SQLstream Blaze and Apache Storm A BENCHMARK COMPARISON

Size: px
Start display at page:

Download "SQLstream Blaze and Apache Storm A BENCHMARK COMPARISON"

Transcription

1 SQLstream Blaze and Apache Storm A BENCHMARK COMPARISON

2 2 The V of Big Data Velocity means both how fast data is being produced and how fast the data must be processed to meet demand. Gartner The emergence of Big Data has defined one of the most exciting eras in the evolution of IT. Apache Hadoop has been at the forefront, driving costeffective analysis of unstructured and semi-structured data. However, Hadoop was designed for processing stored data in batches. The continuous analysis of Big Data in real-time requires a different approach. Processing data as streams enables the real-time value of Big Data to be extracted before the data are stored. Automated actions and visualizations can be driven by real-time analytics from the data in motion, before streaming the data through to Hadoop and other data storage platforms. Applications for stream processing have emerged across many industries, including telecommunications, transportation, cybersecurity, oil and gas, financial services and the Internet of Things. The increase in machine data data generated from sensors, devices, networks and applications is driving the need for real-time action and analysis from data arriving at rates exceeding many millions of records per second. This paper documents a performance benchmark and ROI analysis carried out by a customer in the telecoms sector. The requirement was to detect time-based patterns from 4G/LTE network performance data that were predictors of potential QoS failures. The throughput performance requirement was to process 10 million records per second, generating results with latency in the low milliseconds.

3 3 The customer was concerned with applying increasingly complex business logic across multiple sources of network element and radio tower data streams, with a goal of aggregating and analyzing the data payloads with near-zero latency. SQLstream Blaze or Apache Storm The customer identified SQLstream Blaze and the open source Apache Storm framework as candidates for an in-depth evaluation. Although both can be considered stream processing platforms, there are also significant differences. As the benchmark comparison highlighted, although Apache Storm can be downloaded at no cost, factors such as hardware performance and requirements, development effort and expert support were critical considerations in determining total system cost and overall value. Goal: to increase the quality of service in a dynamic and immediate manner, ensuring robust cellular service and eliminating serviceimpacting events. The results demonstrated that the SQLstream Blaze real-time data hub with its core stream processing platform, s-server, performed 15x faster with significantly lower Total Cost of Ownership (TCO) as projected over the lifetime of the system. TCO savings were a result of significant less hardware for the same performance and faster time-to-value with significantly less development effort.

4 4 Real-time Performance Monitoring with Streaming Analytics The business objective was to increase the quality of service (QoS) in a dynamic and immediate manner, ensuring cellular transmissions could be made more robust and eliminate as far as possible negative events such as dropped calls and low-quality voice paths. The customer was concerned with the increasingly complex business logic coupled with the need for low-latency aggregation and analysis across multiple sources of network element and radio tower data streams. The traditional data management approach of storing the data before processing could not deliver the lowlatency analytics required from the high-volume, high-velocity data streams. A call or data transmission would have failed by the time the event was identified. In addition, management network architectures for modern 4G/LTE radio towers require multiple regional data centers. The massive data volumes for this particular use case would have required systems to be implemented at each tower site, and then to aggregate each tower s pre-processed data in the relevant regional data centers. Deploying potentially numerous systems in diverse and often remote geographic locations was cost prohibitive. Any solution must be able to handle the constant high volume data payload traffic, and scale out during periods of large spikes in traffic volumes. The solution must also be able to handle different data structures and formats, as well as operational differences such as legacy equipment and differences in device firmware or software versions. Addressing the large number of system platform permutations and delivering a normalized flow of data at high volumes with low latency was also a prime consideration. Flexibility in the field would be paramount. The customer decided the most appropriate data management architecture was to build and deploy a stream processing application. The high-level architecture would require remote data collection agents to capture and stream performance data to a single central platform. The central platform must be able to scale dynamically up to the peak forecast load of 10 million records per second. Data must also be filtered, parsed and enhanced dynamically as part of the real-time pipeline flow. Aggregated and streaming intelligence feeds must be delivered continuously to existing non-real-time data warehouses and operational applications.

5 5 Overview of the Apache Storm Implementation Apache Storm is a distributed data stream processing framework available under the Apache Open Source license. The Storm data processing architecture is similar in concept to an Hadoop data storage cluster, replacing Hadoop s Map Reduce infrastructure for processing static data with Storm topologies for processing data streams. A Storm topology consists of Spouts (data sources) and Bolts (nodes for insertion of stream processing logic). Bolts are commonly written in Java, but in principle could be defined in any coding language. Apache Storm Solution Development The Storm framework requires significant development effort in order to deliver a complete, operational application. In particular, the Java-based stream processing libraries to address the analytics and data aggregation, and the integration adapters with external systems and data feeds. The resulting solution required a number of additional coding steps in order to produce an operationally viable solution based on the latest release software of the project software, including: Integration of the Storm messaging middleware technology with the Java-based stream-processing library. Development of the data aggregation and analytics as Java extensions to the core project framework. Development of data integration adapters. Apache Storm Performance and Total Cost of Ownership The resulting development effort required a considerable bespoke coding to deliver an operational solution. However, three further considerations also contributed to the higher overall TCO costs: Lower performance per server required a significantly higher number of servers in order to realize the target throughput, driving higher costs for hardware, power, cooling and solution support. New or updated analytics required the core engine to be stopped and restarted, impacting operational service level agreements and driving higher maintenance costs. Higher ongoing support and maintenance costs for custom code over the lifetime of the project.

6 6 SQLstream Blaze and Apache Storm Compared The code to handle all streaming pipelines consisted of only 350 lines of commented SQL code, driving the lowest TCO to further address the ongoing as-deployed maintenance and support of complex applications in the field. SQLstream provided the customer with the SQLstream Blaze platform plus the supporting developer and user documentation. The customer team was able to develop prototypes quickly for several different business use cases. SQLstream s technical support team provided support when requested and suggestions for solution optimization, in particular, providing guidance on the architectural differences between implementation of a stream processing solution over a traditional store-then-process approach. SQLstream s real-time machine data collection agents enabled the use of lightweight Java agents to reside outside the central server. The data collection agents performed data filtering and optimized the transport of data streams using SQLstream s Streaming Data Protocol (SDP). SDP utilizes efficient data compression to optimize for transport of high velocity, high volume machine data streams. SQLstream Blaze Best Throughput Performance SQLstream Blaze performed at 1,350,000 records per second per 4-core Intel Xeon server platform, based on a record payload size of 1 Kbyte. This performance throughput per server was 15x faster than the equivalent Storm implementation. The customer s target of 10 million records per second required only 10 servers with the SQLstream solution (*see note 1). The equivalent Storm-based solution would require more than 110 servers. SQLstream Blaze Lowest Total Cost of Ownership SQLstream Blaze was able to demonstrate significant cost savings with dramatically lower projected TCO - one third that of the alternative solution. The TCO savings came from a combination of reduced hardware and power consumption, but was also down to the power and simplicity of SQL over low-level Java development. The code to support the required use cases consisted of only 350 lines of commented SQL code, in contrast to the significant volume of java code development required to deliver a viable operational solution on the Storm framework. *Note 1: The performance benchmark was carried out on the SQLstream Blaze 3 platform. Additional performance enhancements in the current release, SQLstream Blaze 4, will further reduce the overall server hardware requirement. Current measurements for SQLstream Blaze 4 indicate a throughput performance in excess of 1 million records per second per CPU core with overall latency of under 10 milliseconds. SQLstream Blaze 4 has also been tested for data ingest rates into Hadoop in excess of 440 MB/second.

7 7 Conclusions SQLstream Blaze is a real-time data hub for streaming analytics, real-time visualization and continuous integration of machine data. The SQLstream Blaze stream processing engine, s-server, is 100% SQL-compliant and can handle up to a million records per second per CPU core. Stream processing unlocks the value of high-velocity unstructured log file, sensor and other machine data, giving new levels of visibility and insight, and driving both manual and automated actions in real-time. Businesses are moving on from simple monitoring and search-based tools, and trying to understand the meaning and causes of business and system problems. This requires the ability to process high-velocity data on a massive scale. The results of this benchmark demonstrate that SQLstream Blaze scales for the most extreme high-velocity Big Data use cases while being the lowest TCO option, even when compared with open source or freeware projects. The advantages of SQLstream Blaze as demonstrated in the performance benchmark project include: Scaling to a throughput of 1.35 million 1Kbyte records per second per four-core server each fed by twenty remote streaming agents. Expressiveness of the standards-based streaming SQL language with support for enhanced streaming User Defined Operations (UDXes) in Java. Deploying new analytics on the fly without having to stop and recompile or rebuild applications. Advanced pipeline operations including data enrichment, sliding time windows, external data storage platform read and write, and other advanced time-series analytics. Advanced memory management, with query optimization and execution environments to utilize and recover memory efficiently. Higher throughput and performance per server for lower hardware requirements, lower costs and simple to maintain installations. Proven, mature enterprise-grade product with a validated roadmap and controlled release schedule. In summary, SQLstream Blaze exceled through a mature, industry-strength platform, support for standard SQL (SQL:2011) for streaming data analysis, plus a flexible adapter and agent architecture. The result was class-leading performance with impressively low total cost of ownership. Using 20 remote agents pointed at each single s-server instance running on a 4-core Intel Xeon server platform, SQLstream was able to perform at a truly massive level of throughput: 1,350,000 records per second per 4-core server, each event having an initial payload of 1 KByte.

8 SQLstream, Inc Market Street San Francisco, CA, SQLstream powers real-time smart services for the Internet of Things. SQLstream s stream processing suite, Blaze, collects, analyzes and integrates sensor and other machine generated data in real-time, providing the real-time insight required to drive automated actions. SQLstream Blaze includes s-server, the world s fastest stream processor and the only stream processing platform built on standards-compliant streaming SQL. Blaze includes real-time visualization, industry-specific application libraries, and a full range of data collection agents and adapters for Hadoop and other enterprise data management platforms. SQLstream is the recipient of leading industry awards, including the Ventana Research Technology Innovation Award for IT Analytics and Performance. SQLstream is based in San Francisco, CA.

Streaming Big Data Performance Benchmark. for

Streaming Big Data Performance Benchmark. for Streaming Big Data Performance Benchmark for 2 The V of Big Data Velocity means both how fast data is being produced and how fast the data must be processed to meet demand. Gartner Static Big Data is a

More information

Streaming Big Data Performance Benchmark for Real-time Log Analytics in an Industry Environment

Streaming Big Data Performance Benchmark for Real-time Log Analytics in an Industry Environment Streaming Big Data Performance Benchmark for Real-time Log Analytics in an Industry Environment SQLstream s-server The Streaming Big Data Engine for Machine Data Intelligence 2 SQLstream proves 15x faster

More information

SQLstream 4 Product Brief. CHANGING THE ECONOMICS OF BIG DATA SQLstream 4.0 product brief

SQLstream 4 Product Brief. CHANGING THE ECONOMICS OF BIG DATA SQLstream 4.0 product brief SQLstream 4 Product Brief CHANGING THE ECONOMICS OF BIG DATA SQLstream 4.0 product brief 2 Latest: The latest release of SQlstream s award winning s-streaming Product Portfolio, SQLstream 4, is changing

More information

REAL-TIME OPERATIONAL INTELLIGENCE. Competitive advantage from unstructured, high-velocity log and machine Big Data

REAL-TIME OPERATIONAL INTELLIGENCE. Competitive advantage from unstructured, high-velocity log and machine Big Data REAL-TIME OPERATIONAL INTELLIGENCE Competitive advantage from unstructured, high-velocity log and machine Big Data 2 SQLstream: Our s-streaming products unlock the value of high-velocity unstructured log

More information

Processing and Analyzing Streams. CDRs in Real Time

Processing and Analyzing Streams. CDRs in Real Time Processing and Analyzing Streams of CDRs in Real Time Streaming Analytics for CDRs 2 The V of Big Data Velocity means both how fast data is being produced and how fast the data must be processed to meet

More information

From Spark to Ignition:

From Spark to Ignition: From Spark to Ignition: Fueling Your Business on Real-Time Analytics Eric Frenkiel, MemSQL CEO June 29, 2015 San Francisco, CA What s in Store For This Presentation? 1. MemSQL: A real-time database for

More information

Innovation Session BIG DATA. HP EMEA Software Performance Tour 2014

Innovation Session BIG DATA. HP EMEA Software Performance Tour 2014 HP EMEA Software Performance Tour 2014 Innovation Session BIG DATA Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Unlocking

More information

Embedded inside the database. No need for Hadoop or customcode. True real-time analytics done per transaction and in aggregate. On-the-fly linking IP

Embedded inside the database. No need for Hadoop or customcode. True real-time analytics done per transaction and in aggregate. On-the-fly linking IP Operates more like a search engine than a database Scoring and ranking IP allows for fuzzy searching Best-result candidate sets returned Contextual analytics to correctly disambiguate entities Embedded

More information

IBM System x reference architecture solutions for big data

IBM System x reference architecture solutions for big data IBM System x reference architecture solutions for big data Easy-to-implement hardware, software and services for analyzing data at rest and data in motion Highlights Accelerates time-to-value with scalable,

More information

Welcome. Host: Eric Kavanagh. eric.kavanagh@bloorgroup.com. The Briefing Room. Twitter Tag: #briefr

Welcome. Host: Eric Kavanagh. eric.kavanagh@bloorgroup.com. The Briefing Room. Twitter Tag: #briefr The Briefing Room Welcome Host: Eric Kavanagh eric.kavanagh@bloorgroup.com Twitter Tag: #briefr The Briefing Room Mission! Reveal the essential characteristics of enterprise software, good and bad! Provide

More information

BIG DATA ANALYTICS For REAL TIME SYSTEM

BIG DATA ANALYTICS For REAL TIME SYSTEM BIG DATA ANALYTICS For REAL TIME SYSTEM Where does big data come from? Big Data is often boiled down to three main varieties: Transactional data these include data from invoices, payment orders, storage

More information

Enabling Real-Time Sharing and Synchronization over the WAN

Enabling Real-Time Sharing and Synchronization over the WAN Solace message routers have been optimized to very efficiently distribute large amounts of data over wide area networks, enabling truly game-changing performance by eliminating many of the constraints

More information

HP Vertica OnDemand. Vertica OnDemand. Enterprise-class Big Data analytics in the cloud. Enterprise-class Big Data analytics for any size organization

HP Vertica OnDemand. Vertica OnDemand. Enterprise-class Big Data analytics in the cloud. Enterprise-class Big Data analytics for any size organization Data sheet HP Vertica OnDemand Enterprise-class Big Data analytics in the cloud Enterprise-class Big Data analytics for any size organization Vertica OnDemand Organizations today are experiencing a greater

More information

An Oracle White Paper June 2012. High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database

An Oracle White Paper June 2012. High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database An Oracle White Paper June 2012 High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database Executive Overview... 1 Introduction... 1 Oracle Loader for Hadoop... 2 Oracle Direct

More information

IT Platforms for Utilization of Big Data

IT Platforms for Utilization of Big Data Hitachi Review Vol. 63 (2014), No. 1 46 IT Platforms for Utilization of Big Yasutomo Yamamoto OVERVIEW: The growing momentum behind the utilization of big in social and corporate activity has created a

More information

Dell* In-Memory Appliance for Cloudera* Enterprise

Dell* In-Memory Appliance for Cloudera* Enterprise Built with Intel Dell* In-Memory Appliance for Cloudera* Enterprise Find out what faster big data analytics can do for your business The need for speed in all things related to big data is an enormous

More information

Powerful Duo: MapR Big Data Analytics with Cisco ACI Network Switches

Powerful Duo: MapR Big Data Analytics with Cisco ACI Network Switches Powerful Duo: MapR Big Data Analytics with Cisco ACI Network Switches Introduction For companies that want to quickly gain insights into or opportunities from big data - the dramatic volume growth in corporate

More information

DATAMEER WHITE PAPER. Beyond BI. Big Data Analytic Use Cases

DATAMEER WHITE PAPER. Beyond BI. Big Data Analytic Use Cases DATAMEER WHITE PAPER Beyond BI Big Data Analytic Use Cases This white paper discusses the types and characteristics of big data analytics use cases, how they differ from traditional business intelligence

More information

News and trends in Data Warehouse Automation, Big Data and BI. Johan Hendrickx & Dirk Vermeiren

News and trends in Data Warehouse Automation, Big Data and BI. Johan Hendrickx & Dirk Vermeiren News and trends in Data Warehouse Automation, Big Data and BI Johan Hendrickx & Dirk Vermeiren Extreme Agility from Source to Analysis DWH Appliances & DWH Automation Typical Architecture 3 What Business

More information

Understanding traffic flow

Understanding traffic flow White Paper A Real-time Data Hub For Smarter City Applications Intelligent Transportation Innovation for Real-time Traffic Flow Analytics with Dynamic Congestion Management 2 Understanding traffic flow

More information

The 4 Pillars of Technosoft s Big Data Practice

The 4 Pillars of Technosoft s Big Data Practice beyond possible Big Use End-user applications Big Analytics Visualisation tools Big Analytical tools Big management systems The 4 Pillars of Technosoft s Big Practice Overview Businesses have long managed

More information

Big Data Analytics - Accelerated. stream-horizon.com

Big Data Analytics - Accelerated. stream-horizon.com Big Data Analytics - Accelerated stream-horizon.com Legacy ETL platforms & conventional Data Integration approach Unable to meet latency & data throughput demands of Big Data integration challenges Based

More information

Modern IT Operations Management. Why a New Approach is Required, and How Boundary Delivers

Modern IT Operations Management. Why a New Approach is Required, and How Boundary Delivers Modern IT Operations Management Why a New Approach is Required, and How Boundary Delivers TABLE OF CONTENTS EXECUTIVE SUMMARY 3 INTRODUCTION: CHANGING NATURE OF IT 3 WHY TRADITIONAL APPROACHES ARE FAILING

More information

High Performance Data Management Use of Standards in Commercial Product Development

High Performance Data Management Use of Standards in Commercial Product Development v2 High Performance Data Management Use of Standards in Commercial Product Development Jay Hollingsworth: Director Oil & Gas Business Unit Standards Leadership Council Forum 28 June 2012 1 The following

More information

Maximum performance, minimal risk for data warehousing

Maximum performance, minimal risk for data warehousing SYSTEM X SERVERS SOLUTION BRIEF Maximum performance, minimal risk for data warehousing Microsoft Data Warehouse Fast Track for SQL Server 2014 on System x3850 X6 (95TB) The rapid growth of technology has

More information

Where is... How do I get to...

Where is... How do I get to... Big Data, Fast Data, Spatial Data Making Sense of Location Data in a Smart City Hans Viehmann Product Manager EMEA ORACLE Corporation August 19, 2015 Copyright 2014, Oracle and/or its affiliates. All rights

More information

Big Data Analytics: Today's Gold Rush November 20, 2013

Big Data Analytics: Today's Gold Rush November 20, 2013 Copyright 2013 Vivit Worldwide Big Data Analytics: Today's Gold Rush November 20, 2013 Brought to you by Copyright 2013 Vivit Worldwide Hosted by Bernard Szymczak Vivit Leader Ohio Chapter TQA SIG Copyright

More information

Cisco Data Preparation

Cisco Data Preparation Data Sheet Cisco Data Preparation Unleash your business analysts to develop the insights that drive better business outcomes, sooner, from all your data. As self-service business intelligence (BI) and

More information

Big data platform for IoT Cloud Analytics. Chen Admati, Advanced Analytics, Intel

Big data platform for IoT Cloud Analytics. Chen Admati, Advanced Analytics, Intel Big data platform for IoT Cloud Analytics Chen Admati, Advanced Analytics, Intel Agenda IoT @ Intel End-to-End offering Analytics vision Big data platform for IoT Cloud Analytics Platform Capabilities

More information

Oracle Big Data SQL Technical Update

Oracle Big Data SQL Technical Update Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical

More information

Elasticsearch on Cisco Unified Computing System: Optimizing your UCS infrastructure for Elasticsearch s analytics software stack

Elasticsearch on Cisco Unified Computing System: Optimizing your UCS infrastructure for Elasticsearch s analytics software stack Elasticsearch on Cisco Unified Computing System: Optimizing your UCS infrastructure for Elasticsearch s analytics software stack HIGHLIGHTS Real-Time Results Elasticsearch on Cisco UCS enables a deeper

More information

Simplifying Big Data Analytics: Unifying Batch and Stream Processing. John Fanelli,! VP Product! In-Memory Compute Summit! June 30, 2015!!

Simplifying Big Data Analytics: Unifying Batch and Stream Processing. John Fanelli,! VP Product! In-Memory Compute Summit! June 30, 2015!! Simplifying Big Data Analytics: Unifying Batch and Stream Processing John Fanelli,! VP Product! In-Memory Compute Summit! June 30, 2015!! Streaming Analy.cs S S S Scale- up Database Data And Compute Grid

More information

Create and Drive Big Data Success Don t Get Left Behind

Create and Drive Big Data Success Don t Get Left Behind Create and Drive Big Data Success Don t Get Left Behind The performance boost from MapR not only means we have lower hardware requirements, but also enables us to deliver faster analytics for our users.

More information

Time-Series Databases and Machine Learning

Time-Series Databases and Machine Learning Time-Series Databases and Machine Learning Jimmy Bates November 2017 1 Top-Ranked Hadoop 1 3 5 7 Read Write File System World Record Performance High Availability Enterprise-grade Security Distribution

More information

Lambda Architecture for Batch and Real- Time Processing on AWS with Spark Streaming and Spark SQL. May 2015

Lambda Architecture for Batch and Real- Time Processing on AWS with Spark Streaming and Spark SQL. May 2015 Lambda Architecture for Batch and Real- Time Processing on AWS with Spark Streaming and Spark SQL May 2015 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved. Notices This document

More information

CitusDB Architecture for Real-Time Big Data

CitusDB Architecture for Real-Time Big Data CitusDB Architecture for Real-Time Big Data CitusDB Highlights Empowers real-time Big Data using PostgreSQL Scales out PostgreSQL to support up to hundreds of terabytes of data Fast parallel processing

More information

Enabling Cloud Architecture for Globally Distributed Applications

Enabling Cloud Architecture for Globally Distributed Applications The increasingly on demand nature of enterprise and consumer services is driving more companies to execute business processes in real-time and give users information in a more realtime, self-service manner.

More information

Real Time Big Data Processing

Real Time Big Data Processing Real Time Big Data Processing Cloud Expo 2014 Ian Meyers Amazon Web Services Global Infrastructure Deployment & Administration App Services Analytics Compute Storage Database Networking AWS Global Infrastructure

More information

THE DEVELOPER GUIDE TO BUILDING STREAMING DATA APPLICATIONS

THE DEVELOPER GUIDE TO BUILDING STREAMING DATA APPLICATIONS THE DEVELOPER GUIDE TO BUILDING STREAMING DATA APPLICATIONS WHITE PAPER Successfully writing Fast Data applications to manage data generated from mobile, smart devices and social interactions, and the

More information

Minimize cost and risk for data warehousing

Minimize cost and risk for data warehousing SYSTEM X SERVERS SOLUTION BRIEF Minimize cost and risk for data warehousing Microsoft Data Warehouse Fast Track for SQL Server 2014 on System x3850 X6 (55TB) Highlights Improve time to value for your data

More information

locuz.com Big Data Services

locuz.com Big Data Services locuz.com Big Data Services Big Data At Locuz, we help the enterprise move from being a data-limited to a data-driven one, thereby enabling smarter, faster decisions that result in better business outcome.

More information

III Big Data Technologies

III Big Data Technologies III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution

More information

Innovation: Add Predictability to an Unpredictable World

Innovation: Add Predictability to an Unpredictable World Innovation: Add Predictability to an Unpredictable World Improve Visibility and Control of Your Telecom Network Judith Hurwitz President and CEO Sponsored by Hitachi Data Systems Introduction It is all

More information

Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase

Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform

More information

Dynamic M2M Event Processing Complex Event Processing and OSGi on Java Embedded

Dynamic M2M Event Processing Complex Event Processing and OSGi on Java Embedded Dynamic M2M Event Processing Complex Event Processing and OSGi on Java Embedded Oleg Kostukovsky - Master Principal Sales Consultant Walt Bowers - Hitachi CTA Chief Architect 1 2 1. The Vs of Big Data

More information

Accelerating Hadoop MapReduce Using an In-Memory Data Grid

Accelerating Hadoop MapReduce Using an In-Memory Data Grid Accelerating Hadoop MapReduce Using an In-Memory Data Grid By David L. Brinker and William L. Bain, ScaleOut Software, Inc. 2013 ScaleOut Software, Inc. 12/27/2012 H adoop has been widely embraced for

More information

Fast, Low-Overhead Encryption for Apache Hadoop*

Fast, Low-Overhead Encryption for Apache Hadoop* Fast, Low-Overhead Encryption for Apache Hadoop* Solution Brief Intel Xeon Processors Intel Advanced Encryption Standard New Instructions (Intel AES-NI) The Intel Distribution for Apache Hadoop* software

More information

Real-time Big Data Analytics with Storm

Real-time Big Data Analytics with Storm Ron Bodkin Founder & CEO, Think Big June 2013 Real-time Big Data Analytics with Storm Leading Provider of Data Science and Engineering Services Accelerating Your Time to Value IMAGINE Strategy and Roadmap

More information

Apache Hadoop in the Enterprise. Dr. Amr Awadallah, CTO/Founder @awadallah, aaa@cloudera.com

Apache Hadoop in the Enterprise. Dr. Amr Awadallah, CTO/Founder @awadallah, aaa@cloudera.com Apache Hadoop in the Enterprise Dr. Amr Awadallah, CTO/Founder @awadallah, aaa@cloudera.com Cloudera The Leader in Big Data Management Powered by Apache Hadoop The Leading Open Source Distribution of Apache

More information

Klarna Tech Talk: Mind the Data! Jeff Pollock InfoSphere Information Integration & Governance

Klarna Tech Talk: Mind the Data! Jeff Pollock InfoSphere Information Integration & Governance Klarna Tech Talk: Mind the Data! Jeff Pollock InfoSphere Information Integration & Governance IBM s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice

More information

Get More Scalability and Flexibility for Big Data

Get More Scalability and Flexibility for Big Data Solution Overview LexisNexis High-Performance Computing Cluster Systems Platform Get More Scalability and Flexibility for What You Will Learn Modern enterprises are challenged with the need to store and

More information

Radware ADC-VX Solution. The Agility of Virtual; The Predictability of Physical

Radware ADC-VX Solution. The Agility of Virtual; The Predictability of Physical Radware ADC-VX Solution The Agility of Virtual; The Predictability of Physical Table of Contents General... 3 Virtualization and consolidation trends in the data centers... 3 How virtualization and consolidation

More information

How Transactional Analytics is Changing the Future of Business A look at the options, use cases, and anti-patterns

How Transactional Analytics is Changing the Future of Business A look at the options, use cases, and anti-patterns How Transactional Analytics is Changing the Future of Business A look at the options, use cases, and anti-patterns Table of Contents Abstract... 3 Introduction... 3 Definition... 3 The Expanding Digitization

More information

Big Data Analytics - Accelerated. stream-horizon.com

Big Data Analytics - Accelerated. stream-horizon.com Big Data Analytics - Accelerated stream-horizon.com StreamHorizon & Big Data Integrates into your Data Processing Pipeline Seamlessly integrates at any point of your your data processing pipeline Implements

More information

Pulsar Realtime Analytics At Scale. Tony Ng April 14, 2015

Pulsar Realtime Analytics At Scale. Tony Ng April 14, 2015 Pulsar Realtime Analytics At Scale Tony Ng April 14, 2015 Big Data Trends Bigger data volumes More data sources DBs, logs, behavioral & business event streams, sensors Faster analysis Next day to hours

More information

IBM WebSphere Premises Server

IBM WebSphere Premises Server Integrate sensor data to create new visibility and drive business process innovation IBM WebSphere Server Highlights Derive actionable insights that support Enable real-time location tracking business

More information

Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database

Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica

More information

Interactive data analytics drive insights

Interactive data analytics drive insights Big data Interactive data analytics drive insights Daniel Davis/Invodo/S&P. Screen images courtesy of Landmark Software and Services By Armando Acosta and Joey Jablonski The Apache Hadoop Big data has

More information

BIG DATA: FROM HYPE TO REALITY. Leandro Ruiz Presales Partner for C&LA Teradata

BIG DATA: FROM HYPE TO REALITY. Leandro Ruiz Presales Partner for C&LA Teradata BIG DATA: FROM HYPE TO REALITY Leandro Ruiz Presales Partner for C&LA Teradata Evolution in The Use of Information Action s ACTIVATING MAKE it happen! Insights OPERATIONALIZING WHAT IS happening now? PREDICTING

More information

SQL Server 2012 Parallel Data Warehouse. Solution Brief

SQL Server 2012 Parallel Data Warehouse. Solution Brief SQL Server 2012 Parallel Data Warehouse Solution Brief Published February 22, 2013 Contents Introduction... 1 Microsoft Platform: Windows Server and SQL Server... 2 SQL Server 2012 Parallel Data Warehouse...

More information

Complex, true real-time analytics on massive, changing datasets.

Complex, true real-time analytics on massive, changing datasets. Complex, true real-time analytics on massive, changing datasets. A NoSQL, all in-memory enabling platform technology from: Better Questions Come Before Better Answers FinchDB is a NoSQL, all in-memory

More information

Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control

Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control EP/K006487/1 UK PI: Prof Gareth Taylor (BU) China PI: Prof Yong-Hua Song (THU) Consortium UK Members: Brunel University

More information

Business opportunities from IOT and Big Data. Joachim Aertebjerg Director Enterprise Solution Sales Intel EMEA

Business opportunities from IOT and Big Data. Joachim Aertebjerg Director Enterprise Solution Sales Intel EMEA Business opportunities from IOT and Big Data Joachim Aertebjerg Director Enterprise Solution Sales Intel EMEA HOW INTEL IS TRANSFORMING COMPUTING? Smarter Devices Applications of Big Data Compute for Internet

More information

Achieving Real-Time Business Solutions Using Graph Database Technology and High Performance Networks

Achieving Real-Time Business Solutions Using Graph Database Technology and High Performance Networks WHITE PAPER July 2014 Achieving Real-Time Business Solutions Using Graph Database Technology and High Performance Networks Contents Executive Summary...2 Background...3 InfiniteGraph...3 High Performance

More information

White Paper. How Streaming Data Analytics Enables Real-Time Decisions

White Paper. How Streaming Data Analytics Enables Real-Time Decisions White Paper How Streaming Data Analytics Enables Real-Time Decisions Contents Introduction... 1 What Is Streaming Analytics?... 1 How Does SAS Event Stream Processing Work?... 2 Overview...2 Event Stream

More information

DRIVING THE CHANGE ENABLING TECHNOLOGY FOR FINANCE 15 TH FINANCE TECH FORUM SOFIA, BULGARIA APRIL 25 2013

DRIVING THE CHANGE ENABLING TECHNOLOGY FOR FINANCE 15 TH FINANCE TECH FORUM SOFIA, BULGARIA APRIL 25 2013 DRIVING THE CHANGE ENABLING TECHNOLOGY FOR FINANCE 15 TH FINANCE TECH FORUM SOFIA, BULGARIA APRIL 25 2013 BRAD HATHAWAY REGIONAL LEADER FOR INFORMATION MANAGEMENT AGENDA Major Technology Trends Focus on

More information

SELF-SERVICE DATA LAKES ON HADOOP

SELF-SERVICE DATA LAKES ON HADOOP SELF-SERVICE DATA LAKES ON HADOOP Introduction A recent Gartner survey on Hadoop cited the two biggest challenges in working with Hadoop: Skills gaps continue to be a major adoption inhibitor for 57% of

More information

HADOOP SOLUTION USING EMC ISILON AND CLOUDERA ENTERPRISE Efficient, Flexible In-Place Hadoop Analytics

HADOOP SOLUTION USING EMC ISILON AND CLOUDERA ENTERPRISE Efficient, Flexible In-Place Hadoop Analytics HADOOP SOLUTION USING EMC ISILON AND CLOUDERA ENTERPRISE Efficient, Flexible In-Place Hadoop Analytics ESSENTIALS EMC ISILON Use the industry's first and only scale-out NAS solution with native Hadoop

More information

Splunk Company Overview

Splunk Company Overview Copyright 2015 Splunk Inc. Splunk Company Overview Name Title Safe Harbor Statement During the course of this presentation, we may make forward looking statements regarding future events or the expected

More information

Beyond Lambda - how to get from logical to physical. Artur Borycki, Director International Technology & Innovations

Beyond Lambda - how to get from logical to physical. Artur Borycki, Director International Technology & Innovations Beyond Lambda - how to get from logical to physical Artur Borycki, Director International Technology & Innovations Simplification & Efficiency Teradata believe in the principles of self-service, automation

More information

HadoopTM Analytics DDN

HadoopTM Analytics DDN DDN Solution Brief Accelerate> HadoopTM Analytics with the SFA Big Data Platform Organizations that need to extract value from all data can leverage the award winning SFA platform to really accelerate

More information

Big Data Architecture

Big Data Architecture Big Architecture Guido Schmutz BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENEVA HAMBURG COPENHAGEN LAUSANNE MUNICH STUTTGART VIENNA ZURICH Guido Schmutz Working for Trivadis for more than

More information

Deploying Big Data to the Cloud: Roadmap for Success

Deploying Big Data to the Cloud: Roadmap for Success Deploying Big Data to the Cloud: Roadmap for Success James Kobielus Chair, CSCC Big Data in the Cloud Working Group IBM Big Data Evangelist. IBM Data Magazine, Editor-in- Chief. IBM Senior Program Director,

More information

High Performance Big Data Analy5cs powered by Unique Web Accelera5on and NoSQL. The Big Data Engine

High Performance Big Data Analy5cs powered by Unique Web Accelera5on and NoSQL. The Big Data Engine High Performance Big Data Analy5cs powered by Unique Web Accelera5on and NoSQL Foster City, CA July 31, 2012 Big Data requires new thinking The challenges and opportuni5es of Big Data Big Data requires

More information

White Paper. Unified Data Integration Across Big Data Platforms

White Paper. Unified Data Integration Across Big Data Platforms White Paper Unified Data Integration Across Big Data Platforms Contents Business Problem... 2 Unified Big Data Integration... 3 Diyotta Solution Overview... 4 Data Warehouse Project Implementation using

More information

Unified Data Integration Across Big Data Platforms

Unified Data Integration Across Big Data Platforms Unified Data Integration Across Big Data Platforms Contents Business Problem... 2 Unified Big Data Integration... 3 Diyotta Solution Overview... 4 Data Warehouse Project Implementation using ELT... 6 Diyotta

More information

Elastic Application Platform for Market Data Real-Time Analytics. for E-Commerce

Elastic Application Platform for Market Data Real-Time Analytics. for E-Commerce Elastic Application Platform for Market Data Real-Time Analytics Can you deliver real-time pricing, on high-speed market data, for real-time critical for E-Commerce decisions? Market Data Analytics applications

More information

Cisco UCS and Fusion- io take Big Data workloads to extreme performance in a small footprint: A case study with Oracle NoSQL database

Cisco UCS and Fusion- io take Big Data workloads to extreme performance in a small footprint: A case study with Oracle NoSQL database Cisco UCS and Fusion- io take Big Data workloads to extreme performance in a small footprint: A case study with Oracle NoSQL database Built up on Cisco s big data common platform architecture (CPA), a

More information

ANALYTICS BUILT FOR INTERNET OF THINGS

ANALYTICS BUILT FOR INTERNET OF THINGS ANALYTICS BUILT FOR INTERNET OF THINGS Big Data Reporting is Out, Actionable Insights are In In recent years, it has become clear that data in itself has little relevance, it is the analysis of it that

More information

BIG DATA TRENDS AND TECHNOLOGIES

BIG DATA TRENDS AND TECHNOLOGIES BIG DATA TRENDS AND TECHNOLOGIES THE WORLD OF DATA IS CHANGING Cloud WHAT IS BIG DATA? Big data are datasets that grow so large that they become awkward to work with using onhand database management tools.

More information

Oracle Big Data Building A Big Data Management System

Oracle Big Data Building A Big Data Management System Oracle Big Building A Big Management System Copyright 2015, Oracle and/or its affiliates. All rights reserved. Effi Psychogiou ECEMEA Big Product Director May, 2015 Safe Harbor Statement The following

More information

How to Leverage Big Data in the Cloud to Gain Competitive Advantage

How to Leverage Big Data in the Cloud to Gain Competitive Advantage How to Leverage Big Data in the Cloud to Gain Competitive Advantage James Kobielus, IBM Big Data Evangelist Editor-in-Chief, IBM Data Magazine Senior Program Director, Product Marketing, Big Data Analytics

More information

Connected Product Maturity Model

Connected Product Maturity Model White Paper Connected Product Maturity Model Achieve Innovation with Connected Capabilities What is M2M-ize? To M2Mize means to optimize business processes using machine data often accomplished by feeding

More information

IBM Software Hadoop in the cloud

IBM Software Hadoop in the cloud IBM Software Hadoop in the cloud Leverage big data analytics easily and cost-effectively with IBM InfoSphere 1 2 3 4 5 Introduction Cloud and analytics: The new growth engine Enhancing Hadoop in the cloud

More information

Your Path to. Big Data A Visual Guide

Your Path to. Big Data A Visual Guide Your Path to Big Data A Visual Guide Big Data Has Big Value Start Here to Learn How to Unlock It By now it s become fairly clear that big data represents a major shift in the technology landscape. To tackle

More information

Unisys ClearPath Forward Fabric Based Platform to Power the Weather Enterprise

Unisys ClearPath Forward Fabric Based Platform to Power the Weather Enterprise Unisys ClearPath Forward Fabric Based Platform to Power the Weather Enterprise Introducing Unisys All in One software based weather platform designed to reduce server space, streamline operations, consolidate

More information

IBM Netezza High Capacity Appliance

IBM Netezza High Capacity Appliance IBM Netezza High Capacity Appliance Petascale Data Archival, Analysis and Disaster Recovery Solutions IBM Netezza High Capacity Appliance Highlights: Allows querying and analysis of deep archival data

More information

Virtualizing Apache Hadoop. June, 2012

Virtualizing Apache Hadoop. June, 2012 June, 2012 Table of Contents EXECUTIVE SUMMARY... 3 INTRODUCTION... 3 VIRTUALIZING APACHE HADOOP... 4 INTRODUCTION TO VSPHERE TM... 4 USE CASES AND ADVANTAGES OF VIRTUALIZING HADOOP... 4 MYTHS ABOUT RUNNING

More information

BIG DATA FOR MEDIA SIGMA DATA SCIENCE GROUP MARCH 2ND, OSLO

BIG DATA FOR MEDIA SIGMA DATA SCIENCE GROUP MARCH 2ND, OSLO BIG DATA FOR MEDIA SIGMA DATA SCIENCE GROUP MARCH 2ND, OSLO ANTHONY A. KALINDE SIGMA DATA SCIENCE GROUP ASSOCIATE "REALTIME BEHAVIOURAL DATA COLLECTION CLICKSTREAM EXAMPLE" WHAT IS CLICKSTREAM ANALYTICS?

More information

IBM BigInsights for Apache Hadoop

IBM BigInsights for Apache Hadoop IBM BigInsights for Apache Hadoop Efficiently manage and mine big data for valuable insights Highlights: Enterprise-ready Apache Hadoop based platform for data processing, warehousing and analytics Advanced

More information

Using In-Memory Computing to Simplify Big Data Analytics

Using In-Memory Computing to Simplify Big Data Analytics SCALEOUT SOFTWARE Using In-Memory Computing to Simplify Big Data Analytics by Dr. William Bain, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 T he big data revolution is upon us, fed

More information

Radware ADC-VX Solution. The Agility of Virtual; The Predictability of Physical

Radware ADC-VX Solution. The Agility of Virtual; The Predictability of Physical Radware ADC-VX Solution The Agility of Virtual; The Predictability of Physical Table of Contents General... 3 Virtualization and consolidation trends in the data centers... 3 How virtualization and consolidation

More information

Oracle NoSQL Database and SanDisk Offer Cost-Effective Extreme Performance for Big Data

Oracle NoSQL Database and SanDisk Offer Cost-Effective Extreme Performance for Big Data WHITE PAPER Oracle NoSQL Database and SanDisk Offer Cost-Effective Extreme Performance for Big Data 951 SanDisk Drive, Milpitas, CA 95035 www.sandisk.com Table of Contents Abstract... 3 What Is Big Data?...

More information

JDSU Partners with Infobright to Help the World s Largest Communications Service Providers Ensure the Highest Quality of Service

JDSU Partners with Infobright to Help the World s Largest Communications Service Providers Ensure the Highest Quality of Service JDSU Partners with Infobright to Help the World s Largest Communications Service Providers Ensure the Highest Quality of Service Overview JDSU (NASDAQ: JDSU; and TSX: JDU) innovates and markets diverse

More information

Dell In-Memory Appliance for Cloudera Enterprise

Dell In-Memory Appliance for Cloudera Enterprise Dell In-Memory Appliance for Cloudera Enterprise Hadoop Overview, Customer Evolution and Dell In-Memory Product Details Author: Armando Acosta Hadoop Product Manager/Subject Matter Expert Armando_Acosta@Dell.com/

More information

Transforming the Telecoms Business using Big Data and Analytics

Transforming the Telecoms Business using Big Data and Analytics Transforming the Telecoms Business using Big Data and Analytics Event: ICT Forum for HR Professionals Venue: Meikles Hotel, Harare, Zimbabwe Date: 19 th 21 st August 2015 AFRALTI 1 Objectives Describe

More information

Predictive Analytics with Storm, Hadoop, R on AWS

Predictive Analytics with Storm, Hadoop, R on AWS Douglas Moore Principal Consultant & Architect February 2013 Predictive Analytics with Storm, Hadoop, R on AWS Leading Provider Data Science and Engineering Services Accelerating Your Time to Value using

More information

Intel Platform and Big Data: Making big data work for you.

Intel Platform and Big Data: Making big data work for you. Intel Platform and Big Data: Making big data work for you. 1 From data comes insight New technologies are enabling enterprises to transform opportunity into reality by turning big data into actionable

More information