Data stream approaches for electric load curve analysis. Georges Hébrail, Marie-Luce Picard BILab : bilab.enst.fr ISF 2008, June 24th, Nice

Size: px
Start display at page:

Download "Data stream approaches for electric load curve analysis. Georges Hébrail, Marie-Luce Picard BILab : bilab.enst.fr ISF 2008, June 24th, Nice"

Transcription

1 Data stream approaches for electric load curve analysis 1 Georges Hébrail, Marie-Luce Picard BILab : bilab.enst.fr ISF 2008, June 24th, Nice

2 Outline Deployment of a smart metering infrastructure What is a Data Stream? Data Stream Processing Approaches : Data Stream Management Systems Data Stream Mining Conclusion References 2

3 Outline Deployment of a smart metering infrastructure What is a Data Stream? Data Stream Processing Approaches : Data Stream Management Systems Data Stream Mining Conclusion References 3

4 Deployment of a smart metering infrastructure Respecting the orientations given by the Commission de Régulation de l Energie smart metering is expected to be generalized in France (34 millions of meters until 2016) so that in the future all customers could possibly be observed precisely June 06 th, 2007 Thus these millions of automated electronic meters will be installed and connected directly to servers that will manage grid supervision, billing and customer services. Standard characteristics over the whole French territory 3 main objectives : 4 Customer point of view : better information (load curve ½ hour ) Market point of view : new offers, much data available (energy, quality, ) daily Distributor point of view : enhancing grid supervision, and reducing costs. ERDF pilot project ( ) : deployment planned until 2010

5 Automatic Meter Reading Reading (AMR) and Automatic Meter Management (AMM) deployments Vattenfall: meters before the end of 2008 (AMR then AMM) Fortum: objective of meters Ontario: 4.5 million, AMR, before 2010 E.ON: project in investigation, for 4,9 million meters EDP : pilot Fortum : deployment finalised in 2009 Vattenfall: AMR meters at the end of 2007 NESA : AMR meters installed Oxxio : agreement for the deployment of 1 million AMM Nuon: project of 2,7 million meters in 2010 SCE: 4,7 millions meters in 2012 PGE : 5,1 millions meters in 2011 SPAIN Royal decree for massive roll out of smart meters starting in 2010 ENEL : 27 millions AMM meters installed ACEA : 1,5 AMM meters deployed 5 mostly supported by the regulated distribution business in Europe

6 Impact Today lots of studies rely on panels and load-profiling Load-forecasting Macroscopic studies related to grid A management solution : or use customer datastreams knowledge approaches 6 Microscopic studies related to customer studies (offers, ) Profiling for different applications real data, real-time, on the fly computation Smart metering impact Highly reactive data acquisition build summaries Real data (<> profiling) (aggregated curves) Individual or local information add some dynamics on High temporal granularity panel constitution New possibilities : alarms (for example SCADA) allow adaptative clustering (aggregation/disintegration) Traditional approach Build a Data WareHouse : unscalable! Specific code development : expensive, not flexible

7 Outline Deployment of a smart metering infrastructure What is a Data Stream? Data Stream Processing Approaches : Data Stream Management Systems Data Stream Mining Conclusion References 7

8 What is a data stream? Golab & Oszu (2003) : «A data stream is a real-time, continuous, ordered (implicitly by arrival time or explicitly by timestamp) sequence of items. It is impossible to control the order in which items arrive, nor is it feasible to locally store a stream in its entirety». Structured records (not audio or video data) Massive volumes of data ; records arrive at high rate Data push paradigm Infinite sequence of items : One item : structured information (tuple) Same structure for all items in a stream Windowing 8

9 Windowing (1) Queries can be applied either to the whole stream (from beginning to current time), either to a portion of the stream (called a window) Windowing politics : Definition of windows of interest on streams Fixed windows : June 2008 Sliding windows : last 2 days Landmark windows : from June 1 st, 2008 Window specification Refreshing rate Physical time : last 2 days, last 3 hours, last ½ hour Logical time : last 300 tuples Rate of producing results (every item, every 10 items, every 5 minutes) 9

10 Windowing (2) Examples of queries : Give me the number of calls every ½ hour, updated every 5 minutes Give me the total electrical consumption of Nice every 24 hours, updated every day Give me the max and the min price of the EDF SA stock last 24 hours, updated every week. 10

11 Outline Deployment of a smart metering infrastructure What is a Data Stream? Data Stream Processing Approaches : Data Stream Management Systems Data Stream Mining Conclusion References 11

12 Data Stream Processing Approaches : Data Stream Management Systems Main characteristics 12 Generic tools Data and queries play an opposite role compared to standard DBMS approaches : Data is volatile and unpredictable Continuous queries SQL-like query language : Standard SQL on permanent relations Extended SQL on streams with windowing features (processed on the fly) Tools for capturing input streams and producing output streams Good performances : Optimization of computer resources Several input streams several queries Ability to face variations in arrival rates without any crash (includes loadshedding) Approximate or exact results unbounded memory (10 most sold stocks ) Too (many, fast ) : CPU and memory limit Sliding windows and refreshment rate, sampling and shedding, synopses

13 Data Stream Processing Approaches : Data Stream Management Systems - Examples Nom du système Origine Caractéristiques Services StreamBase Aurora-Medusa-Borealis Universités Brandeis, Brown, MIT Windows 2003 StreamBase Studio : développement graphique d applications, palette d opérateurs (Aminsight) Truviso TelegraphCQ Université de Berkeley Linux (Ubuntu). Fonctionne comme une extension de PostGreSQL Pas de studio de développement Visualisateur temps réel (environnement Flex). Aleri Société commerciale (services financiers aux sociétés bancaires) Version Windows 2003 annoncée. Choix de développement via un Studio, XML ou SQL. Possibilité de construire des cubes sur flux Coral8 Parmi les dirigeants, R. Motwani de Stanford (projet STREAM) Intégration native de données XML et DB2. Possibilité de traiter des suites de patterns (complex events) 13

14 Data Stream Processing Approaches : Data Stream Management Systems An example : StreamBase Data input Dev. Studio (graphical combination of Operators in streams) Engine Data processing 14 Own interfaces, adapters, clients Command Line

15 Data Stream Mining Definition : Apply data-mining algorithms to one or several stream(s) Constraints : Limited CPU and memory One-pass on the data Windowing If applied to the whole stream, incremental algorithm If applied to a sliding window : incremental + ability to forget the past Additive methods (PCA) If applied to any (past) portion of the stream : incremental + constitution of summaries Temporal summaries (clustering) : maintain k centers of clusters or maintain k clusters with statistics on their contents Problem of concept drift : evolution of distributions of data over time 15

16 Data Stream Mining an example D0 D1 D2 D3 Dn M0 M1 M2 M3 Mn-1 Mn Adaptative models Example : prediction of the number of calls within a call-center Choice of M model(s) Size of the D i Window? Content and up-dating of DB Memo (bounded size) Inclusion within the StreamBase system Pour produire Mn, on dispose de : Mn-1 Dn Et «de ce que l on veut», : DB mémo de taille bornée (par exemple un résumé de l historique des données) 16

17 17 Data Stream Mining

18 Outline Deployment of a smart metering infrastructure What is a Data Stream? Data Stream Processing Approaches : Data Stream Management Systems Data Stream Mining Conclusion References 18

19 Conclusions A very active way of research Lots of practical applications in many fields Data Stream Management Systems (DSMS) and Data Stream Mining DSMS quite mature Data Stream Mining : still a lot of work to do Distributed data streams (DSMS and mining) sensor networks Data streams approaches for electric load curve analysis : issues to be completed during the next speeches 19

20 References «Querying and mining data streams : you only get one look. A tutorial», M. Garofalakis, J. Gehrke, R. Rastogi, Tutorial SIGMOD 02, Juin «Issues in data stream management», L.Golab, M.Tamer Özsu, SIGMOD Records, Vol.32, n 2, Juin «Data streams : models and algorithms», C.C. Aggarwal, Springer, «The 8 requirements of real-time stream processing», M. Stonebraker, U. Cetintemel, S. Zdonik, SIGMOD Records, Vol.34(4) : 42-47, «Mining data streams : a review», M. M. Medhat, A. Zaslavsky and S. Krishnaswamy in SIGMOD Records, Vol.34(2) pp18-26, «Birch : an efficient data clustering method for very large databases», T. Zhang, R. Ramakrishnan and M. Livny. In Proceedings of the SIGMOD 1996 Conference pp , «A framework for clustering evolving data streams», C.C. Aggarwal, J. Han, J. Wang and P.S. Yu in Proceedings of the 29th VLDB Conference, Berlin, Germany, Linear Road benchmark : 20

21 References «Statistical challenges in data stream applications», G. Hébrail, in 56 th Session of the International Statistical Institute, Lisboa, August «Data stream management and mining», G. Hébrail, International Workshop on Mining Massive Data Sets for Security, NATO school, Villa Cagnola Gazzada, Italy, September «Echantillonnage sur les flux de données : état de l art», R. Chiky, A. Dessertaine, G. Hébrail, Colloque français des sondages, Marseille, November «Echantillonnage spatio-temporel de flux de données distribués», R. Chiky, J. Cubillé, A. Dessertaine, G. Hébrail, ML Picard, Conférence Extraction et Gestion des Connaissances EGC, Nice, January 2008 «Prévision non paramétrique par «Agrégation / désagrégation» de la consommation électrique dans un contexte de flux de données», A. Dessertaine, Journées conjointe de la Société Française de la Statistique et de la Société Canadienne de la Statistique, Ottawa, May 2008 «Applications de gestion de flux de données chez EDF R&D», Workshop «Fouille de données temporelles», S. Ferrandiz, M-L Picard, EGC 2008, Sophia-Antipolis, January

22 References DSMS WebSites : ; BILab WebSite : bilab.enst.fr MIDAS ANR project : midas.enst.fr 22

Smart Grid Data Management Challenges

Smart Grid Data Management Challenges Smart Grid Data Management Challenges Marie-Luce PICARD EDF R&D marie-luce.picard@edf.fr 16 Novembre 2010 Outline 1. Smart grids : What? Where? What for? 2. A road map for Smart Grids functionalities and

More information

Electric Power Consumption Data

Electric Power Consumption Data Using Data Stream Management Systems to analyze Electric Power Consumption Data Talel Abdessalem, Raja Chiky, Georges Hébrail and Jean-Louis Vitti Ecole Nationale Supérieure des Télécommunications, Electricité

More information

PRACTICAL DATA MINING IN A LARGE UTILITY COMPANY

PRACTICAL DATA MINING IN A LARGE UTILITY COMPANY QÜESTIIÓ, vol. 25, 3, p. 509-520, 2001 PRACTICAL DATA MINING IN A LARGE UTILITY COMPANY GEORGES HÉBRAIL We present in this paper the main applications of data mining techniques at Electricité de France,

More information

résumé de flux de données

résumé de flux de données résumé de flux de données CLEROT Fabrice fabrice.clerot@orange-ftgroup.com Orange Labs data streams, why bother? massive data is the talk of the town... data streams, why bother? service platform production

More information

Functional Principal Components Analysis with Survey Data

Functional Principal Components Analysis with Survey Data First International Workshop on Functional and Operatorial Statistics. Toulouse, June 19-21, 2008 Functional Principal Components Analysis with Survey Data Hervé CARDOT, Mohamed CHAOUCH ( ), Camelia GOGA

More information

Inferring Fine-Grained Data Provenance in Stream Data Processing: Reduced Storage Cost, High Accuracy

Inferring Fine-Grained Data Provenance in Stream Data Processing: Reduced Storage Cost, High Accuracy Inferring Fine-Grained Data Provenance in Stream Data Processing: Reduced Storage Cost, High Accuracy Mohammad Rezwanul Huq, Andreas Wombacher, and Peter M.G. Apers University of Twente, 7500 AE Enschede,

More information

Online and Scalable Data Validation in Advanced Metering Infrastructures

Online and Scalable Data Validation in Advanced Metering Infrastructures Online and Scalable Data Validation in Advanced Metering Infrastructures Chalmers University of technology Agenda 1. Problem statement 2. Preliminaries Data Streaming 3. Streaming-based Data Validation

More information

-Duplication of Time-Varying Graphs

-Duplication of Time-Varying Graphs -Duplication of Time-Varying Graphs François Queyroi Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris CNRS, UMR 7606, LIP6, F-75005, Paris, France francois.queyroi@lip6.fr ABSTRACT.

More information

Evaluating Algorithms that Learn from Data Streams

Evaluating Algorithms that Learn from Data Streams João Gama LIAAD-INESC Porto, Portugal Pedro Pereira Rodrigues LIAAD-INESC Porto & Faculty of Sciences, University of Porto, Portugal Gladys Castillo University Aveiro, Portugal jgama@liaad.up.pt pprodrigues@fc.up.pt

More information

Big Data: Opportunities and Challenges. Raja Chiky raja.chiky@isep.fr

Big Data: Opportunities and Challenges. Raja Chiky raja.chiky@isep.fr Big Data: Opportunities and Challenges Raja Chiky raja.chiky@isep.fr OUTLINE 3 About me What is Big Data? Evolution of Business Intelligence Big Data Opportunities Big Data challenges Conclusion About

More information

An XML Framework for Integrating Continuous Queries, Composite Event Detection, and Database Condition Monitoring for Multiple Data Streams

An XML Framework for Integrating Continuous Queries, Composite Event Detection, and Database Condition Monitoring for Multiple Data Streams An XML Framework for Integrating Continuous Queries, Composite Event Detection, and Database Condition Monitoring for Multiple Data Streams Susan D. Urban 1, Suzanne W. Dietrich 1, 2, and Yi Chen 1 Arizona

More information

N1 Grid Service Provisioning System 5.0 User s Guide for the Linux Plug-In

N1 Grid Service Provisioning System 5.0 User s Guide for the Linux Plug-In N1 Grid Service Provisioning System 5.0 User s Guide for the Linux Plug-In Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A. Part No: 819 0735 December 2004 Copyright 2004 Sun Microsystems,

More information

Data Management in Forecasting Systems: Case Study Performance Problems and Preliminary Results

Data Management in Forecasting Systems: Case Study Performance Problems and Preliminary Results Data Management in Forecasting Systems: Case Study Performance Problems and Preliminary Results Haitang Feng 1,2, Nicolas Lumineau 1, Mohand-Saïd Hacid 1, and Richard Domps 2 1 Université de Lyon, CNRS

More information

Complex Event Processing (CEP) Why and How. Richard Hallgren BUGS 2013-05-30

Complex Event Processing (CEP) Why and How. Richard Hallgren BUGS 2013-05-30 Complex Event Processing (CEP) Why and How Richard Hallgren BUGS 2013-05-30 Objectives Understand why and how CEP is important for modern business processes Concepts within a CEP solution Overview of StreamInsight

More information

Le Cloud Computing selon IBM : stratégie et offres, zoom sur WebSphere CloudBurst

Le Cloud Computing selon IBM : stratégie et offres, zoom sur WebSphere CloudBurst Le Cloud Computing selon IBM : stratégie et offres, zoom sur WebSphere CloudBurst Hervé Grange WebSphere Client Technical Expert Stéphane Woillez Senior IT Architect - Cloud Computing Champion IBM France

More information

A SMART ELEPHANT FOR A SMART-GRID: (ELECTRICAL) TIME-SERIES STORAGE AND ANALYTICS. EDF R&D SIGMA Project Marie-Luce Picard

A SMART ELEPHANT FOR A SMART-GRID: (ELECTRICAL) TIME-SERIES STORAGE AND ANALYTICS. EDF R&D SIGMA Project Marie-Luce Picard A SMART ELEPHANT FOR A SMART-GRID: (ELECTRICAL) TIME-SERIES STORAGE AND ANALYTICS WITHIN HADOOP EDF R&D SIGMA Project Marie-Luce Picard Forum TERATEC June 26th 2013 OUTLINE 1. CONTEXT 2. A PROOF OF CONCEPT

More information

Horizontal Aggregations in SQL to Prepare Data Sets for Data Mining Analysis

Horizontal Aggregations in SQL to Prepare Data Sets for Data Mining Analysis IOSR Journal of Computer Engineering (IOSRJCE) ISSN: 2278-0661, ISBN: 2278-8727 Volume 6, Issue 5 (Nov. - Dec. 2012), PP 36-41 Horizontal Aggregations in SQL to Prepare Data Sets for Data Mining Analysis

More information

Combining Sequence Databases and Data Stream Management Systems Technical Report Philipp Bichsel ETH Zurich, 2-12-2007

Combining Sequence Databases and Data Stream Management Systems Technical Report Philipp Bichsel ETH Zurich, 2-12-2007 Combining Sequence Databases and Data Stream Management Systems Technical Report Philipp Bichsel ETH Zurich, 2-12-2007 Abstract This technical report explains the differences and similarities between the

More information

Data Warehouse: Introduction

Data Warehouse: Introduction Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group,

More information

Eric PICHET. Professor/Director of the postgraduate programme in Wealth Management and Real Estate (IMPI)

Eric PICHET. Professor/Director of the postgraduate programme in Wealth Management and Real Estate (IMPI) Eric PICHET Professor/Director of the postgraduate programme in Wealth Management and Real Estate (IMPI) EDUCATION 2008 HDR (Habilitation à diriger des recherché, Qualification to supervise doctoral dissertations),

More information

Setting up a monitoring and remote control tool

Setting up a monitoring and remote control tool Setting up a monitoring and remote control tool Oral examination for internship - Second year of Master in Computer Sciences Kevin TAOCHY Department of Mathematics and Computer Sciences University of Reunion

More information

- GREDOR - Gestion des Réseaux Electriques de Distribution Ouverts aux Renouvelables

- GREDOR - Gestion des Réseaux Electriques de Distribution Ouverts aux Renouvelables - GREDOR - Gestion des Réseaux Electriques de Distribution Ouverts aux Renouvelables Project scope - Présentation du projet Moulin de Beez, 29/04/2015 Raoul Nihart, EDF-Luminus Why a project? Introduction

More information

Account Manager H/F - CDI - France

Account Manager H/F - CDI - France Account Manager H/F - CDI - France La société Fondée en 2007, Dolead est un acteur majeur et innovant dans l univers de la publicité sur Internet. En 2013, Dolead a réalisé un chiffre d affaires de près

More information

See the wood for the trees

See the wood for the trees See the wood for the trees Dr. Harald Schöning Head of Research The world is becoming digital socienty government economy Digital Society Digital Government Digital Enterprise 2 Data is Getting Bigger

More information

Optimizing Solaris Resources Through Load Balancing

Optimizing Solaris Resources Through Load Balancing Optimizing Solaris Resources Through Load Balancing By Tom Bialaski - Enterprise Engineering Sun BluePrints Online - June 1999 http://www.sun.com/blueprints Sun Microsystems, Inc. 901 San Antonio Road

More information

Clustering Data Streams

Clustering Data Streams Clustering Data Streams Mohamed Elasmar Prashant Thiruvengadachari Javier Salinas Martin gtg091e@mail.gatech.edu tprashant@gmail.com javisal1@gatech.edu Introduction: Data mining is the science of extracting

More information

Sun Management Center Change Manager 1.0.1 Release Notes

Sun Management Center Change Manager 1.0.1 Release Notes Sun Management Center Change Manager 1.0.1 Release Notes Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A. Part No: 817 0891 10 May 2003 Copyright 2003 Sun Microsystems, Inc. 4150

More information

Management of Human Resource Information Using Streaming Model

Management of Human Resource Information Using Streaming Model , pp.75-80 http://dx.doi.org/10.14257/astl.2014.45.15 Management of Human Resource Information Using Streaming Model Chen Wei Chongqing University of Posts and Telecommunications, Chongqing 400065, China

More information

Monitoring solar PV output

Monitoring solar PV output Monitoring solar PV output Introduction Monitoring of your solar PV output is useful to see the actual outputs. This can be measured from the inverter and/or mains using current clamps or pulse meters

More information

Integration of Witness with an MES to control a workshop in real time

Integration of Witness with an MES to control a workshop in real time Integration of Witness with an MES to control a workshop in real time Lanner user conference 2008 February 26, 2008 ThinkTank, Birmingham, UK Franck Fontanili, assistant professor Department of Industrial

More information

The basic data mining algorithms introduced may be enhanced in a number of ways.

The basic data mining algorithms introduced may be enhanced in a number of ways. DATA MINING TECHNOLOGIES AND IMPLEMENTATIONS The basic data mining algorithms introduced may be enhanced in a number of ways. Data mining algorithms have traditionally assumed data is memory resident,

More information

Processing data streams by relational analysis

Processing data streams by relational analysis Processing data streams by relational analysis Ilhème Ghalamallah Institut de Recherche en Informatique de Toulouse, IRIT-SIG Plan Introduction Tetralogie Proposition X-Plor Conclusion 1 In the business

More information

Upgrading the Solaris PC NetLink Software

Upgrading the Solaris PC NetLink Software Upgrading the Solaris PC NetLink Software By Don DeVitt - Enterprise Engineering Sun BluePrints OnLine - January 2000 http://www.sun.com/blueprints Sun Microsystems, Inc. 901 San Antonio Road Palo Alto,

More information

Data Stream Management Systems

Data Stream Management Systems Data Stream Management Systems Principles of Modern Database Systems 2007 Tore Risch Dept. of information technology Uppsala University Sweden Tore Risch Uppsala University, Sweden What is a Data Base

More information

Real Time Business Performance Monitoring and Analysis Using Metric Network

Real Time Business Performance Monitoring and Analysis Using Metric Network Real Time Business Performance Monitoring and Analysis Using Metric Network Pu Huang, Hui Lei, Lipyeow Lim IBM T. J. Watson Research Center Yorktown Heights, NY, 10598 Abstract-Monitoring and analyzing

More information

Financial Literacy Resource French As a Second Language: Core French Grade 9 Academic FSF 1D ARGENT EN ACTION! Connections to Financial Literacy

Financial Literacy Resource French As a Second Language: Core French Grade 9 Academic FSF 1D ARGENT EN ACTION! Connections to Financial Literacy Financial Literacy Resource French As a Second Language: Core French Grade 9 Academic FSF 1D ARGENT EN ACTION! Connections to Financial Literacy Although none of the expectations in the French As a Second

More information

analysis: experience in Italy

analysis: experience in Italy Smart metering Cost-benefit analysis: experience in Italy Ferruccio Villa Head of Electricity Quality of Supply Head of Electricity and Gas Smart Metering fvilla@autorita.energia.it Stefano Scarcella Market

More information

INDEXING BIOMEDICAL STREAMS IN DATA MANAGEMENT SYSTEM 1. INTRODUCTION

INDEXING BIOMEDICAL STREAMS IN DATA MANAGEMENT SYSTEM 1. INTRODUCTION JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 9/2005, ISSN 1642-6037 Michał WIDERA *, Janusz WRÓBEL *, Adam MATONIA *, Michał JEŻEWSKI **,Krzysztof HOROBA *, Tomasz KUPKA * centralized monitoring,

More information

Smart Specialization Regional Innovation Strategy (SRI 3S) in Provence Alpes Côte d Azur

Smart Specialization Regional Innovation Strategy (SRI 3S) in Provence Alpes Côte d Azur Smart Specialization Regional Innovation Strategy (SRI 3S) in Provence Alpes Côte d Azur 1 PACA Assets for economic growth 3 rd French region in terms of GDP 1st University of France (70 000 students)

More information

Sun StorEdge A5000 Installation Guide

Sun StorEdge A5000 Installation Guide Sun StorEdge A5000 Installation Guide for Windows NT Server 4.0 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 USA 650 960-1300 Fax 650 969-9131 Part No. 805-7273-11 October 1998,

More information

Azure Data Lake Analytics

Azure Data Lake Analytics Azure Data Lake Analytics Compose and orchestrate data services at scale Fully managed service to support orchestration of data movement and processing Connect to relational or non-relational data

More information

Service Level Definitions and Interactions

Service Level Definitions and Interactions Service Level Definitions and Interactions By Adrian Cockcroft - Enterprise Engineering Sun BluePrints OnLine - April 1999 http://www.sun.com/blueprints Sun Microsystems, Inc. 901 San Antonio Road Palo

More information

AADL et la conception des logiciels

AADL et la conception des logiciels AADL et la conception des logiciels Pierre Dissaux, journée Féria/SVF, 2 décembre 2003 System Lifecycle System Engineering System Integration Hardware Engineering Software Engineering from System Engineering

More information

Business Intelligence for the Modern Utility

Business Intelligence for the Modern Utility Business Intelligence for the Modern Utility Presented By: Glenn Wolf, CISSP (Certified Information Systems Security Professional) Senior Consultant Westin Engineering, Inc. Boise, ID September 15 th,

More information

A web-based multilingual help desk

A web-based multilingual help desk LTC-Communicator: A web-based multilingual help desk Nigel Goffe The Language Technology Centre Ltd Kingston upon Thames Abstract Software vendors operating in international markets face two problems:

More information

Comparison between purely statistical and multi-agent based approaches for occupant behaviour modeling in buildings

Comparison between purely statistical and multi-agent based approaches for occupant behaviour modeling in buildings Comparison between purely statistical and multi-agent based approaches for occupant behaviour modeling in buildings Khadija Tijani 1,2,Ayesha Kashif 1,3,Quoc Dung Ngo 1,Stéphane Ploix 1,Benjamin Haas 2,Julie

More information

Smarter Grids for a Smarter Planet

Smarter Grids for a Smarter Planet Smarter Grids for a Smarter Planet Marc FOROT, Solutions IBM marc_forot@fr.ibm.com Nov 26, 2009 Disclaimer (Optional location for any required disclaimer copy. To set disclaimer, or delete, go to View

More information

In France. page 2. In Belgium. page 3. In Germany. page 4. In Greece page 5

In France. page 2. In Belgium. page 3. In Germany. page 4. In Greece page 5 N Projet : 2011-1-FR1-LEO05-24448 Titre : Euro-DIM - Dispositif d Intégration de la Mobilité européenne pour les apprentis This document is the result of the work of educational leaders in Euro-DIM project.

More information

ORACLE DATABASE 10G ENTERPRISE EDITION

ORACLE DATABASE 10G ENTERPRISE EDITION ORACLE DATABASE 10G ENTERPRISE EDITION OVERVIEW Oracle Database 10g Enterprise Edition is ideal for enterprises that ENTERPRISE EDITION For enterprises of any size For databases up to 8 Exabytes in size.

More information

Sun Enterprise Optional Power Sequencer Installation Guide

Sun Enterprise Optional Power Sequencer Installation Guide Sun Enterprise Optional Power Sequencer Installation Guide For the Sun Enterprise 6500/5500 System Cabinet and the Sun Enterprise 68-inch Expansion Cabinet Sun Microsystems, Inc. 901 San Antonio Road Palo

More information

Topics in basic DBMS course

Topics in basic DBMS course Topics in basic DBMS course Database design Transaction processing Relational query languages (SQL), calculus, and algebra DBMS APIs Database tuning (physical database design) Basic query processing (ch

More information

You can choose to install the plugin through Magento Connect or by directly using the archive files.

You can choose to install the plugin through Magento Connect or by directly using the archive files. Magento plugin 1.5.7 installation 1. Plugin installation You can choose to install the plugin through Magento Connect or by directly using the archive files. 1.1 Installation with Magento Connect 1.1.1

More information

Development of a distributed recommender system using the Hadoop Framework

Development of a distributed recommender system using the Hadoop Framework Development of a distributed recommender system using the Hadoop Framework Raja Chiky, Renata Ghisloti, Zakia Kazi Aoul LISITE-ISEP 28 rue Notre Dame Des Champs 75006 Paris firstname.lastname@isep.fr Abstract.

More information

White Paper. How Streaming Data Analytics Enables Real-Time Decisions

White Paper. How Streaming Data Analytics Enables Real-Time Decisions White Paper How Streaming Data Analytics Enables Real-Time Decisions Contents Introduction... 1 What Is Streaming Analytics?... 1 How Does SAS Event Stream Processing Work?... 2 Overview...2 Event Stream

More information

One-Size-Fits-All: A DBMS Idea Whose Time has Come and Gone. Michael Stonebraker December, 2008

One-Size-Fits-All: A DBMS Idea Whose Time has Come and Gone. Michael Stonebraker December, 2008 One-Size-Fits-All: A DBMS Idea Whose Time has Come and Gone Michael Stonebraker December, 2008 DBMS Vendors (The Elephants) Sell One Size Fits All (OSFA) It s too hard for them to maintain multiple code

More information

In-memory databases and innovations in Business Intelligence

In-memory databases and innovations in Business Intelligence Database Systems Journal vol. VI, no. 1/2015 59 In-memory databases and innovations in Business Intelligence Ruxandra BĂBEANU, Marian CIOBANU University of Economic Studies, Bucharest, Romania babeanu.ruxandra@gmail.com,

More information

Luncheon Webinar Series May 13, 2013

Luncheon Webinar Series May 13, 2013 Luncheon Webinar Series May 13, 2013 InfoSphere DataStage is Big Data Integration Sponsored By: Presented by : Tony Curcio, InfoSphere Product Management 0 InfoSphere DataStage is Big Data Integration

More information

Data Stream Management and Complex Event Processing in Esper. INF5100, Autumn 2010 Jarle Søberg

Data Stream Management and Complex Event Processing in Esper. INF5100, Autumn 2010 Jarle Søberg Data Stream Management and Complex Event Processing in Esper INF5100, Autumn 2010 Jarle Søberg Outline Overview of Esper DSMS and CEP concepts in Esper Examples taken from the documentation A lot of possibilities

More information

Challenges for Data Driven Systems

Challenges for Data Driven Systems Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Quick History of Data Management 4000 B C Manual recording From tablets to papyrus to paper A. Payberah 2014 2

More information

Data Stream Management

Data Stream Management Data Stream Management Synthesis Lectures on Data Management Editor M. Tamer Özsu, University of Waterloo Synthesis Lectures on Data Management is edited by Tamer Özsu of the University of Waterloo. The

More information

Mario Guarracino. Data warehousing

Mario Guarracino. Data warehousing Data warehousing Introduction Since the mid-nineties, it became clear that the databases for analysis and business intelligence need to be separate from operational. In this lecture we will review the

More information

USING COMPLEX EVENT PROCESSING TO MANAGE PATTERNS IN DISTRIBUTION NETWORKS

USING COMPLEX EVENT PROCESSING TO MANAGE PATTERNS IN DISTRIBUTION NETWORKS USING COMPLEX EVENT PROCESSING TO MANAGE PATTERNS IN DISTRIBUTION NETWORKS Foued BAROUNI Eaton Canada FouedBarouni@eaton.com Bernard MOULIN Laval University Canada Bernard.Moulin@ift.ulaval.ca ABSTRACT

More information

Introduction ToIP/Asterisk Quelques applications Trixbox/FOP Autres distributions Conclusion. Asterisk et la ToIP. Projet tuteuré

Introduction ToIP/Asterisk Quelques applications Trixbox/FOP Autres distributions Conclusion. Asterisk et la ToIP. Projet tuteuré Asterisk et la ToIP Projet tuteuré Luis Alonso Domínguez López, Romain Gegout, Quentin Hourlier, Benoit Henryon IUT Charlemagne, Licence ASRALL 2008-2009 31 mars 2009 Asterisk et la ToIP 31 mars 2009 1

More information

Superviser efficacement son IT avec Tivoli Monitoring

Superviser efficacement son IT avec Tivoli Monitoring Session 1 : Tivoli Laurent Michel IBM Tivoli Sales Pierantonio Marchesini IBM Tivoli TechSales Marcel Prisi Directeur Virtua SA Superviser efficacement son IT avec Tivoli Monitoring Mission Statement Monitor

More information

Mining various patterns in sequential data in an SQL-like manner *

Mining various patterns in sequential data in an SQL-like manner * Mining various patterns in sequential data in an SQL-like manner * Marek Wojciechowski Poznan University of Technology, Institute of Computing Science, ul. Piotrowo 3a, 60-965 Poznan, Poland Marek.Wojciechowski@cs.put.poznan.pl

More information

A Novel Cloud Computing Data Fragmentation Service Design for Distributed Systems

A Novel Cloud Computing Data Fragmentation Service Design for Distributed Systems A Novel Cloud Computing Data Fragmentation Service Design for Distributed Systems Ismail Hababeh School of Computer Engineering and Information Technology, German-Jordanian University Amman, Jordan Abstract-

More information

STUDENT APPLICATION FORM (Dossier d Inscription) ACADEMIC YEAR 2010-2011 (Année Scolaire 2010-2011)

STUDENT APPLICATION FORM (Dossier d Inscription) ACADEMIC YEAR 2010-2011 (Année Scolaire 2010-2011) Institut d Administration des Entreprises SOCRATES/ERASMUS APPLICATION DEADLINE : 20th November 2010 OTHER (Autre) STUDENT APPLICATION FORM (Dossier d Inscription) ACADEMIC YEAR 2010-2011 (Année Scolaire

More information

SQLstream Blaze and Apache Storm A BENCHMARK COMPARISON

SQLstream Blaze and Apache Storm A BENCHMARK COMPARISON SQLstream Blaze and Apache Storm A BENCHMARK COMPARISON 2 The V of Big Data Velocity means both how fast data is being produced and how fast the data must be processed to meet demand. Gartner The emergence

More information

Keep in touch FINANCIAL COMMUNICATIONS. Thierry Prévot Group General Manager, Financial Communications & Strategic Prospective Analysis

Keep in touch FINANCIAL COMMUNICATIONS. Thierry Prévot Group General Manager, Financial Communications & Strategic Prospective Analysis FINANCIAL COMMUNICATIONS Keep in touch with a complete range of devices and publications Thierry Prévot Group General Manager, Financial Communications & Strategic Prospective Analysis 1 Websites loreal.com

More information

EC 350 Simplifies Billing Data Integration in PowerSpring Software

EC 350 Simplifies Billing Data Integration in PowerSpring Software White Paper EC 350 Simplifies Billing Data Integration in PowerSpring Software Executive Summary In the current energy environment, gas-metering data must be collected more frequently and in smaller increments

More information

HOW TO DO A SMART DATA PROJECT

HOW TO DO A SMART DATA PROJECT April 2014 Smart Data Strategies HOW TO DO A SMART DATA PROJECT Guideline www.altiliagroup.com Summary ALTILIA s approach to Smart Data PROJECTS 3 1. BUSINESS USE CASE DEFINITION 4 2. PROJECT PLANNING

More information

Il est repris ci-dessous sans aucune complétude - quelques éléments de cet article, dont il est fait des citations (texte entre guillemets).

Il est repris ci-dessous sans aucune complétude - quelques éléments de cet article, dont il est fait des citations (texte entre guillemets). Modélisation déclarative et sémantique, ontologies, assemblage et intégration de modèles, génération de code Declarative and semantic modelling, ontologies, model linking and integration, code generation

More information

01219211 Software Development Training Camp 1 (0-3) Prerequisite : 01204214 Program development skill enhancement camp, at least 48 person-hours.

01219211 Software Development Training Camp 1 (0-3) Prerequisite : 01204214 Program development skill enhancement camp, at least 48 person-hours. (International Program) 01219141 Object-Oriented Modeling and Programming 3 (3-0) Object concepts, object-oriented design and analysis, object-oriented analysis relating to developing conceptual models

More information

Approximation of OLAP queries on data warehouses

Approximation of OLAP queries on data warehouses université paris-sud école doctorale informatique paris-sud Laboratoire de recherche en informatique discipline: informatique thèse de doctorat soutenue le 20/06/2013 par Phuong Thao CAO Approximation

More information

Data Mining for Knowledge Management. Mining Data Streams

Data Mining for Knowledge Management. Mining Data Streams Data Mining for Knowledge Management Mining Data Streams Themis Palpanas University of Trento http://dit.unitn.it/~themis Spring 2007 Data Mining for Knowledge Management 1 Motivating Examples: Production

More information

Using Database Metadata and its Semantics to Generate Automatic and Dynamic Web Entry Forms

Using Database Metadata and its Semantics to Generate Automatic and Dynamic Web Entry Forms Using Database Metadata and its Semantics to Generate Automatic and Dynamic Web Entry Forms Mohammed M. Elsheh and Mick J. Ridley Abstract Automatic and dynamic generation of Web applications is the future

More information

Sébastien Heymann

Sébastien Heymann <seb@gephi.org> Sébastien Heymann Exploratory Network Analysis 1 see the network 1st graph viz tool: Pajek (1996) Vladimir Batagelj, Andrej Mrvar 2 interact in real time Gephi prototype (2008) group,

More information

CHANGING THE METHODOLOGY FOR GENERIC TO DETAIL ALLOCATION FOR INCORPORATED BUSINESS TAX DATA

CHANGING THE METHODOLOGY FOR GENERIC TO DETAIL ALLOCATION FOR INCORPORATED BUSINESS TAX DATA SSC Annual Meeting, June 2009 Proceedings of the Survey Methods Section CHANGING THE METHODOLOGY FOR GENERIC TO DETAIL ALLOCATION FOR INCORPORATED BUSINESS TAX DATA Jessica Andrews 1 ABSTRACT Tax data

More information

SeaCloudDM: Massive Heterogeneous Sensor Data Management in the Internet of Things

SeaCloudDM: Massive Heterogeneous Sensor Data Management in the Internet of Things SeaCloudDM: Massive Heterogeneous Sensor Data Management in the Internet of Things Jiajie Xu Institute of Software, Chinese Academy of Sciences (ISCAS) 2012-05-15 Outline 1. Challenges in IoT Data Management

More information

FP-Hadoop: Efficient Execution of Parallel Jobs Over Skewed Data

FP-Hadoop: Efficient Execution of Parallel Jobs Over Skewed Data FP-Hadoop: Efficient Execution of Parallel Jobs Over Skewed Data Miguel Liroz-Gistau, Reza Akbarinia, Patrick Valduriez To cite this version: Miguel Liroz-Gistau, Reza Akbarinia, Patrick Valduriez. FP-Hadoop:

More information

Sun Cluster 2.2 7/00 Data Services Update: Apache Web Server

Sun Cluster 2.2 7/00 Data Services Update: Apache Web Server Sun Cluster 2.2 7/00 Data Services Update: Apache Web Server Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. 650-960-1300 Part No. 806-6121 July 2000, Revision A Copyright 2000

More information

DSEC: A Data Stream Engine Based Clinical Information System *

DSEC: A Data Stream Engine Based Clinical Information System * DSEC: A Data Stream Engine Based Clinical Information System * Yu Fan, Hongyan Li **, Zijing Hu, Jianlong Gao, Haibin Liu, Shiwei Tang, and Xinbiao Zhou National Laboratory on Machine Perception, School

More information

THE DEVELOPMENT OF OFFICE SPACE AND ERGONOMICS STANDARDS AT THE CITY OF TORONTO: AN EXAMPLE OF SUCCESSFUL INCLUSION OF ERGONOMICS AT THE DESIGN STAGE

THE DEVELOPMENT OF OFFICE SPACE AND ERGONOMICS STANDARDS AT THE CITY OF TORONTO: AN EXAMPLE OF SUCCESSFUL INCLUSION OF ERGONOMICS AT THE DESIGN STAGE THE DEVELOPMENT OF OFFICE SPACE AND ERGONOMICS STANDARDS AT THE CITY OF TORONTO: AN EXAMPLE OF SUCCESSFUL INCLUSION OF ERGONOMICS AT THE DESIGN STAGE BYERS JANE, HARDY CHRISTINE, MCILWAIN LINDA, RAYBOULD

More information

Introduction. GEAL Bibliothèque Java pour écrire des algorithmes évolutionnaires. Objectifs. Simplicité Evolution et coévolution Parallélisme

Introduction. GEAL Bibliothèque Java pour écrire des algorithmes évolutionnaires. Objectifs. Simplicité Evolution et coévolution Parallélisme GEAL 1.2 Generic Evolutionary Algorithm Library http://dpt-info.u-strasbg.fr/~blansche/fr/geal.html 1 /38 Introduction GEAL Bibliothèque Java pour écrire des algorithmes évolutionnaires Objectifs Généricité

More information

ASSETS MANAGEMENT WITH LANDPARK MANAGER

ASSETS MANAGEMENT WITH LANDPARK MANAGER ASSETS MANAGEMENT WITH LANDPARK MANAGER Discovering Landpark Manager YOUR LOGO DISCOVERING LANDPARK MANAGER IT ASSET MANAGEMENT SOFTWARE Page 4 Landpark Manager - a user-friendly interface with graphical

More information

Millier Dickinson Blais

Millier Dickinson Blais Research Report Millier Dickinson Blais 2007-2008 National Survey of the Profession September 14, 2008 Contents 1 Introduction & Methodology... 3 2 National Results... 5 3 Regional Results... 6 3.1 British

More information

Formation à l ED STIC ED STIC Doctoral education. Hanna Klaudel

Formation à l ED STIC ED STIC Doctoral education. Hanna Klaudel Formation à l ED STIC ED STIC Doctoral education Hanna Klaudel Texte de référence / Text of low L arrêté de 7 août 2006 : «Les écoles doctorales proposent aux doctorants les formations utiles à leur projet

More information

Efficient Processing for Big Data Streams and their Context in Distributed Cyber Physical Systems

Efficient Processing for Big Data Streams and their Context in Distributed Cyber Physical Systems Efficient Processing for Big Data Streams and their Context in Distributed Cyber Physical Systems Department of Computer Science and Engineering Chalmers University of Technology & Gothenburg University

More information

Relations entre XLIM Université de Limoges et ISG-SCC Royal Holloway, University of London

Relations entre XLIM Université de Limoges et ISG-SCC Royal Holloway, University of London Relations entre XLIM Université de Limoges et ISG-SCC Royal Holloway, University of London Damien Sauveron damien.sauveron@xlim.fr http://damien.sauveron.free.fr/ GT SeFSI 3 octobre 2006 Le Campus du Royal

More information

Bac + 04 Licence en science commerciale, option marketing et communication. Degree in computer science, engineering or equivalent

Bac + 04 Licence en science commerciale, option marketing et communication. Degree in computer science, engineering or equivalent L un de ces postes vous intéresse? Postulez sur djezzy@talents-network.com Communication Brand senior manager Bac + 04 Licence en science commerciale, option marketing et communication. 05 years minimum

More information

Dynamic Visual Analytics Facing the Real-Time Challenge

Dynamic Visual Analytics Facing the Real-Time Challenge Dynamic Visual Analytics Facing the Real-Time Challenge Florian Mansmann, Fabian Fischer, and Daniel A. Keim Abstract Modern communication infrastructures enable more and more information to be available

More information

Accelerating BIRCH for Clustering Large Scale Streaming Data Using CUDA Dynamic Parallelism

Accelerating BIRCH for Clustering Large Scale Streaming Data Using CUDA Dynamic Parallelism Accelerating BIRCH for Clustering Large Scale Streaming Data Using CUDA Dynamic Parallelism Jianqiang Dong, Fei Wang and Bo Yuan Intelligent Computing Lab, Division of Informatics Graduate School at Shenzhen,

More information

Alejandro Vaisman Esteban Zimanyi. Data. Warehouse. Systems. Design and Implementation. ^ Springer

Alejandro Vaisman Esteban Zimanyi. Data. Warehouse. Systems. Design and Implementation. ^ Springer Alejandro Vaisman Esteban Zimanyi Data Warehouse Systems Design and Implementation ^ Springer Contents Part I Fundamental Concepts 1 Introduction 3 1.1 A Historical Overview of Data Warehousing 4 1.2 Spatial

More information

A Grid Architecture for Manufacturing Database System

A Grid Architecture for Manufacturing Database System Database Systems Journal vol. II, no. 2/2011 23 A Grid Architecture for Manufacturing Database System Laurentiu CIOVICĂ, Constantin Daniel AVRAM Economic Informatics Department, Academy of Economic Studies

More information

A Novel Approach to QoS Monitoring in the Cloud

A Novel Approach to QoS Monitoring in the Cloud A Novel Approach to QoS Monitoring in the Cloud 2nd Training on Software Services- Cloud computing - November 11-14 Luigi Sgaglione EPSILON srl luigi.sgaglione@epsilonline.com RoadMap Rationale and Approach

More information

StreamBase High Availability

StreamBase High Availability StreamBase High Availability Deploy Mission-Critical StreamBase Applications in a Fault Tolerant Configuration By Richard Tibbetts Chief Technology Officer, StreamBase Systems StreamBase High Availability

More information

Management by Network Search

Management by Network Search Management by Network Search Misbah Uddin, Prof. Rolf Stadler KTH Royal Institute of Technology, Sweden Dr. Alex Clemm Cisco Systems, CA, USA November 11, 2014 ANRP Award Talks Session IETF 91 Honolulu,

More information

Journée Thématique Big Data 13/03/2015

Journée Thématique Big Data 13/03/2015 Journée Thématique Big Data 13/03/2015 1 Agenda About Flaminem What Do We Want To Predict? What Is The Machine Learning Theory Behind It? How Does It Work In Practice? What Is Happening When Data Gets

More information

Mining Data Streams: A Review

Mining Data Streams: A Review Mining Data Streams: A Review Mohamed Medhat Gaber, Arkady Zaslavsky and Shonali Krishnaswamy Centre for Distributed Systems and Software Engineering, Monash University 900 Dandenong Rd, Caulfield East,

More information