jet Scaling to Jet Vetos

From Jet Scaling to Jet Vetos From Jet Scaling to Jet Vetos Heidelberg DESY, 2/202 LHC Higgs analyses Two problems for LHC Higgs analyses [talks Rauch, Englert] observe H b b decays [fat Higgs jets, Marcel s talk] 2 understand jet

More information

Physics Beyond the Standard Model

Physics Beyond the Standard Model 2014 BUSSTEPP LECTURES Physics Beyond the Standard Model Ben Gripaios Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom. November 11, 2014 E-mail: gripaios@hep.phy.cam.ac.uk Contents

More information

Measurement of the Mass of the Top Quark in the l+ Jets Channel Using the Matrix Element Method

Measurement of the Mass of the Top Quark in the l+ Jets Channel Using the Matrix Element Method Measurement of the Mass of the Top Quark in the l+ Jets Channel Using the Matrix Element Method Carlos Garcia University of Rochester For the DØ Collaboration APS Meeting 2007 Outline Introduction Top

More information

1 Introduction. 1 There may, of course, in principle, exist other universes, but they are not accessible to our

1 Introduction. 1 There may, of course, in principle, exist other universes, but they are not accessible to our 1 1 Introduction Cosmology is the study of the universe as a whole, its structure, its origin, and its evolution. Cosmology is soundly based on observations, mostly astronomical, and laws of physics. These

More information

events which can be used by experimental collaborations).

events which can be used by experimental collaborations). High Energy Physics Model Database HEPMDB. Towards decoding of the underlying theory at the LHC. Maksym Bondarenko 1, Alexander Belyaev 1,2, Lorenzo Basso 1,2,3, Edward Boos 4, Vyacheslav Bunichev 4, R.

More information

Vrije Universiteit Brussel. Faculteit Wetenschappen Departement Natuurkunde

Vrije Universiteit Brussel. Faculteit Wetenschappen Departement Natuurkunde Vrije Universiteit Brussel Faculteit Wetenschappen Departement Natuurkunde Measurement of the top quark pair production cross section at the LHC with the CMS experiment Michael Maes Promotor Prof. Dr.

More information

Top-Quark Studies at CMS

Top-Quark Studies at CMS Top-Quark Studies at CMS Tim Christiansen (CERN) on behalf of the CMS Collaboration ICHEP 2010, Paris 35th International Conference on High-Energy Physics tt 2 km 22 28 July 2010 Single-top 4 km New Physics

More information

0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3

0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3 Chapter 16 Constituent Quark Model Quarks are fundamental spin- 1 particles from which all hadrons are made up. Baryons consist of three quarks, whereas mesons consist of a quark and an anti-quark. There

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 2 Hydrodynamics Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables.

More information

FINDING SUPERSYMMETRY AT THE LHC

FINDING SUPERSYMMETRY AT THE LHC FINDING SUPERSYMMETRY AT THE LHC Tilman Plehn MPI München & University of Edinburgh TeV scale supersymmetry Signals at Tevatron and LHC Measurements at LHC SUSY parameters at LHC (and ILC) Tilman Plehn:

More information

Lattice Gauge Theory for Physics beyond the Standard Model

Lattice Gauge Theory for Physics beyond the Standard Model Lattice Gauge Theory for Physics beyond the Standard Model Lattice QCD Executive Committee R. Brower, (Boston U.) N. Christ (Columbia U.), M. Creutz (BNL), P. Mackenzie (Fermilab), J. Negele (MIT), C.

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Hydrodynamics Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables τ

More information

Measurement of the t -Channel Single Top-Quark Production Cross-Section with the ATLAS Detector at s = 7 TeV

Measurement of the t -Channel Single Top-Quark Production Cross-Section with the ATLAS Detector at s = 7 TeV FACHBEREICH MAHEMAIK UND NAURWISSENSCHAFEN FACHGRUPPE PHYSIK BERGISCHE UNIVERSIÄ WUPPERAL Measurement of the t -Channel Single op-quark Production Cross-Section with the ALAS Detector at s = 7 ev Dissertation

More information

Directed by: Prof. Yuanning Gao, IHEP, Tsinghua University Prof. Aurelio Bay, LPHE, EPFL

Directed by: Prof. Yuanning Gao, IHEP, Tsinghua University Prof. Aurelio Bay, LPHE, EPFL Masters Thesis in High Energy Physics Directed by: Prof. Yuanning Gao, IHEP, Tsinghua University Prof. Aurelio Bay, LPHE, EPFL 1 Study for CP-violation in the ψ π + π J/ψ transition Vincent Fave July 18,

More information

Throughout the twentieth century, physicists have been trying to unify. gravity with the Standard Model (SM). A vague statement about quantum

Throughout the twentieth century, physicists have been trying to unify. gravity with the Standard Model (SM). A vague statement about quantum Elko Fields Andrew Lopez Throughout the twentieth century, physicists have been trying to unify gravity with the Standard Model (SM). A vague statement about quantum gravity is that it induces non-locality.

More information

arxiv:hep-ph/9812492v1 24 Dec 1998

arxiv:hep-ph/9812492v1 24 Dec 1998 MPI-PhT/96-14(extended version) July 1996 A Note on QCD Corrections to A b FB using Thrust to arxiv:hep-ph/9812492v1 24 Dec 1998 determine the b-quark Direction Bodo Lampe Max Planck Institut für Physik

More information

Physics Department, Southampton University Highfield, Southampton, S09 5NH, U.K.

Physics Department, Southampton University Highfield, Southampton, S09 5NH, U.K. \ \ IFT Instituto de Física Teórica Universidade Estadual Paulista July/92 IFT-P.025/92 LEPTON MASSES IN AN SU(Z) L U(1) N GAUGE MODEL R. Foot a, O.F. Hernandez ", F. Pisano e, and V. Pleitez 0 Physics

More information

Physik des Higgs Bosons. Higgs decays V( ) Re( ) Im( ) Figures and calculations from A. Djouadi, Phys.Rept. 457 (2008) 1-216

Physik des Higgs Bosons. Higgs decays V( ) Re( ) Im( ) Figures and calculations from A. Djouadi, Phys.Rept. 457 (2008) 1-216 : Higgs decays V( ) Re( ) Im( ) Figures and calculations from A. Djouadi, Phys.Rept. 457 (2008) 1-216 1 Reminder 10.6.2014 Higgs couplings: 2 Reminder 10.6.2014 Higgs BF as a function of mh Higgs total

More information

Masses in Atomic Units

Masses in Atomic Units Nuclear Composition - the forces binding protons and neutrons in the nucleus are much stronger (binding energy of MeV) than the forces binding electrons to the atom (binding energy of ev) - the constituents

More information

Presenting limits of simplified dark matter models from collider searches in. 0 m DM planes and self-annihilation cross-sections.

Presenting limits of simplified dark matter models from collider searches in. 0 m DM planes and self-annihilation cross-sections. Internal working document not intended for broader distribution Presenting limits of simplified dark matter models from collider searches in SD/SI m DM planes and self-annihilation cross-sections. Oliver

More information

Basic Concepts in Nuclear Physics

Basic Concepts in Nuclear Physics Basic Concepts in Nuclear Physics Paolo Finelli Corso di Teoria delle Forze Nucleari 2011 Literature/Bibliography Some useful texts are available at the Library: Wong, Nuclear Physics Krane, Introductory

More information

A Study of the Top Quark Production Threshold at a Future Electron-Positron Linear Collider

A Study of the Top Quark Production Threshold at a Future Electron-Positron Linear Collider A Study of the Top Quark Production Threshold at a Future Electron-Positron Linear Collider Filimon Gournaris Department of Physics and Astronomy University College London A thesis submitted for the degree

More information

Test of the Schrödinger functional with chiral fermions in the Gross-Neveu model. B. Leder. Humboldt Universität zu Berlin

Test of the Schrödinger functional with chiral fermions in the Gross-Neveu model. B. Leder. Humboldt Universität zu Berlin Test of the Schrödinger functional with chiral fermions in the Gross-Neveu model B. Leder Humboldt Universität zu Berlin XXV International Symposium on Lattice Field Theory Regensburg, July 30, 2007 LPHA

More information

UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC

UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC Parte 1: Carlos A. Salgado Universidade de Santiago de Compostela csalgado@usc.es http://cern.ch/csalgado LHC physics program Fundamental

More information

Extensions of the Standard Model (part 2)

Extensions of the Standard Model (part 2) Extensions of the Standard Model (part 2) Prof. Jorgen D Hondt Vrije Universiteit Brussel Inter-university Institute for High Energies Content: The Higgs sector of the Standard Model and extensions Theoretical

More information

Gamma-rays from Dark Matter Mini-Spikes in Andromeda Galaxy M31. Mattia Fornasa Dipartimento di Fisica G. Galilei I.N.F.N. Padova

Gamma-rays from Dark Matter Mini-Spikes in Andromeda Galaxy M31. Mattia Fornasa Dipartimento di Fisica G. Galilei I.N.F.N. Padova Gamma-rays from Dark Matter Mini-Spikes in Andromeda Galaxy M31 Mattia Fornasa Dipartimento di Fisica G. Galilei I.N.F.N. Padova based on astro-ph/0703757 by M. Fornasa, M. Taoso and G.Bertone Journal

More information

Electromagnetic scattering of vector mesons in the Sakai-Sugimoto model.

Electromagnetic scattering of vector mesons in the Sakai-Sugimoto model. Electromagnetic scattering of vector mesons in the Sakai-Sugimoto model Carlos Alfonso Ballon Bayona, Durham University In collaboration with H. Boschi-Filho, N. R. F. Braga, M. Ihl and M. Torres. arxiv:0911.0023,

More information

Part II: Heavy Quark Expansion

Part II: Heavy Quark Expansion Part II: Heavy Quark Expansion Thomas Mannel CERN-PH-TH and Theoretische Physik I, Siegen University KITPC, June 24th, 2008 Contents 1 Introduction to HQE Set-up: OPE Spectra of Inclusive Decays 2 Theory

More information

Weak Interactions: towards the Standard Model of Physics

Weak Interactions: towards the Standard Model of Physics Weak Interactions: towards the Standard Model of Physics Weak interactions From β-decay to Neutral currents Weak interactions: are very different world CP-violation: power of logics and audacity Some experimental

More information

SUSY Breaking and Axino Cosmology

SUSY Breaking and Axino Cosmology SUSY Breaking and Axino Cosmology Masahiro Yamaguchi Tohoku University Nov. 10, 2010 ExDiP2010@KEK, Japan 1. Introduction Fine Tuning Problems of Particle Physics Smallness of electroweak scale Smallness

More information

STRING THEORY: Past, Present, and Future

STRING THEORY: Past, Present, and Future STRING THEORY: Past, Present, and Future John H. Schwarz Simons Center March 25, 2014 1 OUTLINE I) Early History and Basic Concepts II) String Theory for Unification III) Superstring Revolutions IV) Remaining

More information

Search for a heavy gauge boson W in the final state with electron and large ET. s = 7 TeV

Search for a heavy gauge boson W in the final state with electron and large ET. s = 7 TeV UNIVERSITÀ DEGLI STUDI MILANO BICOCCA Facoltà di Scienze MM. FF. NN. Scuola di Dottorato di Scienze Corso di Dottorato di Ricerca in Fisica ed Astronomia Search for a heavy gauge boson W in the final state

More information

Quark Model. Quark Model

Quark Model. Quark Model Quark odel Outline Hadrons Isosin Strangeness Quark odel Flavours u d s esons Pseudoscalar and vector mesons Baryons Deculet octet Hadron asses Sin-sin couling Heavy Quarks Charm bottom Heavy quark esons

More information

arxiv:hep-ph/9607427v1 25 Jul 1996

arxiv:hep-ph/9607427v1 25 Jul 1996 DFTT 44/96 IFT-96-16 MPI-PhT/96-63 hep-ph/967427 arxiv:hep-ph/967427v1 25 Jul 1996 New proton polarized structure functions in charged current processes at HERA M. Anselmino, P. Gambino, J. Kalinowski,1

More information

Axion/Saxion Cosmology Revisited

Axion/Saxion Cosmology Revisited Axion/Saxion Cosmology Revisited Masahiro Yamaguchi (Tohoku University) Based on Nakamura, Okumura, MY, PRD77 ( 08) and Work in Progress 1. Introduction Fine Tuning Problems of Particle Physics Smallness

More information

Open access to data and analysis tools from the CMS experiment at the LHC

Open access to data and analysis tools from the CMS experiment at the LHC Open access to data and analysis tools from the CMS experiment at the LHC Thomas McCauley (for the CMS Collaboration and QuarkNet) University of Notre Dame, USA thomas.mccauley@cern.ch! 5 Feb 2015 Outline

More information

ATLAS NOTE ATLAS-CONF-2010-063. July 21, 2010. Search for top pair candidate events in ATLAS at s = 7 TeV. The ATLAS Collaboration.

ATLAS NOTE ATLAS-CONF-2010-063. July 21, 2010. Search for top pair candidate events in ATLAS at s = 7 TeV. The ATLAS Collaboration. ATLAS NOTE ATLAS-CONF-2010-063 July 21, 2010 Search for top pair candidate events in ATLAS at s = 7 TeV The ATLAS Collaboration Abstract A search is performed for events consistent with top quark pair

More information

ABOUT THE POSSIBILITY TO MEASURE SOME STANDARD MODEL PARAMETERS AND SEARCH FOR NEW PHYSICS WITH LOW ENERGY NEUTRINOS *

ABOUT THE POSSIBILITY TO MEASURE SOME STANDARD MODEL PARAMETERS AND SEARCH FOR NEW PHYSICS WITH LOW ENERGY NEUTRINOS * Romanian Reports in Physics, Vol. 64, No. 1, P. 4 3, 01 ELEMENTARY PARTICLE PHYSICS ABOUT THE POSSIBILITY TO MEASURE SOME STANDARD MODEL PARAMETERS AND SEARCH FOR NEW PHYSICS WITH LOW ENERGY NEUTRINOS

More information

FCC 1309180800 JGU WBS_v0034.xlsm

FCC 1309180800 JGU WBS_v0034.xlsm 1 Accelerators 1.1 Hadron injectors 1.1.1 Overall design parameters 1.1.1.1 Performance and gap of existing injector chain 1.1.1.2 Performance and gap of existing injector chain 1.1.1.3 Baseline parameters

More information

Topologically Massive Gravity with a Cosmological Constant

Topologically Massive Gravity with a Cosmological Constant Topologically Massive Gravity with a Cosmological Constant Derek K. Wise Joint work with S. Carlip, S. Deser, A. Waldron Details and references at arxiv:0803.3998 [hep-th] (or for the short story, 0807.0486,

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

Phase Transitions in the Early Universe

Phase Transitions in the Early Universe Trick Phase Transitions in the Early Universe Electroweak and QCD Phase Transitions Master Program of Theoretical Physics Student Seminar in Cosmology Author: Doru STICLET Supervisors: Prof. Dr. Tomislav

More information

Fundamental Physics at Extreme High Energies

Fundamental Physics at Extreme High Energies Fundamental Physics at Extreme High Energies Michael Kachelrieß NTNU, Trondheim [] Outline: Introduction Testing (new?) strong interactions Lorentz invariance violation Topological defects & superheavy

More information

Investigation of a dark matter particle in the Higgs Portal model. Alicia Wongel 1314727

Investigation of a dark matter particle in the Higgs Portal model. Alicia Wongel 1314727 Investigation of a dark matter particle in the Higgs Portal model Alicia Wongel 1314727 Bachelor Thesis (BSc) Supervisor: Axel Maas Karl-Franzens-Universität Graz 2016 Abstract The Higgs-Portal Theory

More information

Introduction to Elementary Particle Physics. Note 01 Page 1 of 8. Natural Units

Introduction to Elementary Particle Physics. Note 01 Page 1 of 8. Natural Units Introduction to Elementary Particle Physics. Note 01 Page 1 of 8 Natural Units There are 4 primary SI units: three kinematical (meter, second, kilogram) and one electrical (Ampere 1 ) It is common in the

More information

Three-point Green Functions in the resonance region: LEC s

Three-point Green Functions in the resonance region: LEC s Three-point Green unctions in the resonance region: LE s Jorge Portolés Instituto de ísica orpuscular SI-UEG, alencia (Spain) Summary LE s in hiral Perturbation Theory : how do we get them? The role of

More information

Physics Department Phone: (541)357-9284 Center of High Energy Physics Fax: (541)346-5217

Physics Department Phone: (541)357-9284 Center of High Energy Physics Fax: (541)346-5217 Spencer Chang Curriculum Vitae Contact Information Research Positions Education Awards Teaching Physics Department Phone: (541)357-9284 Center of High Energy Physics Fax: (541)346-5217 University of Oregon

More information

The Higgs Boson. Linac08 Victoria BC, Canada CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS

The Higgs Boson. Linac08 Victoria BC, Canada CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

More information

arxiv:0909.4541v1 [hep-ph] 25 Sep 2009 James D. Wells

arxiv:0909.4541v1 [hep-ph] 25 Sep 2009 James D. Wells CERN-PH-TH-009-154 MCTP-09-48 Lectures on Higgs Boson Physics in the Standard Model and Beyond arxiv:0909.4541v1 [hep-ph] 5 Sep 009 James D. Wells CERN, Theoretical Physics, CH-111 Geneva 3, Switzerland,

More information

The Standard Model of Particle Physics - II

The Standard Model of Particle Physics - II The Standard Model of Particle Physics II Lecture 4 Gauge Theory and Symmetries Quantum Chromodynamics Neutrinos Eram Rizvi Royal Institution London 6 th March 2012 Outline A Century of Particle Scattering

More information

Tesi di Laurea Magistrale in Fisica. Search for an Invisible Decaying Higgs Boson

Tesi di Laurea Magistrale in Fisica. Search for an Invisible Decaying Higgs Boson Università degli Studi di Roma Tor Vergata Tesi di Laurea Magistrale in Fisica Search for an Invisible Decaying Higgs Boson in Dilepton Events with the CDF detector at the Fermilab Tevatron Collider Candidate

More information

arxiv:hep-ph/9310295v1 17 Oct 1993

arxiv:hep-ph/9310295v1 17 Oct 1993 HU-TFT-93-51 Signatures of left-right symmetry at high energies 1 arxiv:hep-ph/9310295v1 17 Oct 1993 J. Maalampi 2 Department of Theoretical Physics, University of Helsinki Helsinki, Finland Abstract We

More information

Validation of the MadAnalysis 5 implementation of ATLAS-SUSY-13-05

Validation of the MadAnalysis 5 implementation of ATLAS-SUSY-13-05 Validation of the MadAnalysis 5 implementation of ATLAS-SUSY-3-5 Guillaume Chalons (LPSC Grenoble) email: chalons@lpsc.in2p3.fr October 27, 24 Abstract In this note we summarise our validation of the ATLAS

More information

Mini-Split. Stanford University, Stanford, CA 94305 USA. and Institute for Advanced Study, Princeton, NJ 08540 USA

Mini-Split. Stanford University, Stanford, CA 94305 USA. and Institute for Advanced Study, Princeton, NJ 08540 USA Mini-Split arxiv:1210.0555v2 [hep-ph] 19 Oct 2012 Asimina Arvanitaki a, Nathaniel Craig b, Savas Dimopoulos a, and Giovanni Villadoro c a Stanford Institute for Theoretical Physics, Stanford University,

More information

THE TOP QUARK Updated September 2013 by T.M. Liss (Univ. Illinois), F. Maltoni (Univ. Catholique de Louvain), and A. Quadt (Univ. Göttingen).

THE TOP QUARK Updated September 2013 by T.M. Liss (Univ. Illinois), F. Maltoni (Univ. Catholique de Louvain), and A. Quadt (Univ. Göttingen). 1 THE TOP QUARK Updated September 2013 by T.M. Liss (Univ. Illinois), F. Maltoni (Univ. Catholique de Louvain), and A. Quadt (Univ. Göttingen). A. Introduction The top quark is the Q = 2/3, T 3 = +1/2

More information

arxiv:cond-mat/9301024v1 20 Jan 1993 ABSTRACT

arxiv:cond-mat/9301024v1 20 Jan 1993 ABSTRACT Anyons as Dirac Strings, the A x = 0 Gauge LPTB 93-1 John McCabe Laboratoire de Physique Théorique, 1 Université Bordeaux I 19 rue du Solarium, 33175 Gradignan FRANCE arxiv:cond-mat/930104v1 0 Jan 1993

More information

WIMP dark matter and the isotropic radio signal Roberto A. Lineros R. Instituto de Física Corpuscular - CSIC/U. Valencia @Roberto_Lineros Outline Introduction Cosmic ray propagation Synchrotron emission

More information

Basic Concepts in Nuclear Physics. Paolo Finelli

Basic Concepts in Nuclear Physics. Paolo Finelli Basic Concepts in Nuclear Physics Paolo Finelli Literature/Bibliography Some useful texts are available at the Library: Wong, Nuclear Physics Krane, Introductory Nuclear Physics Basdevant, Rich and Spiro,

More information

Mass spectrum prediction in non-minimal supersymmetric models

Mass spectrum prediction in non-minimal supersymmetric models Mass spectrum prediction in non-minimal supersymmetric models Dissertation zur Erlangung des wissenschaftlichen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt von Dipl.-Phys. Alexander Voigt

More information

Rare decays in quark flavour physics

Rare decays in quark flavour physics Available online at www.sciencedirect.com Nuclear and Particle Physics Proceedings 73 75 (6) 5 59 www.elsevier.com/locate/nppp Rare decays in quark flavour physics Johannes Albrecht On behalf of the collaboration

More information

D. Rainwater and D. Zeppenfeld. Department of Physics, University of Wisconsin, Madison, WI 53706. K. Hagiwara

D. Rainwater and D. Zeppenfeld. Department of Physics, University of Wisconsin, Madison, WI 53706. K. Hagiwara University of Wisconsin - Madison MADPH-98-1057 KEK-TH-589 August 1998 Searching for H ττ in weak boson fusion at the LHC D. Rainwater and D. Zeppenfeld Department of Physics, University of Wisconsin,

More information

Electroweak effects in Higgs boson production

Electroweak effects in Higgs boson production Electroweak effects in Higgs boson production Frank Petriello University of Wisconsin, Madison w/c. Anastasiou, R. Boughezal 0811.3458 w/ W. Y. Keung, WIP Outline Brief review of experiment, theory for

More information

Looking for Magnetic Monopoles AT The Large Hadron Collider. Vicente Vento Universidad de Valencia-IFIC

Looking for Magnetic Monopoles AT The Large Hadron Collider. Vicente Vento Universidad de Valencia-IFIC Looking for Magnetic Monopoles AT The Large Hadron Collider Vicente Vento Universidad de Valencia-IFIC Luis Epele Huner Fanchiotti Carlos García Canal Vasiliki Mitsou Introduction Monopoles Monopole Production

More information

Big Bang Nucleosynthesis

Big Bang Nucleosynthesis Big Bang Nucleosynthesis The emergence of elements in the universe Benjamin Topper Abstract. In this paper, I will first give a brief overview of what general relativity has to say about cosmology, getting

More information

ATLAS NOTE ATLAS-CONF-2013-108. November 28, 2013. Evidence for Higgs Boson Decays to theτ + τ Final State with the ATLAS Detector

ATLAS NOTE ATLAS-CONF-2013-108. November 28, 2013. Evidence for Higgs Boson Decays to theτ + τ Final State with the ATLAS Detector ATLAS NOTE ATLAS-CONF-1-8 November 8, 1 Evidence for Higgs Boson Decays to theτ + τ Final State with the ATLAS Detector The ATLAS Collaboration Abstract ATLAS-CONF-1-8 8 November 1 A search for the Higgs

More information