Test of the Schrödinger functional with chiral fermions in the Gross-Neveu model. B. Leder. Humboldt Universität zu Berlin

Size: px
Start display at page:

Download "Test of the Schrödinger functional with chiral fermions in the Gross-Neveu model. B. Leder. Humboldt Universität zu Berlin"

Transcription

1 Test of the Schrödinger functional with chiral fermions in the Gross-Neveu model B. Leder Humboldt Universität zu Berlin XXV International Symposium on Lattice Field Theory Regensburg, July 30, 2007 LPHA ACollaboration B. Leder (HU Berlin) Test of the SF with chiral fermions in the GN model Lattice / 10

2 The Schrödinger functional Z = DψDψ e S F, S F = T 0 d x 0 d d x ψ(x) {γ µ D µ + m} ψ(x) P + ψ = 0 ψp = 0 L d x 0 = 0 ψγ 0 γ 5 ψ x 0 = T P ψ = 0 ψp + = 0 ψ(x + L) = e iθ ψ, θ [0, 2π) SF b.c. need no tuning (SF universality class) P ± = 1 2 (1 ± γ 0) finite number of boundary counterterms needed finite size effects are reinterpreted as renormalisation effect: µ = 1/L used to determine scale dependence of the fundamental parameters of LPHA QCD (pioneered by ACollaboration) B. Leder (HU Berlin) Test of the SF with chiral fermions in the GN model Lattice / 10

3 The Schrödinger functional and chiral fermions P + ψ = 0 ψp = 0 L d x 0 = 0 ψγ 0 γ 5 ψ x 0 = T P ψ = 0 ψp + = 0 γ 5 D + D γ 5 = a Dγ 5 D But: SF b.c. break chiral symmetry B supported at the boundary with exponentially decaying tails Solution: [Lüscher, 2006] { D N = 1 ā (U + γ 5U γ 5 ) } A U=, ā= a A A+caP 1+s, A=1+s ad W Pψ(x)= 1 a {δx 0,aP ψ(x) x 0 =a+δx 0,T ap+ψ(x) x 0 =T a} B. Leder (HU Berlin) Test of the SF with chiral fermions in the GN model Lattice / 10

4 The Schrödinger functional and chiral fermions P + ψ = 0 ψp = 0 L d x 0 = 0 ψγ 0 γ 5 ψ x 0 = T P ψ = 0 ψp + = 0 γ 5 D + D γ 5 = a Dγ 5 D + B But: SF b.c. break chiral symmetry B supported at the boundary with exponentially decaying tails Solution: [Lüscher, 2006] { D N = 1 ā (U + γ 5U γ 5 ) } A U=, ā= a A A+caP 1+s, A=1+s ad W Pψ(x)= 1 a {δx 0,aP ψ(x) x 0 =a+δx 0,T ap+ψ(x) x 0 =T a} B. Leder (HU Berlin) Test of the SF with chiral fermions in the GN model Lattice / 10

5 Free fermions D N = 1 ā { (U + γ 5U γ 5 ) } A U=, ā= a A A+caP 1+s, A=1+s ad W A A + cap bounded by (1 s ) 2 for s < 1 and c 1 spatial part of D N can be diagonalised (periodic b.c.) remaining (d + 1)(T 1) (d + 1)(T 1) matrix must be computed numerically modification to GW relation γ 5 D N + D N γ 5 = a D N γ 5 D N + B 0 2 x0 y0 = 0 x0 y0 = T/4 x0 y0 = T/2 log 10 ( a B(x, y) ) distance from boundary at x0 = 0 B. Leder (HU Berlin) Test of the SF with chiral fermions in the GN model Lattice / 10

6 Chiral Gross-Neveu model S c CGN = dx 2 { ψ γ µ µ ψ 1 2 g2 (O SS O PP ) 1 2 g2 VO VV } [Thirring, 1958, Gross, Neveu, 1974] O SS = (ψψ) 2, O PP = (ψγ 5 ψ) 2, O VV = µ (ψγ µ ψ) 2 continuous chiral U(1) symmetry asymptotically free for N 2 (coupling g 2 ) Wilson fermions: S CGN,W = a 2 x { ψ (DW + m 0 ) ψ 1 2 g2 (O SS O PP ) 1 2 δ2 PO PP 1 2 g2 VO VV } Ginsparg-Wilson fermions: S CGN,GW = a 2 x { } ψ D N ψ 1 2 g2 (Ô SS Ô PP ) 1 2 g2 VÔVV ˆψ = (1 a 2 D N)ψ B. Leder (HU Berlin) Test of the SF with chiral fermions in the GN model Lattice / 10

7 Chiral Ward identity 1 Continuum: µ A µ (x) O(y) = 2m P(x) O(y), x y Wilson fermions (m R = 0): [Leder, 2005] (O) R µ (A µ ) R (x) = O(a) critical mass m c and symmetric coupling δ P,s to second order in PT Correlation functions: f A (x 0 ) = a2 2N and similar for pseudo scalar density f P (x 0 ) Axial Current Insertion { }} { ψ(x) γ 0 γ 5 ψ(x) (y 1 ) γ 5 (z 1 ) } {{ } y 1,z 1 PS Boundary State B. Leder (HU Berlin) Test of the SF with chiral fermions in the GN model Lattice / 10

8 Chiral Ward identity 2 Chiral fermoins: Compute in lattice PT r(x 0 ) = a 0 f A (x 0 ) 2f P (x 0 ) = r 0 (x 0 ) + r 1 (x 0 )g 2 + O(g 4 ) as measure of the deviation from continuum form r 0 vanishes identically, r 1 see below Wilson chiral 10 2 chiral r1(x0) r1(x0) x0/a x0/a B. Leder (HU Berlin) Test of the SF with chiral fermions in the GN model Lattice / 10

9 Renormalised coupling Correlation functions: f 4 = a4 2(N 2 1)L 2 u 1v 1y 1z 1 (u1 ) Γ Bλ a (v 1 ) (y 1 ) Γ B λ a (z 1 ) f 2 = a2 NL (u1 ) (z 1 ), (f 2 ) R = Z 2 f 2 and (f 4 ) R = Z 4 f 4 u 1z 1 Wilson: R(θ) = (f 4) R (f 2 ) 2 1 = f 4 R (f 2 ) 2 1 at m R = 0 b 0 = N/π g 2 a 0 = g 2 w + g 4 w b 0 ln(a/l) + c w g + O(g 6 ), δ2 V a 0 = δ 2 V,w + c w V c w g /N + O(g 6 ) Ginsparg-Wilson: b 0 = N/π g 2 a 0 = g 2 gw + g 4 gw b 0 ln(a/l) + c gw g + O(g 6 a 0 ), δ2 V = δv,gw 2 + c gw V cgw g /N + O(g 6 ) B. Leder (HU Berlin) Test of the SF with chiral fermions in the GN model Lattice / 10

10 A universal quantity Expansion: F RGI (θ, a/l) = g 2 (θ, a/l) g 2 (θ 0, a/l), θ 0 = 1 F RGI (θ, a/l) = F (1) 1 (θ, a/l) g 4 + F (1) 2 (θ, a/l) g 2 g 2 V + F (1) 3 (θ, a/l) g 4 V + O(g 6 ) Coefficients given by finite parts: F (1) i (θ, a/l) = c i (θ, a/l) c i (θ 0, a/l) Universal quantity: F (1) i,w (θ, a/l)! F (1) i,gw (θ, a/l) θ F (1) 1,w (6) (5) (3) (1) (1) F (1) 1,gw 5.078(2) 4.469(2) 3.638(2) 2.762(2) 1.966(2) B. Leder (HU Berlin) Test of the SF with chiral fermions in the GN model Lattice / 10

11 Summary Formulation of the SF for fermionic models of the Gross-Neveu type. In 1-loop lattice PT the theory is renormalisable with Wilson and Ginsparg-Wilson fermions. First check of the recently proposed chiral SF Dirac operator beyond the free theory. Chiral Ward identities take their continuum value up to exponentially decaying tails. Outlook: O(a) improvement non-perturbative tests of universality: staggered fermions, mixed actions QCD B. Leder (HU Berlin) Test of the SF with chiral fermions in the GN model Lattice / 10

α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =

More information

Standard Model of Particle Physics

Standard Model of Particle Physics Standard Model of Particle Physics Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK SUSSP61, St Andrews August 8th 3rd 006 Contents 1. Spontaneous Symmetry

More information

arxiv:hep-lat/9704002v1 6 Apr 1997

arxiv:hep-lat/9704002v1 6 Apr 1997 Quenched Hadron Spectrum and Decay Constants on the Lattice L. Giusti 1 Scuola Normale Superiore, P.zza dei Cavalieri 7 and INFN, Sezione di Pisa, 56100 Pisa, Italy. Abstract arxiv:hep-lat/9704002v1 6

More information

Spontaneous symmetry breaking in particle physics: a case of cross fertilization

Spontaneous symmetry breaking in particle physics: a case of cross fertilization Spontaneous symmetry breaking in particle physics: a case of cross fertilization Yoichiro Nambu lecture presented by Giovanni Jona-Lasinio Nobel Lecture December 8, 2008 1 / 25 History repeats itself 1960

More information

Gauge theories and the standard model of elementary particle physics

Gauge theories and the standard model of elementary particle physics Gauge theories and the standard model of elementary particle physics Mark Hamilton 21st July 2014 1 / 35 Table of contents 1 The standard model 2 3 2 / 35 The standard model The standard model is the most

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,

More information

Introduction to Schrödinger Equation: Harmonic Potential

Introduction to Schrödinger Equation: Harmonic Potential Introduction to Schrödinger Equation: Harmonic Potential Chia-Chun Chou May 2, 2006 Introduction to Schrödinger Equation: Harmonic Potential Time-Dependent Schrödinger Equation For a nonrelativistic particle

More information

Monte Carlo Simulation

Monte Carlo Simulation 1 Monte Carlo Simulation Stefan Weber Leibniz Universität Hannover email: sweber@stochastik.uni-hannover.de web: www.stochastik.uni-hannover.de/ sweber Monte Carlo Simulation 2 Quantifying and Hedging

More information

Inference on Phase-type Models via MCMC

Inference on Phase-type Models via MCMC Inference on Phase-type Models via MCMC with application to networks of repairable redundant systems Louis JM Aslett and Simon P Wilson Trinity College Dublin 28 th June 202 Toy Example : Redundant Repairable

More information

The Kelly criterion for spread bets

The Kelly criterion for spread bets IMA Journal of Applied Mathematics 2007 72,43 51 doi:10.1093/imamat/hxl027 Advance Access publication on December 5, 2006 The Kelly criterion for spread bets S. J. CHAPMAN Oxford Centre for Industrial

More information

5. Continuous Random Variables

5. Continuous Random Variables 5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

More information

1 Variational calculation of a 1D bound state

1 Variational calculation of a 1D bound state TEORETISK FYSIK, KTH TENTAMEN I KVANTMEKANIK FÖRDJUPNINGSKURS EXAMINATION IN ADVANCED QUANTUM MECHAN- ICS Kvantmekanik fördjupningskurs SI38 för F4 Thursday December, 7, 8. 13. Write on each page: Name,

More information

Efficiency and the Cramér-Rao Inequality

Efficiency and the Cramér-Rao Inequality Chapter Efficiency and the Cramér-Rao Inequality Clearly we would like an unbiased estimator ˆφ (X of φ (θ to produce, in the long run, estimates which are fairly concentrated i.e. have high precision.

More information

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2014 Timo Koski () Mathematisk statistik 24.09.2014 1 / 75 Learning outcomes Random vectors, mean vector, covariance

More information

Non-Supersymmetric Seiberg Duality in orientifold QCD and Non-Critical Strings

Non-Supersymmetric Seiberg Duality in orientifold QCD and Non-Critical Strings Non-Supersymmetric Seiberg Duality in orientifold QCD and Non-Critical Strings, IAP Large N@Swansea, July 2009 A. Armoni, D.I., G. Moraitis and V. Niarchos, arxiv:0801.0762 Introduction IR dynamics of

More information

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015. Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

More information

Probability Calculator

Probability Calculator Chapter 95 Introduction Most statisticians have a set of probability tables that they refer to in doing their statistical wor. This procedure provides you with a set of electronic statistical tables that

More information

Electromagnetic scattering of vector mesons in the Sakai-Sugimoto model.

Electromagnetic scattering of vector mesons in the Sakai-Sugimoto model. Electromagnetic scattering of vector mesons in the Sakai-Sugimoto model Carlos Alfonso Ballon Bayona, Durham University In collaboration with H. Boschi-Filho, N. R. F. Braga, M. Ihl and M. Torres. arxiv:0911.0023,

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations An Introduction to Partial Differential Equations Andrew J. Bernoff LECTURE 2 Cooling of a Hot Bar: The Diffusion Equation 2.1. Outline of Lecture An Introduction to Heat Flow Derivation of the Diffusion

More information

9231 FURTHER MATHEMATICS

9231 FURTHER MATHEMATICS CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level MARK SCHEME for the October/November 2012 series 9231 FURTHER MATHEMATICS 9231/21 Paper 2, maximum raw mark 100

More information

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider two-point

More information

arxiv:1201.6059v2 [physics.class-ph] 27 Aug 2012

arxiv:1201.6059v2 [physics.class-ph] 27 Aug 2012 Green s functions for Neumann boundary conditions Jerrold Franklin Department of Physics, Temple University, Philadelphia, PA 19122-682 arxiv:121.659v2 [physics.class-ph] 27 Aug 212 (Dated: August 28,

More information

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial

More information

FLAP P11.2 The quantum harmonic oscillator

FLAP P11.2 The quantum harmonic oscillator F L E X I B L E L E A R N I N G A P P R O A C H T O P H Y S I C S Module P. Opening items. Module introduction. Fast track questions.3 Ready to study? The harmonic oscillator. Classical description of

More information

Analytical And Numerical Study Of Kramers Exit Problem II

Analytical And Numerical Study Of Kramers Exit Problem II Applied Mathematics E-Notes, 3(003), 147-155 c ISSN 1607-510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Analytical And Numerical Study Of Kramers Exit Problem II Alexander Spivak,

More information

x o R n a π(a, x o ) A R n π(a, x o ) π(a, x o ) A R n a a x o x o x n X R n δ(x n, x o ) d(a, x n ) d(, ) δ(, ) R n x n X d(a, x n ) δ(x n, x o ) a = a A π(a, xo ) a a A = X = R π(a, x o ) = (x o + ρ)

More information

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical

More information

Perfect Fluids: From Nano to Tera

Perfect Fluids: From Nano to Tera Perfect Fluids: From Nano to Tera Thomas Schaefer North Carolina State University 1 2 Perfect Fluids sqgp (T=180 MeV) Neutron Matter (T=1 MeV) Trapped Atoms (T=0.1 nev) 3 Hydrodynamics Long-wavelength,

More information

The Quantum Theory of the Emission and Absorption of Radiation.

The Quantum Theory of the Emission and Absorption of Radiation. P.A.M. Dirac, Proc. Roy. Soc., A114, 243 1927 The Quantum Theory of the Emission and Absorption of Radiation. P. A. M. Dirac, St. John s College, Cambridge, and Institute for Theoretical Physics, Copenhagen.

More information

Fundamental parameters from future lattice calculations

Fundamental parameters from future lattice calculations Fundamental parameters from future lattice calculations Lattice QCD Executive Committee R. Brower, (Boston U.) N. Christ (Columbia U.), M. Creutz (BNL), P. Mackenzie (Fermilab), J. Negele (MIT), C. Rebbi

More information

Quantum mechanics in one dimension

Quantum mechanics in one dimension Chapter 2 Quantum mechanics in one dimension Following the rules of quantum mechanics, we have seen that the state of a quantum particle, subject to a scalar potential V (r), is described by the time-dependent

More information

Basic Concepts in Nuclear Physics

Basic Concepts in Nuclear Physics Basic Concepts in Nuclear Physics Paolo Finelli Corso di Teoria delle Forze Nucleari 2011 Literature/Bibliography Some useful texts are available at the Library: Wong, Nuclear Physics Krane, Introductory

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Hydrodynamics Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables τ

More information

Optimal order placement in a limit order book. Adrien de Larrard and Xin Guo. Laboratoire de Probabilités, Univ Paris VI & UC Berkeley

Optimal order placement in a limit order book. Adrien de Larrard and Xin Guo. Laboratoire de Probabilités, Univ Paris VI & UC Berkeley Optimal order placement in a limit order book Laboratoire de Probabilités, Univ Paris VI & UC Berkeley Outline 1 Background: Algorithm trading in different time scales 2 Some note on optimal execution

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Elliptic Flow Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy Anisotropy

More information

Mathematics Notes for Class 12 chapter 10. Vector Algebra

Mathematics Notes for Class 12 chapter 10. Vector Algebra 1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative

More information

Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page

Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Errata for ASM Exam C/4 Study Manual (Sixteenth Edition) Sorted by Page 1 Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Practice exam 1:9, 1:22, 1:29, 9:5, and 10:8

More information

2m dx 2 = Eψ(x) (1) Total derivatives can be used since there is but one independent variable. The equation simplifies to. ψ (x) + k 2 ψ(x) = 0 (2)

2m dx 2 = Eψ(x) (1) Total derivatives can be used since there is but one independent variable. The equation simplifies to. ψ (x) + k 2 ψ(x) = 0 (2) CHAPTER 3 QUANTUM MECHANICS OF SOME SIMPLE SYSTEMS The Free Particle The simplest system in quantum mechanics has the potential energy V equal to zero everywhere. This is called a free particle since it

More information

Roughness effect on the Neumann boundary condition

Roughness effect on the Neumann boundary condition Roughness effect on the Neumann boundary condition Laurent Chupin 1 Abstract We study the effect of a periodic roughness on a Neumann boundary condition. We show that, as in the case of a Dirichlet boundary

More information

Generating functions in probability and combinatorics

Generating functions in probability and combinatorics Lecture 2 Generating functions in probability and combinatorics For this chapter, a more complete discussion may be found in Chapters 2 and 3 of my lecture notes on Analytic Combinatorics in Several Variables.

More information

Renormalized CFT/ Effective AdS. JiJi Fan Princeton University Work in progress

Renormalized CFT/ Effective AdS. JiJi Fan Princeton University Work in progress Renormalized CFT/ Effective AdS JiJi Fan Princeton University Work in progress Outline Motivation and goal Prescription Examples Conclusion and open questions AdS/CFT correspondence: Maldacena conjecture

More information

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators... MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................

More information

Some stability results of parameter identification in a jump diffusion model

Some stability results of parameter identification in a jump diffusion model Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss

More information

arxiv:hep-lat/0408024v1 16 Aug 2004

arxiv:hep-lat/0408024v1 16 Aug 2004 BU-HEPP-04-02 Electric Polarizability of Neutral Hadrons from Lattice QCD Joe Christensen Physics Department, McMurry University, Abilene, TX, 79697 Walter Wilcox Department of Physics, Baylor University,

More information

INSURANCE RISK THEORY (Problems)

INSURANCE RISK THEORY (Problems) INSURANCE RISK THEORY (Problems) 1 Counting random variables 1. (Lack of memory property) Let X be a geometric distributed random variable with parameter p (, 1), (X Ge (p)). Show that for all n, m =,

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,

More information

Localization of scalar fields on Branes with an Asymmetric geometries in the bulk

Localization of scalar fields on Branes with an Asymmetric geometries in the bulk Localization of scalar fields on Branes with an Asymmetric geometries in the bulk Vladimir A. Andrianov in collaboration with Alexandr A. Andrianov V.A.Fock Department of Theoretical Physics Sankt-Petersburg

More information

arxiv:hep-ph/9902288v1 9 Feb 1999

arxiv:hep-ph/9902288v1 9 Feb 1999 A Quantum Field Theory Warm Inflation Model VAND-TH-98-01 Arjun Berera Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA arxiv:hep-ph/9902288v1 9 Feb 1999 Abstract A

More information

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Recall areal data also known as lattice data are data Y (s), s D where D is a discrete index set. This usually corresponds to data

More information

0.1 Phase Estimation Technique

0.1 Phase Estimation Technique Phase Estimation In this lecture we will describe Kitaev s phase estimation algorithm, and use it to obtain an alternate derivation of a quantum factoring algorithm We will also use this technique to design

More information

Stokes flow. Chapter 7

Stokes flow. Chapter 7 Chapter 7 Stokes flow We have seen in section 6.3 that the dimensionless form of the Navier-Stokes equations for a Newtonian viscous fluid of constant density and constant viscosity is, now dropping the

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

Propagation of Errors Basic Rules

Propagation of Errors Basic Rules Propagation of Errors Basic Rules See Chapter 3 in Taylor, An Introduction to Error Analysis. 1. If x and y have independent random errors δx and δy, then the error in z = x + y is δz = δx 2 + δy 2. 2.

More information

Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain)

Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain) Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain) The Fourier Sine Transform pair are F. T. : U = 2/ u x sin x dx, denoted as U

More information

UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC

UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC Parte 1: Carlos A. Salgado Universidade de Santiago de Compostela csalgado@usc.es http://cern.ch/csalgado LHC physics program Fundamental

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 2 Hydrodynamics Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables.

More information

Mutual Inductance and Transformers F3 3. r L = ω o

Mutual Inductance and Transformers F3 3. r L = ω o utual Inductance and Transformers F3 1 utual Inductance & Transformers If a current, i 1, flows in a coil or circuit then it produces a magnetic field. Some of the magnetic flux may link a second coil

More information

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i ) Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

Supplement to Call Centers with Delay Information: Models and Insights

Supplement to Call Centers with Delay Information: Models and Insights Supplement to Call Centers with Delay Information: Models and Insights Oualid Jouini 1 Zeynep Akşin 2 Yves Dallery 1 1 Laboratoire Genie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92290

More information

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics).

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics). Fermi liquids The electric properties of most metals can be well understood from treating the electrons as non-interacting. This free electron model describes the electrons in the outermost shell of the

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

More information

arxiv:cond-mat/9301024v1 20 Jan 1993 ABSTRACT

arxiv:cond-mat/9301024v1 20 Jan 1993 ABSTRACT Anyons as Dirac Strings, the A x = 0 Gauge LPTB 93-1 John McCabe Laboratoire de Physique Théorique, 1 Université Bordeaux I 19 rue du Solarium, 33175 Gradignan FRANCE arxiv:cond-mat/930104v1 0 Jan 1993

More information

Three-point Green Functions in the resonance region: LEC s

Three-point Green Functions in the resonance region: LEC s Three-point Green unctions in the resonance region: LE s Jorge Portolés Instituto de ísica orpuscular SI-UEG, alencia (Spain) Summary LE s in hiral Perturbation Theory : how do we get them? The role of

More information

Erdős on polynomials

Erdős on polynomials Erdős on polynomials Vilmos Totik University of Szeged and University of South Florida totik@mail.usf.edu Vilmos Totik (SZTE and USF) Polynomials 1 / * Erdős on polynomials Vilmos Totik (SZTE and USF)

More information

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

More information

Basic Concepts in Nuclear Physics. Paolo Finelli

Basic Concepts in Nuclear Physics. Paolo Finelli Basic Concepts in Nuclear Physics Paolo Finelli Literature/Bibliography Some useful texts are available at the Library: Wong, Nuclear Physics Krane, Introductory Nuclear Physics Basdevant, Rich and Spiro,

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

Power-law Price-impact Models and Stock Pinning near Option Expiration Dates. Marco Avellaneda Gennady Kasyan Michael D. Lipkin

Power-law Price-impact Models and Stock Pinning near Option Expiration Dates. Marco Avellaneda Gennady Kasyan Michael D. Lipkin Power-law Price-impact Models and Stock Pinning near Option Expiration Dates Marco Avellaneda Gennady Kasyan Michael D. Lipkin PDE in Finance, Stockholm, August 7 Summary Empirical evidence of stock pinning

More information

Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin

Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin Final Mathematics 51, Section 1, Fall 24 Instructor: D.A. Levin Name YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. A CORRECT ANSWER WITHOUT SHOWING YOUR REASONING WILL NOT RECEIVE CREDIT. Problem Points Possible

More information

U = x 1 2. 1 x 1 4. 2 x 1 4. What are the equilibrium relative prices of the three goods? traders has members who are best off?

U = x 1 2. 1 x 1 4. 2 x 1 4. What are the equilibrium relative prices of the three goods? traders has members who are best off? Chapter 7 General Equilibrium Exercise 7. Suppose there are 00 traders in a market all of whom behave as price takers. Suppose there are three goods and the traders own initially the following quantities:

More information

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all

More information

The Notebook Series. The solution of cubic and quartic equations. R.S. Johnson. Professor of Applied Mathematics

The Notebook Series. The solution of cubic and quartic equations. R.S. Johnson. Professor of Applied Mathematics The Notebook Series The solution of cubic and quartic equations by R.S. Johnson Professor of Applied Mathematics School of Mathematics & Statistics University of Newcastle upon Tyne R.S.Johnson 006 CONTENTS

More information

THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties:

THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties: THE DYING FIBONACCI TREE BERNHARD GITTENBERGER 1. Introduction Consider a tree with two types of nodes, say A and B, and the following properties: 1. Let the root be of type A.. Each node of type A produces

More information

3. Diffusion of an Instantaneous Point Source

3. Diffusion of an Instantaneous Point Source 3. Diffusion of an Instantaneous Point Source The equation of conservation of mass is also known as the transport equation, because it describes the transport of scalar species in a fluid systems. In this

More information

Lecture 17: Conformal Invariance

Lecture 17: Conformal Invariance Lecture 17: Conformal Invariance Scribe: Yee Lok Wong Department of Mathematics, MIT November 7, 006 1 Eventual Hitting Probability In previous lectures, we studied the following PDE for ρ(x, t x 0 ) that

More information

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL Exit Time problems and Escape from a Potential Well Escape From a Potential Well There are many systems in physics, chemistry and biology that exist

More information

is in plane V. However, it may be more convenient to introduce a plane coordinate system in V.

is in plane V. However, it may be more convenient to introduce a plane coordinate system in V. .4 COORDINATES EXAMPLE Let V be the plane in R with equation x +2x 2 +x 0, a two-dimensional subspace of R. We can describe a vector in this plane by its spatial (D)coordinates; for example, vector x 5

More information

4 Sums of Random Variables

4 Sums of Random Variables Sums of a Random Variables 47 4 Sums of Random Variables Many of the variables dealt with in physics can be expressed as a sum of other variables; often the components of the sum are statistically independent.

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by author at Imperial College, University of London, between 1981 and 1990. It is available free to all individuals,

More information

3. Open Strings and D-Branes

3. Open Strings and D-Branes 3. Open Strings and D-Branes In this section we discuss the dynamics of open strings. Clearly their distinguishing feature is the existence of two end points. Our goal is to understand the effect of these

More information

POLYNOMIAL HISTOPOLATION, SUPERCONVERGENT DEGREES OF FREEDOM, AND PSEUDOSPECTRAL DISCRETE HODGE OPERATORS

POLYNOMIAL HISTOPOLATION, SUPERCONVERGENT DEGREES OF FREEDOM, AND PSEUDOSPECTRAL DISCRETE HODGE OPERATORS POLYNOMIAL HISTOPOLATION, SUPERCONVERGENT DEGREES OF FREEDOM, AND PSEUDOSPECTRAL DISCRETE HODGE OPERATORS N. ROBIDOUX Abstract. We show that, given a histogram with n bins possibly non-contiguous or consisting

More information

Review of Statistical Mechanics

Review of Statistical Mechanics Review of Statistical Mechanics 3. Microcanonical, Canonical, Grand Canonical Ensembles In statistical mechanics, we deal with a situation in which even the quantum state of the system is unknown. The

More information

Merton College Maths for Physics Prelims October 10, 2005 MT I. Calculus. { y(x + δx) y(x)

Merton College Maths for Physics Prelims October 10, 2005 MT I. Calculus. { y(x + δx) y(x) Merton College Maths for Physics Prelims October 10, 2005 1. From the definition of the derivative, dy = lim δx 0 MT I Calculus { y(x + δx) y(x) evaluate d(x 2 )/. In the same way evaluate d(sin x)/. 2.

More information

Quantum Oscillations Can Prevent the Big Bang Singularity in an. An Einstein-Dirac cosmology. Felix Finster, Regensburg

Quantum Oscillations Can Prevent the Big Bang Singularity in an. An Einstein-Dirac cosmology. Felix Finster, Regensburg Quantum Oscillations Can Prevent the Big Bang Singularity in an Einstein-Dirac Cosmology FZM Fakultät für Mathematik Universität Regensburg Johannes-Kepler-Forschungszentrum für Mathematik, Regensburg

More information

Charm physics with Moebius Domain Wall Fermions

Charm physics with Moebius Domain Wall Fermions Andreas Jüttner, Francesco Sanfilippo, School of Physics and Astronomy, University of Southampton SO17 1BJ Southampton, United Kingdom E-mail: j.t.tsang@soton.ac.uk Peter Boyle, School of Physics and Astronomy,

More information

Reaction diffusion systems and pattern formation

Reaction diffusion systems and pattern formation Chapter 5 Reaction diffusion systems and pattern formation 5.1 Reaction diffusion systems from biology In ecological problems, different species interact with each other, and in chemical reactions, different

More information

arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014

arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic

More information

Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15

Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15 Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15 Examples of The questions are roughly ordered by chapter but are often connected across the different chapters. Ordering is as in

More information

Operator methods in quantum mechanics

Operator methods in quantum mechanics Chapter 3 Operator methods in quantum mechanics While the wave mechanical formulation has proved successful in describing the quantum mechanics of bound and unbound particles, some properties can not be

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Vortices On Rail Road Track : A Possible Realization of Random Matrix Ensemble

Vortices On Rail Road Track : A Possible Realization of Random Matrix Ensemble arxiv:cond-mat/9405067v1 24 May 1994 Vortices On Rail Road Track : A Possible Realization of Random Matrix Ensemble Yang Chen and Henrik Jeldtoft Jensen Department of Mathematics Imperial College 180 Queen

More information

Part II: Heavy Quark Expansion

Part II: Heavy Quark Expansion Part II: Heavy Quark Expansion Thomas Mannel CERN-PH-TH and Theoretische Physik I, Siegen University KITPC, June 24th, 2008 Contents 1 Introduction to HQE Set-up: OPE Spectra of Inclusive Decays 2 Theory

More information

Why the high lying glueball does not mix with the neighbouring f 0. Abstract

Why the high lying glueball does not mix with the neighbouring f 0. Abstract Why the high lying glueball does not mix with the neighbouring f 0. L. Ya. Glozman Institute for Theoretical Physics, University of Graz, Universitätsplatz 5, A-800 Graz, Austria Abstract Chiral symmetry

More information

1 The basic equations of fluid dynamics

1 The basic equations of fluid dynamics 1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which

More information

Lecture 10. Finite difference and finite element methods. Option pricing Sensitivity analysis Numerical examples

Lecture 10. Finite difference and finite element methods. Option pricing Sensitivity analysis Numerical examples Finite difference and finite element methods Lecture 10 Sensitivities and Greeks Key task in financial engineering: fast and accurate calculation of sensitivities of market models with respect to model

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information