Qué pasa si n = 1 y n = 4?

Size: px
Start display at page:

Download "Qué pasa si n = 1 y n = 4?"

Transcription

1 Galaxias Elípticas

2 Qué pasa si n = 1 y n = 4?

3 Isophotal Shapes For normal elliptical galaxies the axis ratio lies in the range 0.3 <b/a 1, corresponding to types E0 to E7. Isophote twisting Boxy ellipticals are usually bright, rotate slowly, and show stronger than average radio and X-ray emission, while disky ellipticals are fainter, have significant rotation and show little or no radio and X-ray emission (e.g. Bender et al., 1989; Pasquali et al., 2007). In addition, the diskiness is correlated with the nuclear properties as well; disky ellipticals typically have steep cusps, while boxy ellipticals mainly harbor central cores (e.g. Jaffe et al., 1994; Faber et al., 1997).

4

5 Tarea.- Considere la Ec y obtenga la Ec. 2.24

6 Ie = L / (2πR2e)

7 Colors Elliptical galaxies in general have red colors, indicating that their stellar contents are dominated by old, metal-rich stars. In addition, the colors are tightly correlated with the luminosity such that brighter ellipticals are redder (Sandage & Visvanathan, 1978). The slope and (small) scatter of this color magnitude relation puts tight constraints on the star-formation histories of elliptical galaxies. Ellipticals also display color gradient. In general, the outskirt has a bluer color than the central region. Peletier et al. (1990) obtained a mean logarithmic gradient of Δ(U R)/Δlog r = 0.20±0.02 mag in U R, and of Δ(B R)/Δlog r = 0.09±0.02 mag in B R, in good agreement with the results obtained by Franx et al. (1989b). Kinematic Properties Giant ellipticals generally have low rotation velocities. Observationally, this may be characterized by the ratio of maximum line-of-sight streaming motion vm (relative to the mean velocity of the galaxy) to σ, the average value of the line-of-sight velocity dispersion interior to Re/2. This ratio provides a measure of the relative importance of ordered and random motions within the galaxy. For isotropic, oblate galaxies flattened by the centrifugal force generated by rotation, vm/σ ε /(1 ε ), with ε the ellipticity of the spheroid. Note how in bright ellipticals, vm/σ lies well below this prediction

8

9 Scaling Relations The kinematic and photometric properties of elliptical galaxies are correlated. In particular, ellipticals with a larger (central) velocity dispersion are both brighter, known as the Faber Jackson relation, and larger, known as the Dnσ relation (Dn is the isophotal diameter). When plotted in the three-dimensional space spanned by logσ0, logre and log<i>e, elliptical galaxies are concentrated in a plane known as the fundamental plane. The values of a and b have been estimated in various photometric bands. For example, Jørgensen et al. (1996) obtained a = 1.24±0.07, b = 0.82±0.02 in the optical, while Pahre et al. (1998) obtained a = 1.53±0.08, b = 0.79±0.03 in the nearinfrared. More recently, using 9,000 galaxies from the Sloan Digital Sky Survey (SDSS), Bernardi et al. (2003b) found the best fitting plane to have a=1.49±0.05 and b= 0.75±0.01 in the SDSS r-band with a rms of only The Faber Jackson and Dn-σ relations are both two-dimensional projections of this fundamental plane.these relations can not only be used to determine the distances to elliptical galaxies, but are also important for constraining theories for their formation.

10 Gas Content Hot ( 107 K) X-ray emitting gas usually dominates the interstellar medium (ISM) in luminous ellipticals, where it can contribute up to 10^10 Mo to the total mass of the system. This hot gas is distributed in extended X-ray emitting atmospheres (Fabbiano, 1989; Mathews & Brighenti, 2003), and serves as an ideal tracer of the gravitational potential in which the galaxy resides. In addition, many ellipticals also contain small amounts of warm ionized (10^4K) gas as well as cold (< 100K) gas and dust. Typical masses are 10^2 10^4 Mo in ionized gas and 10^6 10^8 Mo in the cold component. Contrary to the case for spirals, the amounts of dust and of atomic and molecular gas are not correlated with the luminosity of the elliptical. In many cases, the dust and/or ionized gas is located in the center of the galaxy in a small disk component, while other ellipticals reveal more complex, filamentary or patchy dust morphologies (e.g. van Dokkum & Franx, 1995; Tran et al., 2001). This gas and dust either results from accumulated mass loss from stars within the galaxy or has been accreted from external systems. The latter is supported by the fact that the dust and gas disks are often found to have kinematics decoupled from that of the stellar body (e.g. Bertola et al., 1992).

11 The dichotomy between disky and boxy ellipticals is reinforced by their nuclear properties: high-resolution images from the Hubble Space Telescope have shown that the central regions of disky ellipticals typically have steep cusps, while many boxy ellipticals have gently rising inner luminosity profiles or central cores (Ferrarese et al., 1994; Lauer et al., 1995; Rest et al., 2001). If the surface brightness profiles, I(R), are inverted to obtain the three-dimensional luminosity density profiles, ν(r), the distribution of the inner logarithmic slope of these profiles, S dlnν/dlnr, appears bimodal, with most galaxies having S near 0.9 or 1.8. The kinematics of elliptical galaxies have to be determined from absorption line spectroscopy. Before this, it was generally believed that both ellipticals and the bulges of disk galaxies are oblate systems with near-isotropic velocity dispersions and are flattened by rotation While bright, boxy ellipticals are slow rotators, supported by anisotropic velocity dispersions, the fainter, disky ellipticals typically have much higher rotation velocities, often consistent with them being purely rotationally flattened

12 Velocity fields of 25% of all ellipticals have a kinematically decoupled core (KDC) whose angular momentum vector is misaligned with respect to that of the bulk of the galaxy. In extreme cases, the core can even be counterrotating with respect to the outer regions. KDCs are usually attributed to dynamically distinct subsystems that are the remnants of accreted companions. However, kinematic twists can also result from the projection of the major families of circulating orbits in a triaxial potential, without the core being a separate dynamical subsystem (Statler, 1991). Evidence for Dark Halos According to the standard paradigm for galaxy formation, elliptical galaxies should reside in dark halos. However, finding direct, dynamical evidence for dark halos around elliptical galaxies has proven difficult because of the lack of suitable and easily interpretable tracers at large radii. One possibility is to use the stellar kinematics, obtained from absorption line spectroscopy of the integrated stellar light. However, since the surface brightness of elliptical galaxies drops rapidly with radius, it is difficult to obtain reliable measurements much beyond one effective radius. To date, stellar kinematics have been measured out to 2Re in a few cases IFUs??. These typically show that the line-ofsight velocity dispersion profile is roughly constant beyond 1Re. Although consistent with a mass-to-light ratio profile that increases outward, as expected if the system is embedded in a dark halo, a constant σp(r) can also signal a velocity distribution that becomes more tangentially anisotropic with increasing radius. Comparing such data with dynamical models has indicated that, in general, the mass-to-light ratios increase with radius, consistent with the presence of dark halos, although there are also cases where the data is consistent with a constant M/L all the way out to 2Re (e.g. Rix et al., 1997; Kronawitter et al., 2000). Bright ellipticals are often surrounded by extended X-ray emitting coronae of hot gas. As we have seen in 8.2.1, under the assumption that the X-ray emitting gas is in hydrostatic equilibrium, the total gravitational mass enclosed within a radius r is given by Eq. (8.16). A comparison with Eq. (13.12) shows that this hydrostatic equation is similar to the stellar dynamical equivalent, but with the stellar velocity dispersion v2r replaced by the gas temperature T and with β (r) = 0. For a few bright ellipticals, both the temperature, T(r), and the density, ρ(r), of the gas can be determined from X-ray measurements, and Eq. (8.16) can be solved for the total mass profile M(r). In all cases the mass-to-light ratios thus derived reach values of 100M/L on scales of 100kpc, providing strong evidence for the presence of dark halos (e.g. Forman et al., 1985; Mushotzky et al., 1994).

13 The Masses of Elliptical Galaxies. I. a Redetermination of the Mass of M32. Burbidge, E. M., Burbidge, G. R., & Fish, R. A. The Astrophysical Journal, vol. 133, p.393, 1961.

14 Evidence for Supermassive Black Holes

15 The Formation of Elliptical Galaxies

16 Before the current structure formation paradigm was established, there were two competing scenarios for the formation of elliptical galaxies: The Monolithic Collapse Scenario In the monolithic collapse scenario elliptical galaxies form in a single burst of intense star formation at high redshift, which is coincident with their collapse to equilibrium and is followed by passive evolution of their stellar populations to the present day (Partridge & Peebles, 1967; Larson, 1975). This scenario was inspired by the fact that elliptical galaxies appear to be a remarkably homogeneous class of objects with uniformly old stellar populations. The morphology and size of the final object depend critically on when star formation occurs relative to collapse, and, in particular, on whether substantial radiative energy losses can increase the binding energy of the system before the stars form. In the dissipationless extreme, all the gas associated with the object is turned into stars either prior to the collapse or during its early stages. The collapse then effectively conserves energy and according to the spherical collapse model, the final system has an average density that is 200 times that of the average density of the universe at the time of collapse. Given the observed sizes and masses of elliptical galaxies, this implies that they must all have formed at redshifts greater than 20. This is quite incompatible with our current understanding of the star-formation history of the Universe according to which only a very small fraction of all stars formed before z = 6 The monolithic collapse scenario In this scenario elliptical galaxies form on a short time scale through collapse and virialization from idealized uncollapsed initial conditions (whose prior evolution is not considered). If the star-formation time scale is short compared to the free-fall time scale the collapse is effectively dissipationless. If the two time scales are comparable, then radiative energy losses are important and one speaks of dissipational collapse. The main characteristic of this scenario is that the stars form simultaneously with the assembly of the final galaxy. The merger scenario In this scenario, an elliptical forms when two or more pre-existing and fully formed galaxies merge together. The main differences with respect to the monolithic collapse scenario is that formation of the stars occurs before, and effectivley independently of, the assembly of the final galaxy.

17 A second conflict between this dissipationless collapse scenario and our current understanding of cosmic structure comes from the fact that violent relaxation does not differentiate between stars and dark matter and so cannot separate them. This is incompatible with the observation that the visible regions of ellipticals contain rather little dark matter, but are surrounded by dark matter halos with masses at least 10 times the stellar mass of the galaxy and sizes which are well over an order of magnitude greater. Clearly any collapse model should apply to the total mass associated with the virialized system, but it then needs to explain why the stars occupy a very small region at the center of the final object. with re some characteristic radius of the stellar system, and ζ a form factor that depends on the density distributions of the stars and dark matter. In the absence of a dark matter halo, a Hernquist sphere has ζ 0.303, if re is defined as the effective radius, while realistic models with a dark matter halo typically have ζ 0.6±0.1 (Boylan-Kolchin et al., 2005). The situation is different if substantial dissipation can occur during collapse, requiring a starformation time scale which is comparable to or somewhat longer than the collapse time scale. The gas can then segregate from the dark matter at the center of the potential well before turning into stars, and the final galaxy can end up with a binding energy that is substantially greater During such an extended collapse, stars form at later times out of gas that was enriched in metals by earlier generations. This can result in metallicity gradients similar to those seen in many real ellipticals (e.g. Larson, 1974a). The Sizes of Elliptical Galaxies In general, the size of an equilibrium galaxy is related to its mass and binding energy via the virial theorem which states that E =W/2. Here is the potential energy of the stellar system, and we have assumed spherical symmetry. The subscripts s and h refer to stars and the dark matter halo, respectively. The potential energy thus consists of a term that describes the self-energy of the stellar system plus a cross-term that describes the interaction energy of the stellar system with the dark matter halo. In general, we can cast Eq. (13.33) in the form

18 In the case of the monolithic collapse scenario, consider a perturbation consisting of both gas and dark matter with a homogeneous density distribution, and having a total mass of Mvir at turn-around. The initial energy of the gas at turnaround is then simply Thus, in the monolithic collapse scenario the binding energy of the gas has to become more negative by a factor 7 before it forms stars, in order to explain the observed sizes of elliptical galaxies. where fgas = Mgas/Mvir and rt is the turnaround radius. Suppose that, while the dark matter collapses and virializes, the gas dissipates its binding energy (due to radiative cooling) until it is instantaneously turned into stars at a time when the absolute value of its binding energy has increased to Ef =η Ei. From that point on the stellar system experiences dissipationless, gravitational collapse resulting in a virialized stellar system, embedded in a virialized dark matter halo. According to the virial theorem we then have that where we have assumed that all the gas is turned into stars. Relating this to the initial binding energy of the gas, and using that ζf 0.6, we obtain that where rvir is the virial radius of the final dark matter halo, which we have taken to be half the turnaround radius (see 5.4.4). Using the Sloan Digital Sky Survey, Shen et al. (2003) found that the effective radii of elliptical galaxies are related to their stellar masses, M, according to Substituting this into Eq. (13.37) and assuming that the average density of a dark matter halo is 100 times the critical density for closure (see 5.4.4), we finally obtain that

19 Several issues remain. It can be shown that the observed properties of ellipticals lead to inferred collapse factors of their baryonic component which are comparable to those inferred for the material collecting in galaxy disks. Why then does the gas end up in a rotationally supported configuration in one case but not in the other? This would require ellipticals either to form from protogalaxies with substantially lower initial angular momentum, or for their formation process to be much more efficient at transferring angular momentum from baryons to dark matter. This is not implausible; the distribution of spin parameters of dark matter haloes is broad and galaxy formation simulations often reveal efficient angular momentum transfer to the extent that it turns out to be much easier to make spheroid-dominated systems like ellipticals than disk-dominated systems like late-type spirals (e.g. Katz & Gunn, 1991; Katz, 1992). A more difficult problem for the monolithic collapse model comes from its principal assumption that the final assembly of an elliptical galaxy occurs simultaneously with the formation of the bulk of its stars over a relatively short time interval, perhaps a Gyr or two. The great majority of normal elliptical galaxies appear to have old stellar populations with a mean age of 10 Gyr or more, implying that the formation events should have occurred at z > 2 and that the galaxies should have evolved passively thereafter. However, the total mass density in relatively massive, passively evolving galaxies appears to be a factor of 3 4 lower at z 1 than it is today (Bell et al., 2004; Brown et al., 2007; Faber et al., 2007; Taylor et al., 2009). Thus at least 70% of present-day ellipticals were either still forming stars at z = 1 or had not yet been assembled. In either case this contradicts the simple monolithic collapse hypothesis.

20 The Merger Scenario

21

22

23

Ellipticals. Elliptical galaxies: Elliptical galaxies: Some ellipticals are not so simple M89 E0

Ellipticals. Elliptical galaxies: Elliptical galaxies: Some ellipticals are not so simple M89 E0 Elliptical galaxies: Ellipticals Old view (ellipticals are boring, simple systems)! Ellipticals contain no gas & dust! Ellipticals are composed of old stars! Ellipticals formed in a monolithic collapse,

More information

Elliptical Galaxies. Houjun Mo. April 19, 2004. Basic properties of elliptical galaxies. Formation of elliptical galaxies

Elliptical Galaxies. Houjun Mo. April 19, 2004. Basic properties of elliptical galaxies. Formation of elliptical galaxies Elliptical Galaxies Houjun Mo April 19, 2004 Basic properties of elliptical galaxies Formation of elliptical galaxies Photometric Properties Isophotes of elliptical galaxies are usually fitted by ellipses:

More information

Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation

Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation Faber-Jackson relation: Faber-Jackson Relation In 1976, Faber & Jackson found that: Roughly, L! " 4 More luminous galaxies have deeper potentials Can show that this follows from the Virial Theorem Why

More information

Elliptical Galaxies. Old view: ellipticals are boring, simple systems

Elliptical Galaxies. Old view: ellipticals are boring, simple systems Eliptical Galaxies Elliptical Galaxies Old view: ellipticals are boring, simple systems Ellipticals contain no gas & dust Ellipticals are composed of old stars Ellipticals formed in a monolithic collapse,

More information

Elliptical Galaxies. Virgo Cluster: distance 15Mpc

Elliptical Galaxies. Virgo Cluster: distance 15Mpc Elliptical Galaxies Virgo Cluster: distance 15Mpc Elliptical Galaxies Elliptical galaxies are thought to be the simplest of all types of galaxies. Yet, detailed analysis shows that they are much more complicated

More information

arxiv:astro-ph/0101553v1 31 Jan 2001

arxiv:astro-ph/0101553v1 31 Jan 2001 Evidence for Large Stellar Disks in Elliptical Galaxies. Andreas Burkert and Thorsten Naab Max-Planck-Institut für Astronomie, D-69242 Heidelberg, Germany arxiv:astro-ph/0101553v1 31 Jan 2001 Abstract.

More information

Class #14/15 14/16 October 2008

Class #14/15 14/16 October 2008 Class #14/15 14/16 October 2008 Thursday, Oct 23 in class You ll be given equations and constants Bring a calculator, paper Closed book/notes Topics Stellar evolution/hr-diagram/manipulate the IMF ISM

More information

Modeling Galaxy Formation

Modeling Galaxy Formation Galaxy Evolution is the study of how galaxies form and how they change over time. As was the case with we can not observe an individual galaxy evolve but we can observe different galaxies at various stages

More information

Dwarf Elliptical andFP capture the Planets

Dwarf Elliptical andFP capture the Planets Rough subdivision Normal ellipticals. Giant ellipticals (ge s), intermediate luminosity (E s), and compact ellipticals (ce s), covering a range of luminosities from M B 23 m to M B 15 m. Dwarf ellipticals

More information

Observational properties of ellipticals

Observational properties of ellipticals Observational properties of ellipticals Ellipticals are deceptively simple it is so tempting to treat them as a pressure supported gas of stars but this is not correct. Too bad that only dwarf ellipticals

More information

Lecture 6: distribution of stars in. elliptical galaxies

Lecture 6: distribution of stars in. elliptical galaxies Lecture 6: distribution of stars in topics: elliptical galaxies examples of elliptical galaxies different classes of ellipticals equation for distribution of light actual distributions and more complex

More information

Chapter 15.3 Galaxy Evolution

Chapter 15.3 Galaxy Evolution Chapter 15.3 Galaxy Evolution Elliptical Galaxies Spiral Galaxies Irregular Galaxies Are there any connections between the three types of galaxies? How do galaxies form? How do galaxies evolve? P.S. You

More information

Elliptical Galaxies. Galaxies and Their Properties, Part II: Fine Structure in E-Galaxies: A Signature of Recent Merging

Elliptical Galaxies. Galaxies and Their Properties, Part II: Fine Structure in E-Galaxies: A Signature of Recent Merging Elliptical Galaxies Ay 21 - Lecture 12 Galaxies and Their Properties, Part II: Old view: ellipticals are boring, simple systems Ellipticals contain no gas & dust Ellipticals are composed of old stars Ellipticals

More information

arxiv:astro-ph/9908129v1 12 Aug 1999

arxiv:astro-ph/9908129v1 12 Aug 1999 On the Formation of Boxy and Disky Elliptical Galaxies Thorsten Naab & Andreas Burkert Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, arxiv:astro-ph/9908129v1 12 Aug 1999 Germany

More information

The formation and evolution of massive galaxies: A major theoretical challenge

The formation and evolution of massive galaxies: A major theoretical challenge The formation and evolution of massive galaxies: A major theoretical challenge Thorsten Naab Max-Planck-Institute for Astrophysics L. Oser, M. Hilz, P. Johansson, J. P. Ostriker Tähtitieteilijäpäivät Haikko,

More information

How Do Galeries Form?

How Do Galeries Form? 8-5-2015see http://www.strw.leidenuniv.nl/ franx/college/ mf-sts-2015-c9-1 8-5-2015see http://www.strw.leidenuniv.nl/ franx/college/ mf-sts-2015-c9-2 Galaxy Formation Leading questions for today How do

More information

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question

More information

Proceedings of the NATIONAL ACADEMY OF SCIENCES

Proceedings of the NATIONAL ACADEMY OF SCIENCES Proceedings of the NATIONAL ACADEMY OF SCIENCES Volume 55 * Number 1 * January 15, 1966 DYNAMICS OF SPHERICAL GALAXIES, II* BY PHILIP M. CAMPBELL LAWRENCE RADIATION LABORATORY, LIVERMORE, CALIFORNIA Communicated

More information

8 Radiative Cooling and Heating

8 Radiative Cooling and Heating 8 Radiative Cooling and Heating Reading: Katz et al. 1996, ApJ Supp, 105, 19, section 3 Thoul & Weinberg, 1995, ApJ, 442, 480 Optional reading: Thoul & Weinberg, 1996, ApJ, 465, 608 Weinberg et al., 1997,

More information

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching

More information

IV. Molecular Clouds. 1. Molecular Cloud Spectra

IV. Molecular Clouds. 1. Molecular Cloud Spectra IV. Molecular Clouds Dark structures in the ISM emit molecular lines. Dense gas cools, Metals combine to form molecules, Molecular clouds form. 1. Molecular Cloud Spectra 1 Molecular Lines emerge in absorption:

More information

Einstein Rings: Nature s Gravitational Lenses

Einstein Rings: Nature s Gravitational Lenses National Aeronautics and Space Administration Einstein Rings: Nature s Gravitational Lenses Leonidas Moustakas and Adam Bolton Taken from: Hubble 2006 Science Year in Review The full contents of this book

More information

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula Origin of the Solar System Lecture 7 Formation of the Solar System Reading: Chapter 9 Quiz#2 Today: Lecture 60 minutes, then quiz 20 minutes. Homework#1 will be returned on Thursday. Our theory must explain

More information

S0 galaxy NGC 2787. Marcella Carollo, HST.

S0 galaxy NGC 2787. Marcella Carollo, HST. S0 galaxy NGC 2787. Marcella Carollo, HST. Dust lane in NGC 5128. Marina Rejkuba, ESO. Peculiar E galaxy NGC 1316. Paul Goudfrooij, HST. Dust-lane E galaxy NGC 5266. Carnegie Atlas of Galaxies. 1994ApJ...43

More information

DYNAMICS OF GALAXIES

DYNAMICS OF GALAXIES DYNAMICS OF GALAXIES 2. and stellar orbits Piet van der Kruit Kapteyn Astronomical Institute University of Groningen the Netherlands Winter 2008/9 and stellar orbits Contents Range of timescales Two-body

More information

White Dwarf Properties and the Degenerate Electron Gas

White Dwarf Properties and the Degenerate Electron Gas White Dwarf Properties and the Degenerate Electron Gas Nicholas Rowell April 10, 2008 Contents 1 Introduction 2 1.1 Discovery....................................... 2 1.2 Survey Techniques..................................

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

Heating & Cooling in Molecular Clouds

Heating & Cooling in Molecular Clouds Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core

More information

The Milky Way Galaxy is Heading for a Major Cosmic Collision

The Milky Way Galaxy is Heading for a Major Cosmic Collision The Milky Way Galaxy is Heading for a Major Cosmic Collision Roeland van der Marel (STScI) [based on work with a team of collaborators reported in the Astrophysical Journal July 2012] Hubble Science Briefing

More information

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D. 1. Most interstellar matter is too cold to be observed optically. Its radiation can be detected in which part of the electromagnetic spectrum? A. gamma ray B. ultraviolet C. infrared D. X ray 2. The space

More information

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

Origins of the Cosmos Summer 2016. Pre-course assessment

Origins of the Cosmos Summer 2016. Pre-course assessment Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of

More information

The CGM around Dwarf Galaxies

The CGM around Dwarf Galaxies The CGM around Dwarf Galaxies Rongmon Bordoloi STScI + the COS-Halos Team What is the CGM? Shen et al. 212 jectedcolumndensityinacubeof5(proper)kpc Diffuse gas, including metals and dust, o2en on extending

More information

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. A panoramic painting of the Milky Way as seen from Earth, done by Knut Lundmark in the 1940 s. The

More information

Observing the Universe

Observing the Universe Observing the Universe Stars & Galaxies Telescopes Any questions for next Monday? Light Doppler effect Doppler shift Doppler shift Spectra Doppler effect Spectra Stars Star and planet formation Sun Low-mass

More information

Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer

Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer Malcolm S. Longair Galaxy Formation With 141 Figures and 12 Tables Springer Contents Part I Preliminaries 1. Introduction, History and Outline 3 1.1 Prehistory 3 1.2 The Theory of the Expanding Universe

More information

Properties of Elliptical Galaxies

Properties of Elliptical Galaxies Chapter 3 Properties of Elliptical Galaxies In the last 20 years our notions about elliptical galaxies have changed radically; these galaxies are much more complex than they seemed at first. 3.1 Folklore

More information

6 A High Merger Fraction in the Rich Cluster MS 1054 03 at z =0:83: Direct Evidence for Hierarchical Formation of Massive Galaxies y

6 A High Merger Fraction in the Rich Cluster MS 1054 03 at z =0:83: Direct Evidence for Hierarchical Formation of Massive Galaxies y 6 A High Merger Fraction in the Rich Cluster MS 1054 03 at z =0:83: Direct Evidence for Hierarchical Formation of Massive Galaxies y ABSTRACT We present a morphological study of the galaxy population of

More information

Populations and Components of the Milky Way

Populations and Components of the Milky Way Chapter 2 Populations and Components of the Milky Way Our perspective from within the Milky Way gives us an opportunity to study a disk galaxy in detail. At the same time, it s not always easy to relate

More information

Summary: Four Major Features of our Solar System

Summary: Four Major Features of our Solar System Summary: Four Major Features of our Solar System How did the solar system form? According to the nebular theory, our solar system formed from the gravitational collapse of a giant cloud of interstellar

More information

THE HR DIAGRAM THE MOST FAMOUS DIAGRAM in ASTRONOMY Mike Luciuk

THE HR DIAGRAM THE MOST FAMOUS DIAGRAM in ASTRONOMY Mike Luciuk THE HR DIAGRAM THE MOST FAMOUS DIAGRAM in ASTRONOMY Mike Luciuk 1.INTRODUCTION Late in the nineteenth century, astronomers had tools that revealed a great deal about stars. By that time, advances in telescope

More information

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,

More information

Solar Ast ro p h y s ics

Solar Ast ro p h y s ics Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY- VCH WILEY-VCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3

More information

Astro 102 Test 5 Review Spring 2016. See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14

Astro 102 Test 5 Review Spring 2016. See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14 Astro 102 Test 5 Review Spring 2016 See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14 Sec 14.5 Expanding Universe Know: Doppler shift, redshift, Hubble s Law, cosmic distance ladder, standard candles,

More information

Neutron Stars. How were neutron stars discovered? The first neutron star was discovered by 24-year-old graduate student Jocelyn Bell in 1967.

Neutron Stars. How were neutron stars discovered? The first neutron star was discovered by 24-year-old graduate student Jocelyn Bell in 1967. Neutron Stars How were neutron stars discovered? The first neutron star was discovered by 24-year-old graduate student Jocelyn Bell in 1967. Using a radio telescope she noticed regular pulses of radio

More information

Arjen van der Wel -- MPIA, Heidelberg

Arjen van der Wel -- MPIA, Heidelberg THE PATH FROM COMPACT Z = 2 GALAXY TO GIANT ELLIPTICAL Arjen van der Wel -- MPIA, Heidelberg with the 3D-HST and CANDELS teams THE PATH FROM COMPACT Z = 2 GALAXY TO GIANT ELLIPTICAL The size-mass relation

More information

arxiv:1002.0847v1 [astro-ph.co] 3 Feb 2010

arxiv:1002.0847v1 [astro-ph.co] 3 Feb 2010 Mon. Not. R. Astron. Soc. 000, 1 19 (200x) Printed 3 February 2010 (MN LATEX style file v2.2) Formation, Evolution and Properties of Isolated Field Elliptical Galaxies arxiv:1002.0847v1 [astro-ph.co] 3

More information

The Formation of Dwarf Early-Type Galaxies. Reynier Peletier Kapteyn Astronomical Institute, Groningen

The Formation of Dwarf Early-Type Galaxies. Reynier Peletier Kapteyn Astronomical Institute, Groningen The Formation of Dwarf Early-Type Galaxies Reynier Peletier Kapteyn Astronomical Institute, Groningen From Kormendy et al. (2009) Definition of dwarf ellipticals: -15 < MB < -18 Here to be discussed the

More information

Intermediate-Mass Black Holes (IMBHs) in Globular Clusters? HST Proper Motion Constraints. Roeland van der Marel

Intermediate-Mass Black Holes (IMBHs) in Globular Clusters? HST Proper Motion Constraints. Roeland van der Marel Intermediate-Mass Black Holes (IMBHs) in Globular Clusters? HST Proper Motion Constraints Roeland van der Marel Why Study IMBHs in Globular Clusters (GCs)? IMBHs: IMBHs can probe a new BH mass range, between

More information

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00 Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June

More information

Direct Detections of Young Stars in Nearby Ellipticals

Direct Detections of Young Stars in Nearby Ellipticals Direct Detections of Young Stars in Nearby Ellipticals (NRAO Green Bank) Joel N. Bregman (University of Michigan) Click icon to add picture ApJ, in press (arxiv:1205.1066) Red and Dead Conventional wisdom:

More information

Be Stars. By Carla Morton

Be Stars. By Carla Morton Be Stars By Carla Morton Index 1. Stars 2. Spectral types 3. B Stars 4. Be stars 5. Bibliography How stars are formed Stars are composed of gas Hydrogen is the main component of stars. Stars are formed

More information

Using Photometric Data to Derive an HR Diagram for a Star Cluster

Using Photometric Data to Derive an HR Diagram for a Star Cluster Using Photometric Data to Derive an HR Diagram for a Star Cluster In In this Activity, we will investigate: 1. How to use photometric data for an open cluster to derive an H-R Diagram for the stars and

More information

8.1 Radio Emission from Solar System objects

8.1 Radio Emission from Solar System objects 8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio

More information

The Messier Objects As A Tool in Teaching Astronomy

The Messier Objects As A Tool in Teaching Astronomy The Messier Objects As A Tool in Teaching Astronomy Dr. Jesus Rodrigo F. Torres President, Rizal Technological University Individual Member, International Astronomical Union Chairman, Department of Astronomy,

More information

ELLIPTICAL GALAXIES: ROTATIONALLY DISTORTED, AFTER ALL

ELLIPTICAL GALAXIES: ROTATIONALLY DISTORTED, AFTER ALL Serb. Astron. J. 179 (2009), 31-47 UDC 524.7 327 DOI: 10.2298/SAJ0979031C Original scientific paper ELLIPTICAL GALAXIES: ROTATIONALLY DISTORTED, AFTER ALL R. Caimmi Dipartimento di Astronomia, Università

More information

Problem #1 [Sound Waves and Jeans Length]

Problem #1 [Sound Waves and Jeans Length] Roger Griffith Astro 161 hw. # 8 Proffesor Chung-Pei Ma Problem #1 [Sound Waves and Jeans Length] At typical sea-level conditions, the density of air is 1.23 1 3 gcm 3 and the speed of sound is 3.4 1 4

More information

Lecture 14. Introduction to the Sun

Lecture 14. Introduction to the Sun Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum

More information

The Layout of the Solar System

The Layout of the Solar System The Layout of the Solar System Planets fall into two main categories Terrestrial (i.e. Earth-like) Jovian (i.e. Jupiter-like or gaseous) [~5000 kg/m 3 ] [~1300 kg/m 3 ] What is density? Average density

More information

How the properties of galaxies are affected by the environment?

How the properties of galaxies are affected by the environment? How the properties of galaxies are affected by the environment? Reinaldo R. de Carvalho - DAS/INPE Marina Trevisan Reinaldo Rosa The activities in this project follow from the Tatiana Moura general context

More information

The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture

The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture Betsy Barton Center for Cosmology University of California, Irvine Grateful acknowledgements to:

More information

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8 References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that

More information

The Evolution of GMCs in Global Galaxy Simulations

The Evolution of GMCs in Global Galaxy Simulations The Evolution of GMCs in Global Galaxy Simulations image from Britton Smith Elizabeth Tasker (CITA NF @ McMaster) Jonathan Tan (U. Florida) Simulation properties We use the AMR code, Enzo, to model a 3D

More information

The Solar Journey: Modeling Features of the Local Bubble and Galactic Environment of the Sun

The Solar Journey: Modeling Features of the Local Bubble and Galactic Environment of the Sun The Solar Journey: Modeling Features of the Local Bubble and Galactic Environment of the Sun P.C. Frisch and A.J. Hanson Department of Astronomy and Astrophysics University of Chicago and Computer Science

More information

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars Nuclear fusion in stars Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars The origin of structure in the Universe Until the time of formation of protogalaxies,

More information

Brief ideas for a long discussion

Brief ideas for a long discussion Brief ideas for a long discussion 1. Disk formation/survival in mergers 2. Bulgeless galaxies 3. Global z~2 to z~0 evolution 4. Interface between Cold flows / Disks / Outflows 5. Emergence of a bimodality

More information

The Chemical Composition of a Molecular Cloud at the Outer Edge of the Galaxy

The Chemical Composition of a Molecular Cloud at the Outer Edge of the Galaxy Carnegie Observatories Astrophysics Series, Vol. 4: Origin and Evolution of the Elements, 2003 ed. A. McWilliam and M. Rauch (Pasadena: Carnegie Observatories, http://www.ociw.edu/ociw/symposia/series/symposium4/proceedings.html)

More information

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC The Hidden Lives of Galaxies Jim Lochner, USRA & NASA/GSFC What is a Galaxy? Solar System Distance from Earth to Sun = 93,000,000 miles = 8 light-minutes Size of Solar System = 5.5 light-hours What is

More information

Star Clusters and Stellar Dynamics

Star Clusters and Stellar Dynamics Ay 20 Fall 2004 Star Clusters and Stellar Dynamics (This file has a bunch of pictures deleted, in order to save space) Stellar Dynamics Gravity is generally the only important force in astrophysical systems

More information

Stellar Evolution: a Journey through the H-R Diagram

Stellar Evolution: a Journey through the H-R Diagram Stellar Evolution: a Journey through the H-R Diagram Mike Montgomery 21 Apr, 2001 0-0 The Herztsprung-Russell Diagram (HRD) was independently invented by Herztsprung (1911) and Russell (1913) They plotted

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

Top 10 Discoveries by ESO Telescopes

Top 10 Discoveries by ESO Telescopes Top 10 Discoveries by ESO Telescopes European Southern Observatory reaching new heights in astronomy Exploring the Universe from the Atacama Desert, in Chile since 1964 ESO is the most productive astronomical

More information

Lecture 10 Formation of the Solar System January 6c, 2014

Lecture 10 Formation of the Solar System January 6c, 2014 1 Lecture 10 Formation of the Solar System January 6c, 2014 2 Orbits of the Planets 3 Clues for the Formation of the SS All planets orbit in roughly the same plane about the Sun. All planets orbit in the

More information

A Preliminary Summary of The VLA Sky Survey

A Preliminary Summary of The VLA Sky Survey A Preliminary Summary of The VLA Sky Survey Eric J. Murphy and Stefi Baum (On behalf of the entire Science Survey Group) 1 Executive Summary After months of critical deliberation, the Survey Science Group

More information

Lesson 3: Isothermal Hydrostatic Spheres. B68: a self-gravitating stable cloud. Hydrostatic self-gravitating spheres. P = "kt 2.

Lesson 3: Isothermal Hydrostatic Spheres. B68: a self-gravitating stable cloud. Hydrostatic self-gravitating spheres. P = kt 2. Lesson 3: Isothermal Hydrostatic Spheres B68: a self-gravitating stable cloud Bok Globule Relatively isolated, hence not many external disturbances Though not main mode of star formation, their isolation

More information

Carol and Charles see their pencils fall exactly straight down.

Carol and Charles see their pencils fall exactly straight down. Section 24-1 1. Carol is in a railroad car on a train moving west along a straight stretch of track at a constant speed of 120 km/h, and Charles is in a railroad car on a train at rest on a siding along

More information

THE CENTERS OF EARLY-TYPE GALAXIES WITH HUBBLE SPACE TELESCOPE. V. NEW WFPC2 PHOTOMETRY 1

THE CENTERS OF EARLY-TYPE GALAXIES WITH HUBBLE SPACE TELESCOPE. V. NEW WFPC2 PHOTOMETRY 1 The Astronomical Journal, 129:2138 2185, 2005 May # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. A THE CENTERS OF EARLY-TYPE GALAXIES WITH HUBBLE SPACE TELESCOPE. V.

More information

What is the Sloan Digital Sky Survey?

What is the Sloan Digital Sky Survey? What is the Sloan Digital Sky Survey? Simply put, the Sloan Digital Sky Survey is the most ambitious astronomical survey ever undertaken. The survey will map one-quarter of the entire sky in detail, determining

More information

A Universe of Galaxies

A Universe of Galaxies A Universe of Galaxies Today s Lecture: Other Galaxies (Chapter 16, pages 366-397) Types of Galaxies Habitats of Galaxies Dark Matter Other Galaxies Originally called spiral nebulae because of their shape.

More information

Indiana University Science with the WIYN One Degree Imager

Indiana University Science with the WIYN One Degree Imager Indiana University Science with the WIYN One Degree Imager Katherine Rhode (Indiana University, WIYN SAC member) Indiana University Department of Astronomy Nine faculty members, plus active emeritus faculty

More information

arxiv:astro-ph/9511100v1 21 Nov 1995

arxiv:astro-ph/9511100v1 21 Nov 1995 An Upper Mass Bound of a Two-Component Protogalaxy Keiko Miyahata and Satoru Ikeuchi Department of Earth and Space Science, Faculty of Science, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560

More information

arxiv:1211.3420v2 [astro-ph.ga] 26 Mar 2013

arxiv:1211.3420v2 [astro-ph.ga] 26 Mar 2013 Published by the Astrophysical Journal (ApJ, 766, 71) Preprint typeset using L A TEX style emulateapj v. 03/07/07 arxiv:1211.3420v2 [astro-ph.ga] 26 Mar 2013 THE DARK HALO SPHEROID CONSPIRACY AND THE ORIGIN

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

The Universe Inside of You: Where do the atoms in your body come from?

The Universe Inside of You: Where do the atoms in your body come from? The Universe Inside of You: Where do the atoms in your body come from? Matthew Mumpower University of Notre Dame Thursday June 27th 2013 Nucleosynthesis nu cle o syn the sis The formation of new atomic

More information

UNIT V. Earth and Space. Earth and the Solar System

UNIT V. Earth and Space. Earth and the Solar System UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system

More information

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

More information

A i A i. µ(ion) = Z i X i

A i A i. µ(ion) = Z i X i Lecture 2 Review: calculation of mean atomic weight of an ionized gas (µ) Given a mass fraction X i (or abundance) for an ionic (or atomic) species with atomic weight A i, we can can calculate µ by: For

More information

FIRST LIGHT IN THE UNIVERSE

FIRST LIGHT IN THE UNIVERSE FIRST LIGHT IN THE UNIVERSE Richard Ellis, Caltech 1. Role of Observations in Cosmology & Galaxy Formation 2. Galaxies & the Hubble Sequence 3. Cosmic Star Formation Histories 4. Stellar Mass Assembly

More information

Specific Intensity. I ν =

Specific Intensity. I ν = Specific Intensity Initial question: A number of active galactic nuclei display jets, that is, long, nearly linear, structures that can extend for hundreds of kiloparsecs. Many have two oppositely-directed

More information

Present-day galaxies: disks vs. spheroids. Parameters of a starburst galaxy

Present-day galaxies: disks vs. spheroids. Parameters of a starburst galaxy Paul van der Werf Sterrewacht Leiden,$& 0D\ Present-day galaxies disks vs. spheroids Disks blue relatively young range in colours range in ages (age ~ 3 6 G, z f ~ 0.5 2) stars formed continually or in

More information

Hubble Diagram S George Djorgovski. Encyclopedia of Astronomy & Astrophysics P. Murdin

Hubble Diagram S George Djorgovski. Encyclopedia of Astronomy & Astrophysics P. Murdin eaa.iop.org DOI: 10.1888/0333750888/2132 Hubble Diagram S George Djorgovski From Encyclopedia of Astronomy & Astrophysics P. Murdin IOP Publishing Ltd 2006 ISBN: 0333750888 Institute of Physics Publishing

More information

Exceptionally massive and bright, the earliest stars changed the course of cosmic history

Exceptionally massive and bright, the earliest stars changed the course of cosmic history THE FIRST STARS IN THE UNIVERSE Exceptionally massive and bright, the earliest stars changed the course of cosmic history BY RICHARD B. LARSON AND VOLKER BROMM ILLUSTRATIONS BY DON DIXON We live in a universe

More information

Galaxy Classification and Evolution

Galaxy Classification and Evolution name Galaxy Classification and Evolution Galaxy Morphologies In order to study galaxies and their evolution in the universe, it is necessary to categorize them by some method. A classification scheme generally

More information

The Gaia Archive. Center Forum, Heidelberg, June 10-11, 2013. Stefan Jordan. The Gaia Archive, COSADIE Astronomical Data

The Gaia Archive. Center Forum, Heidelberg, June 10-11, 2013. Stefan Jordan. The Gaia Archive, COSADIE Astronomical Data The Gaia Archive Astronomisches Rechen-Institut am Zentrum für Astronomie der Universität Heidelberg http://www.stefan-jordan.de 1 2 Gaia 2013-2018 and beyond Progress with Gaia 3 HIPPARCOS Gaia accuracy

More information

Evolution of Close Binary Systems

Evolution of Close Binary Systems Evolution of Close Binary Systems Before going on to the evolution of massive stars and supernovae II, we ll think about the evolution of close binary systems. There are many multiple star systems in the

More information

Understanding the size growth of massive (spheroidal) galaxies through stellar populations

Understanding the size growth of massive (spheroidal) galaxies through stellar populations Department of Space and Climate Physics Mullard Space Science Laboratory http://www.ucl.ac.uk/mssl Understanding the size growth of massive (spheroidal) galaxies through stellar populations Ignacio Ferreras

More information

Structure formation in modified gravity models

Structure formation in modified gravity models Structure formation in modified gravity models Kazuya Koyama Institute of Cosmology and Gravitation University of Portsmouth Dark energy v modified gravity Is cosmology probing the breakdown of general

More information

The radio source - host galaxy connection

The radio source - host galaxy connection The radio source - host galaxy connection Philip Best IfA Edinburgh With thanks to: Guinevere Kauffmann, Tim Heckman, Christian Kaiser, Anja von der Linden, Jarle Brinchmann, Emilio Donoso, Huub Rottgering,

More information

Chapter 8 Formation of the Solar System. What theory best explains the features of our solar system? Close Encounter Hypothesis

Chapter 8 Formation of the Solar System. What theory best explains the features of our solar system? Close Encounter Hypothesis Chapter 8 Formation of the Solar System What properties of our solar system must a formation theory explain? 1. Patterns of motion of the large bodies Orbit in same direction and plane 2. Existence of

More information

Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution. This file has many figures missing, in order to keep it a reasonable size.

Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution. This file has many figures missing, in order to keep it a reasonable size. Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution This file has many figures missing, in order to keep it a reasonable size. Main Sequence and the Range of Stellar Masses MS is defined as the locus

More information