# On Some Vertex Degree Based Graph Invariants

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 65 (20) ISSN On Some Vertex Degree Based Graph Invariants Batmend Horoldagva a and Ivan Gutman b a School of Mathematics and Statistics, State University of Education, Baga toiruu-4, Ulaanbaatar, Mongolia b b Faculty of Science, University of Kragujevac, P. O. Box 60, Kragujevac, Serbia (Received March 6, 200) Abstract Let G =(V,E) be a graph, d u the degree of its vertex u,anduv the edge connecting the vertices u and v. The atom bond connectivity index and the sum connectivity index of G are defined as ABC = uv E (du + d v 2)/( )andχ = uv E / d u + d v, respectively. Continuing the recent researches on ABC [B. Furtula, A. Graovac, D. Vukičević, Atom-bond connectivity index of trees, Discr. Appl. Math. 57 (2009) ] and χ [B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) ] we obtain novel upper bounds on these vertex degree based graph invariants. Introduction In mathematical chemistry a variety graph invariants, usually referred to as topological indices, are used for predicting molecular properties [0]. Among these are some that are defined by means of the vertex degree sequence of the underlying (molecular) graph. Let G =(V (G),E(G)) be a simple graph with n = V (G) vertices and m = E(G) edges. The degree (= number of first neighbors) of a vertex u V (G) will be

2 -724- denoted by d u. The edge connecting the vertices u and v will be denoted by uv. The oldest and most studied vertex degree based topological indices are the Randić index R(G) = / and the so-called first and second Zagreb indices: respectively [0]. M (G) = u V (G) d 2 u and M 2 (G) = A few years ago Estrada et al. [5] introduced a further vertex degree based graph invariant, nowadays known as the atom bond connectivity index. Itisdefinedas: ABC(G) = du + d v 2 Furtula et al. [6] have recently characterized trees with the maximum and minimum values of the ABC index. In particular, they proved that among n-vertex trees, ABC is maximal for the star K,n. Also quite recently, Zhou and Trinajstić [6] introduced and studied the so-called sum connectivity index, definedas: χ(g) =. du + d v They established lower and upper bounds for χ in terms of number of vertices, number of edges, maximum vertex degree Δ, and minimum vertex degree δ. They also determined the unique n-vertex tree with a given number of pendent vertices, having minimum χ. The Zagreb indices have been much studied in the past (see [4, 7, 2, 4] and references cited therein). De Caen [3] gave an upper bound on the first Zagreb index in terms of the number of vertices and edges. Bollobás and Erdős [, 2] determined the graph with the given number of edges, having the maximum value of the second Zagreb index. In this paper we present a relationship between ABC and M 2 for a graph with n vertices and m edges. Using this and some previous results, we obtain upper bounds for ABC for some classes of graphs. Also upper bounds for the sum connectivity index are given.

3 Preliminaries In this section we list some previously known results that will be needed in the subsequent sections. Bollobás and Erdős [] proved that if m = ( k 2) then the maximum second Zagreb index of a graph with m edges is m(k ) 2, with equality holding if and only if G is the union of K k and isolated vertices. This result can be reformulated as follows. Lemma 2.. [] Let G be a graph with m edges. Then ( M 2 (G) m 2m ) 2 with equality if and only if m is of the form m = ( k 2) for some natural number k, and G is the union of the complete graph K k and isolated vertices. In [4] the following upper bound for the second Zagreb index was obtained: Lemma 2.2. [4] Let G be a graph with n vertices, m edges and minimum vertex degree δ. Then M 2 (G) 2m 2 mδ(n ) + ( ) 2m 2 m(δ ) n + n 2 with equality if and only if G = K,n or G = K n. The eccentricity of a vertex v is the greatest distance between v and any other vertex. The radius of a graph is the minimum eccentricity of any vertex. Yamaguchi [2] studied maximum values of the Zagreb indices for triangle and quadrangle free connected graphs, and obtained: Lemma 2.3. [2] Let G be a triangle and quadrangle free connected graph with n vertices, m edges, and radius r. Then M (G) n(n + r) and M 2 (G) m(n + r), with equality in either place if and only if G is isomorphic to a Moore graph of diameter two or is the cycle of length six. 3 Atom-bond connectivity index A bipartite graph is called semiregular if each vertex in the same part of a bipartition has the same degree.

4 -726- Theorem 3.. Let G be a graph with n vertices and m edges. Then ( ) ABC(G) m n 2m2 M 2 (G) () with equality if and only if G is a regular or a semiregular bipartite graph. Proof. By the arithmetic harmonic mean inequality, m 2 = u V (G),d u 0 m2 M 2 (G). (2) Let n 0 be the number of isolated vertices of G.Then ( + ) ( ) = d u = n n 0. (3) d u Bearing this in mind, by the Cauchy Schwarz inequality we get ABC(G) = + 2 m ( + 2 ) = m n n 0 2 and thus ABC(G) mn 2m Combining (2) and (4), we get the inequality in ().. (4) Suppose now that equality holds in (). Then all inequalities in the above argument must be equalities. Thus from (2), is a constant for each uv E(G). Then we prove that each component of G is a regular graph or a semiregular bipartite graph. Let C(G) be a component of G and u be a vertex in C(G). Since is a constant, neighbors of vertex u must have the same degree. Hence C(G) has only two types of degrees d u and d v because C(G) is connected. If C(G) contains an odd cycle, then clearly all vertices on this cycle have equal degrees. Hence it is easy to see that d u = d v. Thus C(G) is regular. If C(G) does not contain an odd cycle, then it is bipartite. Hence C(G) is semiregular bipartite. Then from (4) follows that n 0 = 0 and (d u + d v 2)/( ) is a constant for each uv E(G). Since is a constant, d u + d v is also constant for each uv E(G). Hence G is a regular graph or a semiregular bipartite graph.

5 -727- Conversely, if G is a regular graph then one can easily see that the equality holds in (). Now, suppose that G is a semiregular bipartite graph with two types of degrees d u and d v.thenwehave that is ( m + ) = n m(d u + d v 2) = n 2m2 m. Multiplying both sides of the above equality by m and taking the square root, we get equality in (). This completes the proof. At this point is should be noted that nowadays a large number of upper bounds for the second Zagreb index M 2 is known, either in terms of other graph invariants or valid for special classes of graphs (see e. g. [8,9,,3 5]). By means of Theorem 3., from each of these we could deduce upper bounds for ABC. The following theorems are immediate consequences of Theorem 3., and are obtained by using the lemmas from the previous section. Theorem 3.2. Let G be a graph with n vertices and m edges. Then ( ) 8m ABC(G) m n ( 8m + ) 2 with equality holding if and only if G = K n. Moore graphs are regular graphs of degree k and diameter d that have the maximum possible number of vertices, namely +k +k(k )+ +k(k ) d. Hoffman and Singleton proved that Moore graphs of diameter two are the pentagon, the Petersen graph, a 7-regular graph with 50 vertices (the Hoffman Singleton graph) and possibly a 57-regular graph with vertices (which still is an open problem). Theorem 3.3. Let G be a triangle and quadrangle free connected graph with n vertices, m edges, and radius r. Then ( ) 2m ABC(G) m n n + r with equality if and only if G is isomorphic to a Moore graph of diameter two or is the cycle of length six.

6 -728- Let us denote ϕ(n, m, δ) :=2m δ(n ) + ( ) 2m 2 (δ ) n + n 2. Theorem 3.4. Let G be a graph with n vertices, m edges, and minimum degree δ. Then ABC(G) m ( ) 2m n ϕ(n, m, δ) with equality if and only if G = K,n or G = K n. Corollary 3.. [6] Let T be a tree with n vertices. Then with equality holding if and only if T = K,n. (5) ABC(T ) (n )(n 2) (6) Proof. Since T is a tree, m = n and δ =. inequality (6) follows from (5). Hence ϕ(n, m, δ) =n and 4 Sum connectivity index Zhou and Trinajstić [6] established several bounds for the sum connectivity index in terms of basic graph invariants. Most of these are lower bounds. In particular, they showed that χ(g) < nm/2. We now improve this bound and, in addition, give an upper bound for triangle and quadrangle free connected graphs in terms of the number of vertices n and radius r. Theorem 4.. Let G be a graph with n vertices and m edges. Then with equality holding if and only if G is regular. χ(g) 2 nm (7) Proof. For each edge uv of G,wehave ( + ). (8) d u + d v 4 As before, let n 0 be the number of isolated vertices of G. Taking the sum of both sides of (8) over all uv E(G) and using (3), we get ( + ) = n n 0 n (9) d u + d v 4 4 4

7 -729- which by the Cauchy Schwarz inequality yields χ(g) m d u + d v /2. (0) Combining (9) and (0) we arrive at the inequality in (7). Suppose now that equality holds in (7). Then all inequalities in the above argument must be equalities. Then n 0 = 0 and d u = d v for all uv E(G). Hence G is without isolated vertices and every component of G is regular. From (0), d u + d v is a constant for each uv E(G). Hence G is regular. Lemma 4.. Let G be a triangle and quadrangle free connected graph with n vertices, m edges, and radius r. Then 2m n n + r () with equality if and only if G is isomorphic to a Moore graph of diameter two or is the cycle of length six. Proof. It is easy to see that by the Cauchy Schwarz inequality, nm (G) 4m 2, with equality if and only if G is a regular graph. Hence by Lemma 2.3, we get (). The Moore graphs and C 6 are regular, and thus the proof is completed. Using Theorem 4. and Lemma 4. we deduce the following upper bound for the sum connectivity index: Theorem 4.2. Let G be a triangle and quadrangle free connected graph with n vertices and radius r. Then χ(g) n n + r 2 2 with equality if and only if G is isomorphic to a Moore graph of diameter two or is the cycle of length six. Acknowledgement. I. G. thanks for support by the Serbian Ministry of Science (Grant No. 4405G).

8 -730- References [] B. Bollobás, P. Erdős, Graphs of extremal weights, Ars Combin. 50 (998) [2] B. Bollobás, P. Erdős, A. Sarkar, Extremal graphs for weights, Discr. Math. 200 (999) 5 9. [3] D. de Caen, An upper bound on the sum of squares of degrees in a graph, Discr. Math. 85 (998) [4] K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004) [5] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom bond connectivity index: Modelling the enthalpy of formation of alkanas, Indian J. Chem. 37A (998) [6] B. Furtula, A. Graovac, D. Vukičević, Atom bond connectivity index of trees, Discr. Appl. Math. 57 (2009) [7] I. Gutman, K. C. Das, The first Zagreb indices 30 years after, MATCH Commun. Math. Comput. Chem. 52 (2004) [8] B. Liu, Some estimations of Zagreb indices, Utilitas Math. 74 (2007) [9] M. Liu, B. Liu, New sharp upper bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 62 (2009) [0] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley VCH, Weinheim, [] D. Vukičević, S. M. Rajtmajer, N. Trinajstić, Trees with maximal second Zagreb index and prescribed number of vertices of the given degree, MATCH Commun. Math. Comput. Chem. 60 (2008) [2] S. Yamaguchi, Estimating the Zagreb indices and the spectral radius of triangle and quadrangle free connected graphs, Chem. Phys. Lett. 458 (2008) [3] Z. Yan, H. Liu, H. Liu, Sharp bounds for the second Zagreb index of unicyclic graphs, J. Math. Chem. 42 (2007) [4] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004) 3 8. [5] B. Zhou, Remarks on Zagreb indices, MATCH Commun. Math. Comput. Chem. 57 (2007) [6] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009)

### Trees with Smallest Atom Bond Connectivity Index

MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 68 (2012) 11-16 ISSN 00-625 Trees with Smallest Atom ond Connectivity Index Ivan Gutman, oris Furtula Faculty

### YILUN SHANG. e λi. i=1

LOWER BOUNDS FOR THE ESTRADA INDEX OF GRAPHS YILUN SHANG Abstract. Let G be a graph with n vertices and λ 1,λ,...,λ n be its eigenvalues. The Estrada index of G is defined as EE(G = n eλ i. In this paper,

### SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

### Kragujevac Trees and Their Energy

SCIENTIFIC PUBLICATIONS OF THE STATE UNIVERSITY OF NOVI PAZAR SER. A: APPL. MATH. INFORM. AND MECH. vol. 6, 2 (2014), 71-79. Kragujevac Trees and Their Energy Ivan Gutman INVITED PAPER Abstract: The Kragujevac

### Extremal Wiener Index of Trees with All Degrees Odd

MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 70 (2013) 287-292 ISSN 0340-6253 Extremal Wiener Index of Trees with All Degrees Odd Hong Lin School of

### Tricyclic biregular graphs whose energy exceeds the number of vertices

MATHEMATICAL COMMUNICATIONS 213 Math. Commun., Vol. 15, No. 1, pp. 213-222 (2010) Tricyclic biregular graphs whose energy exceeds the number of vertices Snježana Majstorović 1,, Ivan Gutman 2 and Antoaneta

### On the Randić index and Diameter of Chemical Graphs

On the Rić index Diameter of Chemical Graphs Dragan Stevanović PMF, University of Niš, Niš, Serbia PINT, University of Primorska, Koper, Slovenia (Received January 4, 008) Abstract Using the AutoGraphiX

### On the Minimum ABC Index of Chemical Trees

Applied Mathematics 0, (): 8-6 DOI: 0.593/j.am.000.0 On the Minimum ABC Index of Chemical Trees Tzvetalin S. Vassilev *, Laura J. Huntington Department of Computer Science and Mathematics, Nipissing University,

### Unicyclic Graphs with Given Number of Cut Vertices and the Maximal Merrifield - Simmons Index

Filomat 28:3 (2014), 451 461 DOI 10.2298/FIL1403451H Published by Faculty of Sciences Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Unicyclic Graphs with Given Number

### Solutions to Exercises 8

Discrete Mathematics Lent 2009 MA210 Solutions to Exercises 8 (1) Suppose that G is a graph in which every vertex has degree at least k, where k 1, and in which every cycle contains at least 4 vertices.

### On Maximal Energy of Trees with Fixed Weight Sequence

MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 75 (2016) 267-278 ISSN 0340-6253 On Maximal Energy of Trees with Fixed Weight Sequence Shicai Gong 1,,,

### On ev-degree and ve-degree topological indices

On ev-degree and ve-degree topological indices Bünyamin Şahin 1 and Süleyman Ediz 2 1 Faculty of Education, Bayburt University, Bayburt, Turkey; shnbnymn25@gmail.com 2 Faculty of Education, Yuzuncu Yil

### Communicated by Bijan Taeri. 1. Introduction

Transactions on Combinatorics ISSN (print: 51-8657, ISSN (on-line: 51-8665 Vol. 3 No. 3 (01, pp. 3-9. c 01 University of Isfahan www.combinatorics.ir www.ui.ac.ir STUDYING THE CORONA PRODUCT OF GRAPHS

### Connectivity and cuts

Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every

### Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices

MATHEMATICAL COMMUNICATIONS 47 Math. Commun., Vol. 15, No. 2, pp. 47-58 (2010) Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices Hongzhuan Wang 1, Hongbo Hua 1, and Dongdong Wang

### A Turán Type Problem Concerning the Powers of the Degrees of a Graph

A Turán Type Problem Concerning the Powers of the Degrees of a Graph Yair Caro and Raphael Yuster Department of Mathematics University of Haifa-ORANIM, Tivon 36006, Israel. AMS Subject Classification:

### An inequality for the group chromatic number of a graph

An inequality for the group chromatic number of a graph Hong-Jian Lai 1, Xiangwen Li 2 and Gexin Yu 3 1 Department of Mathematics, West Virginia University Morgantown, WV 26505 USA 2 Department of Mathematics

### Labeling outerplanar graphs with maximum degree three

Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics

### A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries

Acta Math. Univ. Comenianae Vol. LXVI, 2(1997), pp. 285 291 285 A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE E. T. BASKORO, M. MILLER and J. ŠIRÁŇ Abstract. It is well known that Moore digraphs do

### GRAPH THEORY LECTURE 4: TREES

GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection

### BOUNDARY EDGE DOMINATION IN GRAPHS

BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 0-4874, ISSN (o) 0-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 5(015), 197-04 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA

### An inequality for the group chromatic number of a graph

Discrete Mathematics 307 (2007) 3076 3080 www.elsevier.com/locate/disc Note An inequality for the group chromatic number of a graph Hong-Jian Lai a, Xiangwen Li b,,1, Gexin Yu c a Department of Mathematics,

### Planarity Planarity

Planarity 8.1 71 Planarity Up until now, graphs have been completely abstract. In Topological Graph Theory, it matters how the graphs are drawn. Do the edges cross? Are there knots in the graph structure?

### On the Maximal Energy of Integral Weighted Trees with Fixed Total Weight Sum

MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 76 (2016) 615-633 ISSN 0340-6253 On the Maximal Energy of Integral Weighted Trees with Fixed Total Weight

### SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov

Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices

### n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

### Odd induced subgraphs in graphs of maximum degree three

Odd induced subgraphs in graphs of maximum degree three David M. Berman, Hong Wang, and Larry Wargo Department of Mathematics University of New Orleans New Orleans, Louisiana, USA 70148 Abstract A long-standing

### A simple criterion on degree sequences of graphs

Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree

### Degree-associated reconstruction parameters of complete multipartite graphs and their complements

Degree-associated reconstruction parameters of complete multipartite graphs and their complements Meijie Ma, Huangping Shi, Hannah Spinoza, Douglas B. West January 23, 2014 Abstract Avertex-deleted subgraphofagraphgisacard.

### Cycles in a Graph Whose Lengths Differ by One or Two

Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDE-BERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS

### THE 0/1-BORSUK CONJECTURE IS GENERICALLY TRUE FOR EACH FIXED DIAMETER

THE 0/1-BORSUK CONJECTURE IS GENERICALLY TRUE FOR EACH FIXED DIAMETER JONATHAN P. MCCAMMOND AND GÜNTER ZIEGLER Abstract. In 1933 Karol Borsuk asked whether every compact subset of R d can be decomposed

### Special Classes of Divisor Cordial Graphs

International Mathematical Forum, Vol. 7,, no. 35, 737-749 Special Classes of Divisor Cordial Graphs R. Varatharajan Department of Mathematics, Sri S.R.N.M. College Sattur - 66 3, Tamil Nadu, India varatharajansrnm@gmail.com

### Notes on Matrix Multiplication and the Transitive Closure

ICS 6D Due: Wednesday, February 25, 2015 Instructor: Sandy Irani Notes on Matrix Multiplication and the Transitive Closure An n m matrix over a set S is an array of elements from S with n rows and m columns.

### Graph Theory. Introduction. Distance in Graphs. Trees. Isabela Drămnesc UVT. Computer Science Department, West University of Timişoara, Romania

Graph Theory Introduction. Distance in Graphs. Trees Isabela Drămnesc UVT Computer Science Department, West University of Timişoara, Romania November 2016 Isabela Drămnesc UVT Graph Theory and Combinatorics

### DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

Professor Kindred Math 04 Graph Theory Homework 7 Solutions April 3, 03 Introduction to Graph Theory, West Section 5. 0, variation of 5, 39 Section 5. 9 Section 5.3 3, 8, 3 Section 7. Problems you should

### Fig. 1. All hexagonal systems with h = 2, 3, 4 hexagons. HEXAGONAL SYSTEMS. A CHEMISTRY-MOTIVATED EXCURSION TO COMBINATORIAL GEOMETRY

THE TEACHING OF MATHEMATICS 2007, Vol. X, 1, pp. 1 10 HEXAGONAL SYSTEMS. A CHEMISTRY-MOTIVATED EXCURSION TO COMBINATORIAL GEOMETRY Ivan Gutman Abstract. Hexagonal systems are geometric objects obtained

### Edge looseness of plane graphs

Also available at http://amc-journal.eu ISSN 1855-966 (printed edn.), ISSN 1855-974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 9 (015) 89 96 Edge looseness of plane graphs Július Czap Department of

### AN UPPER BOUND ON THE LAPLACIAN SPECTRAL RADIUS OF THE SIGNED GRAPHS

Discussiones Mathematicae Graph Theory 28 (2008 ) 345 359 AN UPPER BOUND ON THE LAPLACIAN SPECTRAL RADIUS OF THE SIGNED GRAPHS Hong-Hai Li College of Mathematic and Information Science Jiangxi Normal University

### On minimal forbidden subgraphs for the class of EDM-graphs

Also available at http://amc-journaleu ISSN 8-966 printed edn, ISSN 8-97 electronic edn ARS MATHEMATICA CONTEMPORANEA 9 0 6 On minimal forbidden subgraphs for the class of EDM-graphs Gašper Jaklič FMF

### P. Jeyanthi and N. Angel Benseera

Opuscula Math. 34, no. 1 (014), 115 1 http://dx.doi.org/10.7494/opmath.014.34.1.115 Opuscula Mathematica A TOTALLY MAGIC CORDIAL LABELING OF ONE-POINT UNION OF n COPIES OF A GRAPH P. Jeyanthi and N. Angel

### HOMEWORK #3 SOLUTIONS - MATH 3260

HOMEWORK #3 SOLUTIONS - MATH 3260 ASSIGNED: FEBRUARY 26, 2003 DUE: MARCH 12, 2003 AT 2:30PM (1) Show either that each of the following graphs are planar by drawing them in a way that the vertices do not

### Partitioning edge-coloured complete graphs into monochromatic cycles and paths

arxiv:1205.5492v1 [math.co] 24 May 2012 Partitioning edge-coloured complete graphs into monochromatic cycles and paths Alexey Pokrovskiy Departement of Mathematics, London School of Economics and Political

### Divisor graphs have arbitrary order and size

Divisor graphs have arbitrary order and size arxiv:math/0606483v1 [math.co] 20 Jun 2006 Le Anh Vinh School of Mathematics University of New South Wales Sydney 2052 Australia Abstract A divisor graph G

### Product irregularity strength of certain graphs

Also available at http://amc.imfm.si ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 7 (014) 3 9 Product irregularity strength of certain graphs Marcin Anholcer

### Basic Notions on Graphs. Planar Graphs and Vertex Colourings. Joe Ryan. Presented by

Basic Notions on Graphs Planar Graphs and Vertex Colourings Presented by Joe Ryan School of Electrical Engineering and Computer Science University of Newcastle, Australia Planar graphs Graphs may be drawn

### The Real Numbers. Here we show one way to explicitly construct the real numbers R. First we need a definition.

The Real Numbers Here we show one way to explicitly construct the real numbers R. First we need a definition. Definitions/Notation: A sequence of rational numbers is a funtion f : N Q. Rather than write

### Tree Cover of Graphs

Applied Mathematical Sciences, Vol. 8, 2014, no. 150, 7469-7473 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49728 Tree Cover of Graphs Rosalio G. Artes, Jr. and Rene D. Dignos Department

### Tenacity and rupture degree of permutation graphs of complete bipartite graphs

Tenacity and rupture degree of permutation graphs of complete bipartite graphs Fengwei Li, Qingfang Ye and Xueliang Li Department of mathematics, Shaoxing University, Shaoxing Zhejiang 312000, P.R. China

### Hosoya Polynomials of Pentachains

MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun Math Comput Chem 65 (0) 807-89 ISSN 0340-653 Hosoya Polynomials of Pentachains Ali A Ali Academy- University of Mosul Ahmed M

### Triangle deletion. Ernie Croot. February 3, 2010

Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,

### SCORE SETS IN ORIENTED GRAPHS

Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in

### All trees contain a large induced subgraph having all degrees 1 (mod k)

All trees contain a large induced subgraph having all degrees 1 (mod k) David M. Berman, A.J. Radcliffe, A.D. Scott, Hong Wang, and Larry Wargo *Department of Mathematics University of New Orleans New

### 10. Graph Matrices Incidence Matrix

10 Graph Matrices Since a graph is completely determined by specifying either its adjacency structure or its incidence structure, these specifications provide far more efficient ways of representing a

### Cycles and clique-minors in expanders

Cycles and clique-minors in expanders Benny Sudakov UCLA and Princeton University Expanders Definition: The vertex boundary of a subset X of a graph G: X = { all vertices in G\X with at least one neighbor

### ELA

ON MINIMAL ENERGIES OF TREES WITH GIVEN DIAMETER SHUCHAO LI AND NANA LI Abstract. The energy of G, denoted by E(G), is defined as the sum of the absolute values of the eigenvalues of G. In this paper,

### On a tree graph dened by a set of cycles

Discrete Mathematics 271 (2003) 303 310 www.elsevier.com/locate/disc Note On a tree graph dened by a set of cycles Xueliang Li a,vctor Neumann-Lara b, Eduardo Rivera-Campo c;1 a Center for Combinatorics,

### On Total Domination in Graphs

University of Houston - Downtown Senior Project - Fall 2012 On Total Domination in Graphs Author: David Amos Advisor: Dr. Ermelinda DeLaViña Senior Project Committee: Dr. Sergiy Koshkin Dr. Ryan Pepper

### Degree Hypergroupoids Associated with Hypergraphs

Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated

### A 2-factor in which each cycle has long length in claw-free graphs

A -factor in which each cycle has long length in claw-free graphs Roman Čada Shuya Chiba Kiyoshi Yoshimoto 3 Department of Mathematics University of West Bohemia and Institute of Theoretical Computer Science

### On the Union of Arithmetic Progressions

On the Union of Arithmetic Progressions Shoni Gilboa Rom Pinchasi August, 04 Abstract We show that for any integer n and real ɛ > 0, the union of n arithmetic progressions with pairwise distinct differences,

### Cycle transversals in bounded degree graphs

Electronic Notes in Discrete Mathematics 35 (2009) 189 195 www.elsevier.com/locate/endm Cycle transversals in bounded degree graphs M. Groshaus a,2,3 P. Hell b,3 S. Klein c,1,3 L. T. Nogueira d,1,3 F.

### Diameter of paired domination edge-critical graphs

AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 40 (2008), Pages 279 291 Diameter of paired domination edge-critical graphs M. Edwards R.G. Gibson Department of Mathematics and Statistics University of Victoria

### Planar Tree Transformation: Results and Counterexample

Planar Tree Transformation: Results and Counterexample Selim G Akl, Kamrul Islam, and Henk Meijer School of Computing, Queen s University Kingston, Ontario, Canada K7L 3N6 Abstract We consider the problem

### Set systems with union and intersection constraints

Set systems with union and intersection constraints Dhruv Mubayi Reshma Ramadurai October 15, 2008 Abstract Let 2 d k be fixed and n be sufficiently large. Suppose that G is a collection of k-element subsets

### Graph definition Degree, in, out degree, oriented graph. Complete, regular, bipartite graph. Graph representation, connectivity, adjacency.

Mária Markošová Graph definition Degree, in, out degree, oriented graph. Complete, regular, bipartite graph. Graph representation, connectivity, adjacency. Isomorphism of graphs. Paths, cycles, trials.

### Characterizations of Arboricity of Graphs

Characterizations of Arboricity of Graphs Ruth Haas Smith College Northampton, MA USA Abstract The aim of this paper is to give several characterizations for the following two classes of graphs: (i) graphs

### The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

### SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH

CHAPTER 3 SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH ABSTRACT This chapter begins with the notion of block distances in graphs. Using block distance we defined the central tendencies of a block, like B-radius

### (Vertex) Colorings. We can properly color W 6 with. colors and no fewer. Of interest: What is the fewest colors necessary to properly color G?

Vertex Coloring 2.1 33 (Vertex) Colorings Definition: A coloring of a graph G is a labeling of the vertices of G with colors. [Technically, it is a function f : V (G) {1, 2,...,l}.] Definition: A proper

### Set systems with union and intersection constraints

Set systems with union and intersection constraints Dhruv Mubayi Reshma Ramadurai September 13, 2007 Abstract Let 2 d k be fixed and n be sufficiently large. Suppose that G is a collection of k-element

### Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

### Available online at ScienceDirect. Procedia Computer Science 74 (2015 ) 47 52

Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 74 (05 ) 47 5 International Conference on Graph Theory and Information Security Fractional Metric Dimension of Tree and

### Some Results on 2-Lifts of Graphs

Some Results on -Lifts of Graphs Carsten Peterson Advised by: Anup Rao August 8, 014 1 Ramanujan Graphs Let G be a d-regular graph. Every d-regular graph has d as an eigenvalue (with multiplicity equal

### P -adic numbers And Bruhat-Tits Tree

P -adic numbers And Bruhat-Tits Tree In the first part of these notes we give a brief introduction to p-adic numbers. In the second part we discuss some properties of the Bruhat-Tits tree. It is mostly

### Homework 13 Solutions. X(n) = 3X(n 1) + 5X(n 2) : n 2 X(0) = 1 X(1) = 2. Solution: First we find the characteristic equation

Homework 13 Solutions PROBLEM ONE 1 Solve the recurrence relation X(n) = 3X(n 1) + 5X(n ) : n X(0) = 1 X(1) = Solution: First we find the characteristic equation which has roots r = 3r + 5 r 3r 5 = 0,

### Extremal Graphs without Three-Cycles or Four-Cycles

Extremal Graphs without Three-Cycles or Four-Cycles David K. Garnick Department of Computer Science Bowdoin College Brunswick, Maine 04011 Y. H. Harris Kwong Department of Mathematics and Computer Science

### Generalizing the Ramsey Problem through Diameter

Generalizing the Ramsey Problem through Diameter Dhruv Mubayi Submitted: January 8, 001; Accepted: November 13, 001. MR Subject Classifications: 05C1, 05C15, 05C35, 05C55 Abstract Given a graph G and positive

### Tree sums and maximal connected I-spaces

Tree sums and maximal connected I-spaces Adam Bartoš drekin@gmail.com Faculty of Mathematics and Physics Charles University in Prague Twelfth Symposium on General Topology Prague, July 2016 Maximal and

### x if x 0, x if x < 0.

Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the

### PROBLEM SET 7: PIGEON HOLE PRINCIPLE

PROBLEM SET 7: PIGEON HOLE PRINCIPLE The pigeonhole principle is the following observation: Theorem. Suppose that > kn marbles are distributed over n jars, then one jar will contain at least k + marbles.

### Lecture 4: The Chromatic Number

Introduction to Graph Theory Instructor: Padraic Bartlett Lecture 4: The Chromatic Number Week 1 Mathcamp 2011 In our discussion of bipartite graphs, we mentioned that one way to classify bipartite graphs

### Convergence and stability results for a class of asymptotically quasi-nonexpansive mappings in the intermediate sense

Functional Analysis, Approximation and Computation 7 1) 2015), 57 66 Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac Convergence and

### Homework MA 725 Spring, 2012 C. Huneke SELECTED ANSWERS

Homework MA 725 Spring, 2012 C. Huneke SELECTED ANSWERS 1.1.25 Prove that the Petersen graph has no cycle of length 7. Solution: There are 10 vertices in the Petersen graph G. Assume there is a cycle C

### CSL851: Algorithmic Graph Theory Semester I Lecture 1: July 24

CSL851: Algorithmic Graph Theory Semester I 2013-2014 Lecture 1: July 24 Lecturer: Naveen Garg Scribes: Suyash Roongta Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

### most 4 Mirka Miller 1,2, Guillermo Pineda-Villavicencio 3, The University of Newcastle Callaghan, NSW 2308, Australia University of West Bohemia

Complete catalogue of graphs of maimum degree 3 and defect at most 4 Mirka Miller 1,2, Guillermo Pineda-Villavicencio 3, 1 School of Electrical Engineering and Computer Science The University of Newcastle

### CONTRIBUTIONS TO ZERO SUM PROBLEMS

CONTRIBUTIONS TO ZERO SUM PROBLEMS S. D. ADHIKARI, Y. G. CHEN, J. B. FRIEDLANDER, S. V. KONYAGIN AND F. PAPPALARDI Abstract. A prototype of zero sum theorems, the well known theorem of Erdős, Ginzburg

### ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD. 1. Introduction

ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD A.D. SCOTT Abstract. Gallai proved that the vertex set of any graph can be partitioned into two sets, each inducing a subgraph with all degrees even. We prove

### On Integer Additive Set-Indexers of Graphs

On Integer Additive Set-Indexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A set-indexer of a graph G is an injective set-valued function f : V (G) 2 X such that

### Generalized Induced Factor Problems

Egerváry Research Group on Combinatorial Optimization Technical reports TR-2002-07. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

### Class One: Degree Sequences

Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of

### Every tree contains a large induced subgraph with all degrees odd

Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University

### Large induced subgraphs with all degrees odd

Large induced subgraphs with all degrees odd A.D. Scott Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, England Abstract: We prove that every connected graph of order

### Introduction to Graph Theory

Introduction to Graph Theory Allen Dickson October 2006 1 The Königsberg Bridge Problem The city of Königsberg was located on the Pregel river in Prussia. The river divided the city into four separate

### 6. GRAPH AND MAP COLOURING

6. GRPH ND MP COLOURING 6.1. Graph Colouring Imagine the task of designing a school timetable. If we ignore the complications of having to find rooms and teachers for the classes we could propose the following

### Chapter 2 Limits Functions and Sequences sequence sequence Example

Chapter Limits In the net few chapters we shall investigate several concepts from calculus, all of which are based on the notion of a limit. In the normal sequence of mathematics courses that students

### Intersection Dimension and Maximum Degree

Intersection Dimension and Maximum Degree N.R. Aravind and C.R. Subramanian The Institute of Mathematical Sciences, Taramani, Chennai - 600 113, India. email: {nraravind,crs}@imsc.res.in Abstract We show

### Two General Methods to Reduce Delay and Change of Enumeration Algorithms

ISSN 1346-5597 NII Technical Report Two General Methods to Reduce Delay and Change of Enumeration Algorithms Takeaki Uno NII-2003-004E Apr.2003 Two General Methods to Reduce Delay and Change of Enumeration

### Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph