Phase Diagrams & Thermodynamics

Size: px
Start display at page:

Download "Phase Diagrams & Thermodynamics"

Transcription

1 Phase Diagrams & Thermodynamics A phase diagram is a graphical representation of the equilibrium state of a system using the intensive variables T and i while p is kept constant. The equilibrium may be calculated from thermodynamic data using G for all relevant phases G Solubility of B in pure A Line Compound p const. T const. Solution (e.g. Liquid) Solution with miscibility gap A B B 1 Modeling

2 The Tangent Method Graphical evaluation of equilibria from the G() curves G T, p const. Local equilibrium conditions: phase μ A phase μ A μ B μ B μ A μ A : G ' ' G ' ( ) μ B μ B : G '' '' G ( ) '' G ' ' G + (1 ) ( ) and: T T ; p p ' G '' '' G + (1 ) ( ) '' A B 2 Modeling

3 What do we need for the Calculation? For each phase relevant in the system we need the Gibbs Energy G as a function of the intensive variables p, T, i (analytical epression) The combination of these Gibbs energies defines our thermodynamic model. The minimum of G for the system, and thus the phase equilibria, can be calculated by minimization procedures. Phases: pure condensed substances (elements, compounds) solutions (liquid and solid solutions) nonstoichiometric compounds gas phase (consisting of different gas species i with partial pressure p i ) 3 Modeling

4 Thermodynamic Modeling Literature M. Hillert: Phase Equilibria, Phase Diagrams and Phase Transformations Their Thermodynamic Basis, Cambridge University Press 1998 M Hillert: By modeling we shall understand the selection of some assumptions from which it is possible to calculate the properties of a system 1) Physical models: hypothesis mathematical epression 2) Empirical models: eperimental data mathematical epression 4 Modeling

5 Eample: Simple Empirical Model Consider the representation of G as a power series in T c p But: G G H a + bt + dt c p SER 2 G T ( ) 2dT 2 T Usual course of c p at high temperature T / K This means we need a constant term in c p for a proper description! c p c 2dT... G a + bt + ct lnt + dt Representation generally used in SGTE format. Only valid for high temperatures! 5 Modeling

6 Simple Physical Model: Thermal acancies Consider a pure crystalline solid ( N + N element. The number of possible W arrangements is: N! Nv! )! N: number of atoms N : number of vacancies According to Boltzmann this gives a change in entropy: ΔS k lnw k [( N + N )ln( N + N ) N lnn N lnn ] This may be introduced into the Gibbs Energy: ΔG N N g TΔS g + knt[ln N N + N + N N N ln N + N ] g: energy of formation for one vacancy 6 Modeling

7 Thermal acancies (2) Regard N as internal variable for a Gibbs energy minimization: D G 0 ( ) T, p, N N g + N kt ln N + N Equilibrium fraction of vacancies (for D 0) y D: thermodynamic driving force eq N N + N ep( g kt ) At equilibrium the internal variable (N ) can now be eliminated: ΔG N N g g + knt[ln(1 y knt ln(1 y + knt[ln N eq ) N + N eq ) + N + N N N ln y RT ln[1 ep( 7 Modeling N ln N + N eq g kt ] )] ]

8 Solution Phases Thermodynamic properties have to be modeled as a function of composition ΔG solution phase T, p const. line compound e.g. NaCl, GaAs In fact also shows homogeneity range Depends on the scale! line compound AB 2 solution phase Most liquids Solid solutions nonstoichiometric compounds A B B Two component system (binary) 8 Modeling

9 Ideal Solution G G( p, T, N1, N2,...) G G( p, T, ) (binary system) No difference in the interaction between like and unlike atoms is assumed for the ideal solution : ΔH Δ id id 0 0 A - A A - B B B ΔS id 0 ΔG id 0 ΔS ΔG id id R RT c i 1 c i 1 i ln i i ln i R[ ln + (1 )ln(1 )] RT[ ln + (1 )ln(1 )] As < 1 ln < 0 always stabilizing! 9 Modeling

10 Ideal Solution (2) 0.5 ln + (1 )ln(1 ) lim a0 Δ S id lim Δ a1 lim a0 S id Δ G id lim Δ a1 G id Modeling

11 Regular Solution [Hildebrand 1929]: Interaction between unlike atoms contributes to ΔH. ΔG ε ( 1 ) + RT[ ln + (1 )ln(1 )] Ecess term Ideal term Define Ecess functions of the form Y Y E + Y IDEAL ε < 0 : Additional stabilization from H E ε 0 : Ideal Solution ε > 0 : Interplay between S (stabilization) and H (destabilization) 11 Modeling

12 Regular Solution - Eample ε 12.5 kjmol -1 Critical point [Y.A. Chang, University of Wisconsin] 12 Modeling

13 Regular Solution Eample (2) ε 12.5 kjmol Modeling

14 Regular Solution Eample (3) Resulting phase diagram obtained by the calculation with our regular solution model (ε 12.5 kjmol -1 ) single phase field spinodal curve two phase field 14 Modeling

15 Redlich-Kister Polynoms Common standard model for solution modeling. Etension of the regular solution model for the modeling of all kinds of asymmetric shapes. I I G B A E Δ ) 1 ( General epression for the binary Redlich-Kister:... ) ( ) ( B A B A L L L I Δ n k k B A k B A E L G 0 ) ( L is modeled as a function of T e.g.: or higher powers of T bt a L k + 15 Modeling

16 Sublattice Models Nonstoichiometric compounds require composition dependent modeling. Usually they have more than one sublattice. No adequate representation by conventional Redlich-Kister models! Usual case for crystalline phases: acancies Interstitials Substitutions Occur on different sublattices! Crystal structure and defect mechanisms must be known! X-ray diffraction investigations Spectroscopy Diffusion studies, etc 16 Modeling

17 Eample: TiO 2- Sublattice Model Rutile structure type Tetragonal P4 2 /mnm Ti 4+ : 2a (0,0,0) O 2-, a 2-4f (0.3,0.3,0) Sublattice notation: (Ti 4+ ) 1 (O 2-,a 2- ) 2 ΔG + y 0 2 y y O 2 a G 2 0 TiO n 2 k 0 k + y a 2 L( T )( y G O 0 Tia 2 2 y + a 2RT ( y 2 ) k O 2 ln y O 2 + y a 2 ln y a 2 ) (y Site fraction) [Waldner and Eriksson, CALPHAD 1999] 17 Modeling

18 Etension to higher order Systems 1) Solutions: The thermodynamic properties of the solution are etrapolated from the thermodynamic properties of the subsystems using different geometrical models. e.g.: - Kohler Model (symmetric) - Muggianu Model (symmetric) - Toop Model (asymmetric) Etrapolation with or without additional interaction parameters 2) Compounds: Up to now it is not possible to predict compound formation Eperiments necessary! Higher order compounds are modeled as line compounds (only temperature dependence) or with suitable sublattice models according to the crystal structure. 18 Modeling

19 Kohler Model A B(AB) C(AC) ΔG + + E ABC A A( AB) A A( AC) B B( BC) B B( AB) C C( AC) C G C( BC) E AB G G E AC E BC A(AC) A(AB) C B Symmetric Etrapolation B(BC) C(BC) 19 Modeling

20 Muggianu Model A B(AB) C(AC) ΔG + + E ABC A A( AB) A A( AC) B B( BC) B B( AB) C C( AC) C G C( BC) E AB G G E AC E BC A(AC) A(AB) C B Symmetric Etrapolation B(BC) C(BC) 20 Modeling

21 Toop Model A(AC) C C(AC) A Asymmetric Component 0.8 B(AB) A(AB) B ΔG + + E ABC A A( AB) A A( AC) B B( BC) B B( AB) C C( AC) C G C( BC) E AB G G E AC E BC Asymmetric Etrapolation B(BC) C(BC) 21 Modeling

22 The CALPHAD Method CALPHAD Calculation of Phase Diagrams Critical assessment and thermodynamic optimization of binary and higher order systems 1) Literature Assessment: evaluation of all available literature sources 2) Modeling of the Gibbs energies G(p,T, i ) for all phases in the system. 3) Optimization of model parameters for best representation of the eperimental data interconsistency of data! Data Sources: Thermodynamics (Calorimetry, EMF, vapor pressure) Phase Diagram Studies (DTA/DSC, X-ray diffraction, optical microscopy, SEM/EPMA, ) Other Methods (Diffusion studies, magnetic investigations, ) 22 Modeling

23 Evaluation and selection of input data Thermodynamic modeling of the phases The CALPHAD approach [G. Cacciamani, Genova University] Optimization of model parameters (by error minimization procedures) Calculation (phase diagrams, property diagrams, etc.) and Comparison (to the input data) Applications (databases, predictions, simulations, etc.) 23 Modeling

24 The CALPHAD Approach (1) Evaluation and selection of input data Optimisation of model parameters (by error minimisation procedures) Thermodynamic modeling of the phases Calculation (phase diagrams, property diagrams, etc.) and Comparison (to the input data) Stoichiometric compounds Ordered solutions Disordered solid solutions Liquids etc. Applications (databases, predictions, simulations, etc.) 24 Modeling

25 The CALPHAD Approach (2) Evaluation and selection of input data Optimisation of model parameters (by error minimisation procedures) Thermodynamic modeling of the phases Calculation (phase diagrams, property diagrams, etc.) and Comparison (to the input data) Eperiments (DTA, DSC, calorimetry, EMF, vapor pressure, LOM, SEM, X-ray diffraction, etc.) Estimates (periodic properties, chemical criteria, etc.) Theory (ab-initio, semi-empirical, etc.) Applications (databases, predictions, simulations, etc.) 25 Modeling

26 The CALPHAD Approach (3) Evaluation and selection of input data Thermodynamic modeling of the phases Optimisation of model parameters (by error minimisation procedures) Calculation (phase diagrams, property diagrams, etc.) and Comparison (to the input data) Applications (databases, predictions, simulations, etc.) G(P,T, 1,..., i,) Data selection and input Weight assignment Parameter evaluation by non-linear least squares regression 26 Modeling

27 The CALPHAD Approach (4) Evaluation and selection of input data Thermodynamic modeling of the phases Optimisation of model parameters (by error minimisation procedures) Calculation (phase diagrams, property diagrams, etc.) and Comparison (to the input data) Applications (databases, predictions, simulations, etc.) Comparison with input and derived data Compatibility with similar and higher order systems 27 Modeling

28 The CALPHAD Approach (5) Evaluation and selection of input data Thermodynamic modeling of the phases Optimisation of model parameters (by error minimisation procedures) Calculation (phase diagrams, property diagrams, etc.) and Comparison (to the input data) Applications (databases, predictions, simulations, etc.) Database implementation Etrapolation to higher order Materials simulation etc. 28 Modeling

29 The CALPHAD Approach (6) optimized A-B optimized A-C optimized B-C etrapolated A-B-C a few key data optimized A-B-C 29 Modeling

30 The CALPHAD Approach (7) optimized A-B-C optimized A-B-D optimized A-C-D optimized B-C-D etrapolated A-B-C-D a few key data optimized A-B-C-D 30 Modeling

31 Eample: Hypothetical Binaries, Ideal Solution SGTE parameter representation for pure elements (stable and metastable phases) in combination with the ideal solution model. Calculation of hypothetical binary phase diagrams. Program: FazDiaGr by G. Garzeł Data base: 4d and 5d elements of Group 4-8: Zr, Hf, Nb, Ta, Mo, W, Re, Rh, Ir, Pd, Pt, Ru, Os Phases: Liquid (λ), fcc (α), bcc (β), hcp (ε) 31 Modeling

32 Hypothetical Binaries, Ideal Solution (1) λ β ε α 32 Modeling

33 Hypothetical Binaries, Ideal Solution (2) λ β ε α 33 Modeling

34 Hypothetical Binaries, Ideal Solution (3) λ β ε α 34 Modeling

35 Eample: Modeling using Regular Solutions Binary Phase diagram features modeled with use of the regular solution model Cigar shape of the solid/liquid phase boundaries Maimum congruent melting of the solid phase Minimum congruent melting of the solid phase Peritectic phase diagram Eutectic phase diagram T S m A m A 800 S m B K, 20 T m B J / 1000 K mol K Regular solution parameters ε l and ε s are varied 35 Modeling

36 1 - Liquidus and Solidus Curves 1000 ε l ε s T(K) 900 ε l s ε 5kJ Solid Liquid 850 ε l s ε 15kJ Mole Fraction of B 36 Modeling

37 2 - Maimum and Minimum 1100 ε l s ε 0 10kJ / mol Liquid 1000 T(K) 900 ε l s ε 0 0 ε l s ε 12kJ / mol 700 Solid 10kJ / mol Mole Fraction of B ε l s ε 37 Modeling

38 3 - Peritectic Phase Diagram ε l ε s 15 kj Liquid 900 T(K) Solid ε l s ε 12kJ / mol Solid+Solid Mole fraction of B 38 Modeling

39 4 - Eutectic Phase Diagram ε l s ε 0 15kJ / mol Liquid T(K) Solid ε l s ε 20kJ / mol 25kJ / mol ε l s ε 0 10kJ / mol Solid+Solid Mole fraction of B 39 Modeling

40 5 - Monotectic Phase Diagram ε l s ε 17.5kJ 13.5kJ / mol / mol Liquid 1000 Liq+liq T(K) Liquid+Solid Solid Solid+Solid Mole fraction of B 40 Modeling

41 6 - Syntectic Phase Diagram ε l s ε 25kJ / mol 10kJ / mol Liquid 1200 Liquid+liquid T(K) 900 Liquid+Solid Solid 600 Solid+Solid Mole fraction of B 41 Modeling

42 7 Monotectic + Peritectic Phase Diagram 1500 ε l s ε 20kJ 20kJ / mol / mol Liquid 1200 Liquid+liquid T(K) 900 Liquid+Solid Solid 600 Solid Solid+Solid Mole fraction of B 42 Modeling

43 Models: Eample: Modeling of binary In-Ni CALPHAD assessment by Waldner and Ipser L, (Ni): Redlich-Kister solution models δ: (Ni,a) 1 (In,Ni) 1 sublattice model ξ, ξ : (Ni,a) 1 (Ni) 1 (In,Ni) 1 sublattice models Ni 3 In, Ni 2 In, NiIn, Ni 2 In 3, Ni 3 In 7 : Stoichiometric [Massalski s Phase Diagram Compilation] 43 Modeling

44 Modeling of binary In-Ni (1) Data Sources: Phase diagram: mainly 2 papers ( + older literature) apor pressure data: 3 papers EMF measurements: 5 papers Calorimetry: 3 papers Crystal structure: various literature on defect mechanisms of the structure type Used as input for the optimization procedure 44 Modeling

45 Modeling of binary In-Ni (2) Calorimetric data 45 Modeling

46 Modeling of binary In-Ni (3) apor pressure data 46 Modeling

47 Modeling of binary In-Ni (4) Pressures over Ni 2 In from EMF and Knudsen sources 47 Modeling

48 Modeling of binary In-Ni (5) Enthalpies from EMF and Calorimetric sources 48 Modeling

49 Modeling of binary In-Ni (6) Fit with phase diagram data 49 Modeling

Chapter 8. Phase Diagrams

Chapter 8. Phase Diagrams Phase Diagrams A phase in a material is a region that differ in its microstructure and or composition from another region Al Al 2 CuMg H 2 O(solid, ice) in H 2 O (liquid) 2 phases homogeneous in crystal

More information

AP CHEMISTRY 2007 SCORING GUIDELINES. Question 2

AP CHEMISTRY 2007 SCORING GUIDELINES. Question 2 AP CHEMISTRY 2007 SCORING GUIDELINES Question 2 N 2 (g) + 3 F 2 (g) 2 NF 3 (g) ΔH 298 = 264 kj mol 1 ; ΔS 298 = 278 J K 1 mol 1 The following questions relate to the synthesis reaction represented by the

More information

Phase Equilibria & Phase Diagrams

Phase Equilibria & Phase Diagrams Phase Equilibria & Phase Diagrams Week7 Material Sciences and Engineering MatE271 1 Motivation Phase diagram (Ch 9) Temperature Time Kinematics (Ch 10) New structure, concentration (mixing level) (at what

More information

μ α =μ β = μ γ = =μ ω μ α =μ β =μ γ = =μ ω Thus for c components, the number of additional constraints is c(p 1) ( ) ( )

μ α =μ β = μ γ = =μ ω μ α =μ β =μ γ = =μ ω Thus for c components, the number of additional constraints is c(p 1) ( ) ( ) Phase Diagrams 1 Gibbs Phase Rule The Gibbs phase rule describes the degrees of freedom available to describe a particular system with various phases and substances. To derive the phase rule, let us begin

More information

BINARY SYSTEMS. Definition of Composition: Atomic (molar) fraction. Atomic percent. Mass fraction. Mass percent (weight percent)

BINARY SYSTEMS. Definition of Composition: Atomic (molar) fraction. Atomic percent. Mass fraction. Mass percent (weight percent) BINARY SYSTEMS Definition of Composition: Atomic (molar) fraction Atomic percent Mass fraction Mass percent (weight percent) na =, x i n = A i i i Weight percent mainly in industry! x at % A = x 100 A

More information

Mean Field Flory Huggins Lattice Theory

Mean Field Flory Huggins Lattice Theory Mean Field Flory Huggins Lattice Theory Mean field: the interactions between molecules are assumed to be due to the interaction of a given molecule and an average field due to all the other molecules in

More information

Final Exam CHM 3410, Dr. Mebel, Fall 2005

Final Exam CHM 3410, Dr. Mebel, Fall 2005 Final Exam CHM 3410, Dr. Mebel, Fall 2005 1. At -31.2 C, pure propane and n-butane have vapor pressures of 1200 and 200 Torr, respectively. (a) Calculate the mole fraction of propane in the liquid mixture

More information

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

Chapter 5: Diffusion. 5.1 Steady-State Diffusion : Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

More information

Thermodynamics. Chapter 13 Phase Diagrams. NC State University

Thermodynamics. Chapter 13 Phase Diagrams. NC State University Thermodynamics Chapter 13 Phase Diagrams NC State University Pressure (atm) Definition of a phase diagram A phase diagram is a representation of the states of matter, solid, liquid, or gas as a function

More information

LN 10. 3.091 Introduction to Solid State Chemistry. Lecture Notes No. 10 PHASE EQUILIBRIA AND PHASE DIAGRAMS

LN 10. 3.091 Introduction to Solid State Chemistry. Lecture Notes No. 10 PHASE EQUILIBRIA AND PHASE DIAGRAMS 3.091 Introduction to Solid State Chemistry Lecture Notes No. 10 PHASE EQUILIBRIA AND PHASE DIAGRAMS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Sources

More information

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICAL UNIVERSITY OF OSTRAVA COMPUTER SIMULATION AND MODELLING IN MATERIALS ENGINEERING. Study Support

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICAL UNIVERSITY OF OSTRAVA COMPUTER SIMULATION AND MODELLING IN MATERIALS ENGINEERING. Study Support VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF METALLURGY AND MATERIALS ENGINEERING COMPUTER SIMULATION AND MODELLING IN MATERIALS ENGINEERING Study Support Jaromír Drápala, Vlastimil Vodárek,

More information

Thermodynamics of Mixing

Thermodynamics of Mixing Thermodynamics of Mixing Dependence of Gibbs energy on mixture composition is G = n A µ A + n B µ B and at constant T and p, systems tend towards a lower Gibbs energy The simplest example of mixing: What

More information

Thermodynamic database of the phase diagrams in copper base alloy systems

Thermodynamic database of the phase diagrams in copper base alloy systems Journal of Physics and Chemistry of Solids 66 (2005) 256 260 www.elsevier.com/locate/jpcs Thermodynamic database of the phase diagrams in copper base alloy systems C.P. Wang a, X.J. Liu b, M. Jiang b,

More information

Gibbs Free Energy and Chemical Potential. NC State University

Gibbs Free Energy and Chemical Potential. NC State University Chemistry 433 Lecture 14 Gibbs Free Energy and Chemical Potential NC State University The internal energy expressed in terms of its natural variables We can use the combination of the first and second

More information

Introduction to Materials Science, Chapter 9, Phase Diagrams. Phase Diagrams. University of Tennessee, Dept. of Materials Science and Engineering 1

Introduction to Materials Science, Chapter 9, Phase Diagrams. Phase Diagrams. University of Tennessee, Dept. of Materials Science and Engineering 1 Phase Diagrams University of Tennessee, Dept. of Materials Science and Engineering 1 Chapter Outline: Phase Diagrams Microstructure and Phase Transformations in Multicomponent Systems Definitions and basic

More information

Lecture 3: Models of Solutions

Lecture 3: Models of Solutions Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP4, Thermodynamics and Phase Diagrams, H. K. D. H. Bhadeshia Lecture 3: Models of Solutions List of Symbols Symbol G M

More information

Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102.

Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102. Thermodynamics 2: Gibbs Free Energy and Equilibrium Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102. Key Concepts and skills: definitions

More information

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work. The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed

More information

Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular

Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Precipitation Today s topics Understanding of Cellular transformation (or precipitation): when applied to phase transformation

More information

Phase. Gibbs Phase rule

Phase. Gibbs Phase rule Phase diagrams Phase A phase can be defined as a physically distinct and chemically homogeneous portion of a system that has a particular chemical composition and structure. Water in liquid or vapor state

More information

Thermo-Calc Software. Data Organization and Knowledge Discovery. Paul Mason Thermo-Calc Software, Inc. Thermo-Chemistry to Phase Diagrams and More

Thermo-Calc Software. Data Organization and Knowledge Discovery. Paul Mason Thermo-Calc Software, Inc. Thermo-Chemistry to Phase Diagrams and More Thermo-Calc Software Data Organization and Knowledge Discovery Thermo-Chemistry to Phase Diagrams and More Paul Mason Thermo-Calc Software, Inc. http://www.thermocalc.com Tel: (724) 731 0074 E-mail: paul@thermo-calc.com

More information

Lecture 1: Physical Equilibria The Temperature Dependence of Vapor Pressure

Lecture 1: Physical Equilibria The Temperature Dependence of Vapor Pressure Lecture 1: Physical Equilibria The Temperature Dependence of Vapor Pressure Our first foray into equilibria is to examine phenomena associated with two phases of matter achieving equilibrium in which the

More information

Each grain is a single crystal with a specific orientation. Imperfections

Each grain is a single crystal with a specific orientation. Imperfections Crystal Structure / Imperfections Almost all materials crystallize when they solidify; i.e., the atoms are arranged in an ordered, repeating, 3-dimensional pattern. These structures are called crystals

More information

SOLIDIFICATION. (a)formation of stable nuclei. Growth of a stable nucleus. (c) Grain structure

SOLIDIFICATION. (a)formation of stable nuclei. Growth of a stable nucleus. (c) Grain structure SOLIDIFICATION Most metals are melted and then cast into semifinished or finished shape. Solidification of a metal can be divided into the following steps: Formation of a stable nucleus Growth of a stable

More information

Phase Transformations in Metals and Alloys

Phase Transformations in Metals and Alloys Phase Transformations in Metals and Alloys THIRD EDITION DAVID A. PORTER, KENNETH E. EASTERLING, and MOHAMED Y. SHERIF ( г йс) CRC Press ^ ^ ) Taylor & Francis Group Boca Raton London New York CRC Press

More information

Review of Chemical Equilibrium Introduction

Review of Chemical Equilibrium Introduction Review of Chemical Equilibrium Introduction Copyright c 2016 by Nob Hill Publishing, LLC This chapter is a review of the equilibrium state of a system that can undergo chemical reaction Operating reactors

More information

Lecture 4: Thermodynamics of Diffusion: Spinodals

Lecture 4: Thermodynamics of Diffusion: Spinodals Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP6, Kinetics and Microstructure Modelling, H. K. D. H. Bhadeshia Lecture 4: Thermodynamics of Diffusion: Spinodals Fick

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Chapter 19 Thermodynamics and Equilibrium Concept Check 19.1 You have a sample of 1.0 mg of solid iodine at room temperature. Later, you notice that the iodine has sublimed (passed into the vapor state).

More information

Bomb Calorimetry. Example 4. Energy and Enthalpy

Bomb Calorimetry. Example 4. Energy and Enthalpy Bomb Calorimetry constant volume often used for combustion reactions heat released by reaction is absorbed by calorimeter contents need heat capacity of calorimeter q cal = q rxn = q bomb + q water Example

More information

Kinetics of Phase Transformations: Nucleation & Growth

Kinetics of Phase Transformations: Nucleation & Growth Kinetics of Phase Transformations: Nucleation & Growth Radhika Barua Department of Chemical Engineering Northeastern University Boston, MA USA Thermodynamics of Phase Transformation Northeastern University

More information

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K Thermodynamics: Examples for chapter 6. 1. The boiling point of hexane at 1 atm is 68.7 C. What is the boiling point at 1 bar? The vapor pressure of hexane at 49.6 C is 53.32 kpa. Assume that the vapor

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with

More information

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

6. 2. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria

6. 2. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria 6. 2 Phase equilibria Many industrial processes involve several phases in equilibrium gases, liquids, solids and even different crystalline forms of the solid state. Predicting the number of phases present

More information

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

More information

Chem 420/523 Chemical Thermodynamics Homework Assignment # 6

Chem 420/523 Chemical Thermodynamics Homework Assignment # 6 Chem 420/523 Chemical hermodynamics Homework Assignment # 6 1. * Solid monoclinic sulfur (S α ) spontaneously converts to solid rhombic sulfur (S β ) at 298.15 K and 0.101 MPa pressure. For the conversion

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

Answer, Key Homework 6 David McIntyre 1

Answer, Key Homework 6 David McIntyre 1 Answer, Key Homework 6 David McIntyre 1 This print-out should have 0 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

More information

Test Review # 9. Chemistry R: Form TR9.13A

Test Review # 9. Chemistry R: Form TR9.13A Chemistry R: Form TR9.13A TEST 9 REVIEW Name Date Period Test Review # 9 Collision theory. In order for a reaction to occur, particles of the reactant must collide. Not all collisions cause reactions.

More information

Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K

Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K 1 Thermodynamics There always seems to be at least one free response question that involves thermodynamics. These types of question also show up in the multiple choice questions. G, S, and H. Know what

More information

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus,

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus, 5.3 (a) Compare interstitial and vacancy atomic mechanisms for diffusion. (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. Solution (a) With vacancy diffusion,

More information

k 2f, k 2r C 2 H 5 + H C 2 H 6

k 2f, k 2r C 2 H 5 + H C 2 H 6 hemical Engineering HE 33 F pplied Reaction Kinetics Fall 04 Problem Set 4 Solution Problem. The following elementary steps are proposed for a gas phase reaction: Elementary Steps Rate constants H H f,

More information

FORMA is EXAM I, VERSION 1 (v1) Name

FORMA is EXAM I, VERSION 1 (v1) Name FORMA is EXAM I, VERSION 1 (v1) Name 1. DO NOT TURN THIS PAGE UNTIL DIRECTED TO DO SO. 2. These tests are machine graded; therefore, be sure to use a No. 1 or 2 pencil for marking the answer sheets. 3.

More information

CHAPTER 8. Phase Diagrams 8-1

CHAPTER 8. Phase Diagrams 8-1 CHAPTER 8 Phase Diagrams 8-1 Introducción Fase: Una region en un material que difiere en estructura y función de otra región. Diagramas de fase : Representan las fases presentes en el metal a diferentes

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

Chapter 6 An Overview of Organic Reactions

Chapter 6 An Overview of Organic Reactions John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 6 An Overview of Organic Reactions Why this chapter? To understand organic and/or biochemistry, it is necessary to know: -What occurs -Why and

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Page 1 of 10 pages

More information

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will Name: Thursday, December 13, 2007 Test 5 Review questions 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will 1. decrease 2. increase 3. remain the same 2. The graph below

More information

PECULIARITIES OF THERMODYNAMIC SIMULATION WITH THE METHOD OF BOUND AFFINITY.

PECULIARITIES OF THERMODYNAMIC SIMULATION WITH THE METHOD OF BOUND AFFINITY. PECULIARITIES OF THERMODYNAMIC SIMULATION WITH THE METHOD OF BOUND AFFINITY. B. Zilbergleyt, System Dynamics Research Foundation, Chicago, livent@ameritech.net ABSTRACT. Thermodynamic simulation of chemical

More information

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment. Chemistry UNIT I: Introduction to Chemistry The student will be able to describe what chemistry is and its scope. a. Define chemistry. b. Explain that chemistry overlaps many other areas of science. The

More information

Warm-Up 9/9. 1. Define the term matter. 2. Name something in this room that is not matter.

Warm-Up 9/9. 1. Define the term matter. 2. Name something in this room that is not matter. Warm-Up 9/9 1. Define the term matter. 2. Name something in this room that is not matter. Warm-Up 9/16 1. List the three most important rules of lab safety. 2. Would you classify jello as a solid or a

More information

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008 Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid

More information

Mr. Bracken. Multiple Choice Review: Thermochemistry

Mr. Bracken. Multiple Choice Review: Thermochemistry Mr. Bracken AP Chemistry Name Period Multiple Choice Review: Thermochemistry 1. If this has a negative value for a process, then the process occurs spontaneously. 2. This is a measure of how the disorder

More information

Mechanisms of Diffusion in Materials 3.205 L4 11/7/06

Mechanisms of Diffusion in Materials 3.205 L4 11/7/06 Mechanisms of Diffusion in Materials 1 A final point on interdiffusion The composition profiles resulting from interdiffusion are generally constrained by phase equilibria. Consider the an Ir Re diffusion

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

Chapter 7 : Simple Mixtures

Chapter 7 : Simple Mixtures Chapter 7 : Simple Mixtures Using the concept of chemical potential to describe the physical properties of a mixture. Outline 1)Partial Molar Quantities 2)Thermodynamics of Mixing 3)Chemical Potentials

More information

Electronegativity and Polarity

Electronegativity and Polarity and Polarity N Goalby Chemrevise.org Definition: is the relative tendency of an atom in a molecule to attract electrons in a covalent bond to itself. is measured on the Pauling scale (ranges from 0 to

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers Key Questions & Exercises Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of

More information

Thermodynamics. Thermodynamics 1

Thermodynamics. Thermodynamics 1 Thermodynamics 1 Thermodynamics Some Important Topics First Law of Thermodynamics Internal Energy U ( or E) Enthalpy H Second Law of Thermodynamics Entropy S Third law of Thermodynamics Absolute Entropy

More information

3.091 OCW Scholar Fall 2010 Final Exam - Solutions Key. Prof. Donald R. Sadoway, Instructor

3.091 OCW Scholar Fall 2010 Final Exam - Solutions Key. Prof. Donald R. Sadoway, Instructor .091 OCW Scholar Fall 2010 Final Exam - Solutions Key Prof. Donald R. Sadoway, Instructor .091 Fall Term 2010 Final Exam page 2 Problem #1 (20 points) Answer the following questions about the hydrogen

More information

Boyle s law - For calculating changes in pressure or volume: P 1 V 1 = P 2 V 2. Charles law - For calculating temperature or volume changes: V 1 T 1

Boyle s law - For calculating changes in pressure or volume: P 1 V 1 = P 2 V 2. Charles law - For calculating temperature or volume changes: V 1 T 1 Common Equations Used in Chemistry Equation for density: d= m v Converting F to C: C = ( F - 32) x 5 9 Converting C to F: F = C x 9 5 + 32 Converting C to K: K = ( C + 273.15) n x molar mass of element

More information

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tall-form beaker, 10 ml graduated cylinder, -10 to 110 o C thermometer, thermometer clamp, plastic pipet, long

More information

a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L

a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal

More information

Experiment 5: Phase diagram for a three-component system (Dated: April 12, 2010)

Experiment 5: Phase diagram for a three-component system (Dated: April 12, 2010) Experiment 5: Phase diagram for a three-component system (Dated: April 12, 2010) I. INTRODUCTION It is sometimes necessary to know the mutual solubilities of liquids in a two-phase system. For example,

More information

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C 1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

More information

( ln T T m. ( T tr. ( T m. Predictive UNIQUAC: A New Model for the Description of Multiphase Solid-Liquid Equilibria in Complex Hydrocarbon Mixtures

( ln T T m. ( T tr. ( T m. Predictive UNIQUAC: A New Model for the Description of Multiphase Solid-Liquid Equilibria in Complex Hydrocarbon Mixtures 4870 Ind. Eng. Chem. Res. 1998, 37, 4870-4875 Predictive UNIQUAC: A New Model for the Description of Multiphase Solid-Liquid Equilibria in Complex Hydrocarbon Mixtures João A. P. Coutinho Centro de Investigagão

More information

The Ideal Solution. ChemActivity T15

The Ideal Solution. ChemActivity T15 ChemActivity T15 The Ideal Solution Focus Question: An equi-molar mixture of benzene and toluene is prepared. What will be the composition of the vapor in equilibrium with this solution? Model 1: Benzene

More information

CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION

CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION CHAPTER 4 THE CAUIU-CAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to re-read ections 9. and 9.3 of Chapter 9. The Clausius-Clapeyron equation relates the latent heat

More information

THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL. Hossam Halfa

THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL. Hossam Halfa THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL Hossam Halfa Steel Technology Department, Central Metallurgical R&D Institute (CMRDI), Helwan, Egypt, hossamhalfa@cmrdi.sci.eg;

More information

Liquid-Liquid Extraction (LLX)

Liquid-Liquid Extraction (LLX) Liquid-Liquid Extraction (LLX) Extraction is a liquid-liquid operation. It is a process of transferring a solute from one liquid phase to another immiscible or partially miscible liquid in contact with

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information

Kinetic Molecular Theory of Matter

Kinetic Molecular Theory of Matter Kinetic Molecular Theor of Matter Heat capacit of gases and metals Pressure of gas Average speed of electrons in semiconductors Electron noise in resistors Positive metal ion cores Free valence electrons

More information

Chem 338 Homework Set #5 solutions October 10, 2001 From Atkins: 5.2, 5.9, 5.12, 5.13, 5.15, 5.17, 5.21

Chem 338 Homework Set #5 solutions October 10, 2001 From Atkins: 5.2, 5.9, 5.12, 5.13, 5.15, 5.17, 5.21 Chem 8 Homework Set #5 solutions October 10, 2001 From Atkins: 5.2, 5.9, 5.12, 5.1, 5.15, 5.17, 5.21 5.2) The density of rhombic sulfur is 2.070 g cm - and that of monoclinic sulfur is 1.957 g cm -. Can

More information

Chemical Equilibrium by Gibbs Energy Minimization on Spreadsheets*

Chemical Equilibrium by Gibbs Energy Minimization on Spreadsheets* Int. J. Engng Ed. Vol. 16, No. 4, pp. 335±339, 2000 0949-149X/91 $3.00+0.00 Printed in Great Britain. # 2000 TEMPUS Publications. Chemical Equilibrium by Gibbs Energy Minimization on Spreadsheets* Y. LWIN

More information

Formation of solids from solutions and melts

Formation of solids from solutions and melts Formation of solids from solutions and melts Solids from a liquid phase. 1. The liquid has the same composition as the solid. Formed from the melt without any chemical transformation. Crystallization and

More information

4. Impurities and dopants

4. Impurities and dopants 4. Impurities and dopants Introduction In the preceding chapter we have only dealt with pure, crystalline metal oxides, and no account was taken of impurities and dopants and their effects on defect equilibria.

More information

Solidification, Crystallization & Glass Transition

Solidification, Crystallization & Glass Transition Solidification, Crystallization & Glass Transition Cooling the Melt solidification Crystallization versus Formation of Glass Parameters related to the formaton of glass Effect of cooling rate Glass transition

More information

Structure and Properties of Aluminum Alloys with Cerium, Praseodymium and Neodymium

Structure and Properties of Aluminum Alloys with Cerium, Praseodymium and Neodymium Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2012, Vol. 28, No. (4): Pg. 1625-1629 Structure

More information

Iron-Carbon Phase Diagram (a review) see Callister Chapter 9

Iron-Carbon Phase Diagram (a review) see Callister Chapter 9 Iron-Carbon Phase Diagram (a review) see Callister Chapter 9 University of Tennessee, Dept. of Materials Science and Engineering 1 The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram In their simplest form,

More information

MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY

MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY Objective To study the time and temperature variations in the hardness and electrical conductivity of Al-Zn-Mg-Cu high strength alloy on isothermal

More information

CHEM 36 General Chemistry EXAM #1 February 13, 2002

CHEM 36 General Chemistry EXAM #1 February 13, 2002 CHEM 36 General Chemistry EXAM #1 February 13, 2002 Name: Serkey, Anne INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show

More information

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g) CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26

More information

We will study the temperature-pressure diagram of nitrogen, in particular the triple point.

We will study the temperature-pressure diagram of nitrogen, in particular the triple point. K4. Triple Point of Nitrogen I. OBJECTIVE OF THE EXPERIMENT We will study the temperature-pressure diagram of nitrogen, in particular the triple point. II. BAKGROUND THOERY States of matter Matter is made

More information

11 Thermodynamics and Thermochemistry

11 Thermodynamics and Thermochemistry Copyright ç 1996 Richard Hochstim. All rights reserved. Terms of use.» 37 11 Thermodynamics and Thermochemistry Thermodynamics is the study of heat, and how heat can be interconverted into other energy

More information

Chapter 18 Homework Answers

Chapter 18 Homework Answers Chapter 18 Homework Answers 18.22. 18.24. 18.26. a. Since G RT lnk, as long as the temperature remains constant, the value of G also remains constant. b. In this case, G G + RT lnq. Since the reaction

More information

Lecture: 33. Solidification of Weld Metal

Lecture: 33. Solidification of Weld Metal Lecture: 33 Solidification of Weld Metal This chapter presents common solidification mechanisms observed in weld metal and different modes of solidification. Influence of welding speed and heat input on

More information

Chemistry 151 Final Exam

Chemistry 151 Final Exam Chemistry 151 Final Exam Name: SSN: Exam Rules & Guidelines Show your work. No credit will be given for an answer unless your work is shown. Indicate your answer with a box or a circle. All paperwork must

More information

Binary phase diagrams

Binary phase diagrams inary phase diagrams inary phase diagrams and ibbs free energy curves inary solutions with unlimited solubility Relative proportion of phases (tie lines and the lever principle) Development of microstructure

More information

Thermodynamics of Adsorption

Thermodynamics of Adsorption CTI_CHAPTER_21.qxd 6/7/24 3:31 PM Page 243 CHAPTER 21 Thermodynamics of Adsorption ALAN L. MYERS 1 Introduction The attachment of molecules to the surface of a solid by adsorption is a broad subject. This

More information

The Chemical Potential and Phase Equilibria

The Chemical Potential and Phase Equilibria Chapter 7 The Chemical Potential and Phase Equilibria c 2009 by Harvey Gould and Jan Tobochnik 6 July 2009 We discuss the nature of the chemical potential by considering some simple models and simulations.

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You may

More information

Final Exam Review. I normalize your final exam score out of 70 to a score out of 150. This score out of 150 is included in your final course total.

Final Exam Review. I normalize your final exam score out of 70 to a score out of 150. This score out of 150 is included in your final course total. Final Exam Review Information Your ACS standardized final exam is a comprehensive, 70 question multiple choice (a d) test featuring material from BOTH the CHM 101 and 102 syllabi. Questions are graded

More information

Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline. Diffusion - how do atoms move through solids? Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

More information

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy.

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy. Chapter 13: Electrochemistry Redox Reactions Galvanic Cells Cell Potentials Cell Potentials and Equilbrium Batteries Electrolysis Electrolysis and Stoichiometry Corrosion Prevention Electrochemistry The

More information

CHAPTER 9 Part 1. = 5 wt% Sn-95 wt% Pb C β. = 98 wt% Sn-2 wt% Pb. = 77 wt% Ag-23 wt% Cu. = 51 wt% Zn-49 wt% Cu C γ. = 58 wt% Zn-42 wt% Cu

CHAPTER 9 Part 1. = 5 wt% Sn-95 wt% Pb C β. = 98 wt% Sn-2 wt% Pb. = 77 wt% Ag-23 wt% Cu. = 51 wt% Zn-49 wt% Cu C γ. = 58 wt% Zn-42 wt% Cu CHAPTER 9 Part 1 9.5 This problem asks that we cite the phase or phases present for several alloys at specified temperatures. (a) For an alloy composed of 15 wt% Sn-85 wt% Pb and at 100 C, from Figure

More information

Unit 19 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 19 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Unit 19 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The first law of thermodynamics can be given as. A) E = q + w B) =

More information

Physics 176 Topics to Review For the Final Exam

Physics 176 Topics to Review For the Final Exam Physics 176 Topics to Review For the Final Exam Professor Henry Greenside May, 011 Thermodynamic Concepts and Facts 1. Practical criteria for identifying when a macroscopic system is in thermodynamic equilibrium:

More information

Chemistry 11 Some Study Materials for the Final Exam

Chemistry 11 Some Study Materials for the Final Exam Chemistry 11 Some Study Materials for the Final Exam Prefix Abbreviation Exponent giga G 10 9 mega M 10 6 kilo k 10 3 hecto h 10 2 deca da 10 1 deci d 10-1 centi c 10-2 milli m 10-3 micro µ 10-6 nano n

More information