Figure 1: Typical SN Curves


 Adelia Cole
 2 years ago
 Views:
Transcription
1 StressLife Diagram (SN Diagram) The basis of the StressLife method is the Wohler SN diagram, shown schematically for two materials in Figure 1. The SN diagram plots nominal stress amplitude S versus cycles to failure N. There are numerous testing procedures to generate the required data for a proper SN diagram. SN test data are usually displayed on a loglog plot, with the actual SN line representing the mean of the data from several tests. Endurance Limit Figure 1: Typical SN Curves Certain materials have a fatigue limit or endurance limit which represents a stress level below which the material does not fail and can be cycled infinitely. If the applied stress level is below the endurance limit of the material, the structure is said to have an infinite life. This is characteristic of steel and titanium in benign environmental conditions. A typical SN curve corresponding to this type of material is shown Curve A in Figure 1. Many nonferrous metals and alloys, such as aluminum, magnesium, and copper alloys, do not exhibit welldefined endurance limits. These materials instead display a continuously decreasing SN response, similar to Cuve B in Figure 1. In such cases a fatigue strength S f for a given number of cycles must be specified. An effective endurance limit for these materials is sometimes defined as the stress that causes failure at 1x10 8 or 5x10 8 loading cycles. The concept of an endurance limit is used in infinitelife or safe stress designs. It is due to interstitial elements (such as carbon or nitrogen in iron) that pin dislocations, thus preventing the slip mechanism that leads to the formation of microcracks. Care must be taken when using an endurance limit in design applications because it can disappear due to: Periodic overloads (unpin dislocations) Corrosive environments (due to fatigue corrosion interaction) High temperatures (mobilize dislocations) The endurance limit is not a true property of a material, since other significant influences such as surface finish cannot be entirely eliminated. However, a test values (S e ') obtained from polished specimens provide a baseline to which other factors can be applied. Influences that can affect the endurance limit include:
2 Surface Finish Temperature Stress Concentration Notch Sensitivity Size Environment Reliability Such influences are represented by reduction factors, k, which are used to establish a working endurance strength S e for the material: Power Relationship When plotted on a loglog scale, an SN curve can be approximated by a straight line as shown in Figure 3. A power law equation can then be used to define the SN relationship: where b is the slope of the line, sometimes referred to as the Basquin slope, which is given by: Given the Basquin slope and any coordinate pair (N,S) on the SN curve, the power law equation calculates the cycles to failure for a known stress amplitude. Figure 3: Idealized SN Curve The power relationship is only valid for fatigue lives that are on the design line. For ferrous metals this range is from 1x10 3 to 1x10 6 cycles. For nonferrous metals, this range is from 1x10 3 to 5x10 8 cycles. Note the empirical relationships and equations described above are only estimates. Depending on the level of certainty required in the fatigue analysis, actual test data may be necessary. Fatigue Ratio (Relating Fatigue to Tensile Properties) Through many years of experience, empirical relations between fatigue and tensile properties have been developed. Although these relationships are very general, they remain useful for engineers in assessing preliminary fatigue performance. The ratio of the endurance limit S e to the ultimate strength S u of a material is called the fatigue ratio. It has values that range from 0.25 to 0.60, depending on the material. For steel, the endurance strength can be approximated by:
3 and: In addition to this relationship, for wrought steels the stress level corresponding to 1000 cycles, S 1000, can be approximated by: Utilizing these approximations, a generalized SN curve for wrought steels can be created by connecting the S 1000 point with the endurance limit, as shown in Figure 4. Figure 4: Generalized SN Curve for Wrought Steels Mean Stress Effects Most basic SN fatigue data collected in the laboratory is generated using a fullyreversed stress cycle. However, actual loading applications usually involve a mean stress on which the oscillatory stress is superimposed, as shown in Figure 5. The following definitions are used to define a stress cycle with both alternating and mean stress. The stress range is the algebraic difference between the maximum and minimum stress in a cycle: The stress amplitude is onehalf the stress range: The mean stress is the algebraic mean of the the maximum and minimum stress in the cycle: Two ratios that are often defined for the representation of mean stress are the stress ratio R and the amplitude ratio A:
4 For fullyreversed loading conditions, R is equal to 1. For static loading, R is equal to 1. For a case where the mean stress is tensile and equal to the stress amplitude, R is equal to 0. A stress cycle of R = 0.1 is often used in aircraft component testing, and corresponds to a tensiontension cycle in which the minimum stress is equal to 0.1 times the maximum stress. Figure 5: Typical Cyclic Loading Parameters The results of a fatigue test using a nonzero mean stress are often presented in a Haigh diagram, shown in Figure 6. A Haigh diagram plots the mean stress, usually tensile, along the xaxis and the oscillatory stress amplitude along the yaxis. Lines of constant life are drawn through the data points. The infinite life region is the region under the curve and the finite life region is the region above the curve. For finite life calculations the endurance limit in any of the models can be replaced with a fully reversed (R = 1) alternating stress level corresponding to the finite life value. Figure 6: Example of a Haigh Diagram A very substantial amount of testing is required to generate a Haigh diagram, and it is usually impractical to develop curves for all combinations of mean and alternating stresses. Several empirical relationships that relate alternating stress to mean stress have been developed to address this difficulty. These methods define various curves to connect the endurance limit on the alternating stress axis to either the yield strength, S y, ultimate strength S u, or true fracture stress σ f on the mean stress axis. The following relations are available in the StressLife module:
5 Goodman (England, 1899): Gerber (Germany, 1874): Soderberg (USA, 1930): Morrow (USA, 1960s): A graphical comparison of these equations is shown in Figure 7. The two most widely accepted methods are those of Goodman and Gerber. Experience has shown that test data tends to fall between the Goodman and Gerber curves. Goodman is often used due to mathematical simplicity and slightly conservative values. Other observations related to the mean stress equations include: All methods should only be used for tensile mean stress values. For cases where the mean stress is small relative to the alternating stress (R << 1), there is little difference in the methods. The Soderberg method is very conservative. It is used in applications where neither fatigue failure nor yielding should occur. For hard steels (brittle), where the ultimate strength approaches the true fracture stress, the Morrow and Goodman curves are essentially equivalent. For ductile steels (σ f > S u ), the Morrow model predicts less sensitivity to mean stress. As the R approaches 1, the models show large differences. There is a lack of experimental data available for this condition, and the yield criterion may set design limits. Figure 7: Comparison of Mean Stress Equations
6 Notches Thus far, the discussion of StressLife fatigue analysis assumed a smooth, unnotched specimen. However, in practice most fatigue failures occur at notches or stress concentrations. Almost all machine components and structural members contain some form of geometrical or microstructural discontinuities. These discontinuities, or stress concentration factors, often result in maximum local stresses S max that are many times greater than the nominal stress S of the member. In ideally elastic members, the ratio of these stresses is designated the theoretical stress concentration factor K T : The theoretical stress concentration factor is solely dependent on the geometry and the mode of loading (axial, inplane bending, etc.) In the StressLife approach, the effect of notches is accounted for by the fatigue notch factor K f (also known as the fatigue stress concentration factor). The fatigue notch factor relates the unnotched fatigue strength (the endurance limit for ferrous metals) of a member to its notched fatigue strength: In almost all cases, the fatigue notch factor is less than the stress concentration factor, and is less than 1. That is: The stress concentration factor K T can be related to the fatigue notch factor K f. Unlike the stress concentration factor K T, the fatigue notch factor K f is dependent on the type of material and notch size. To account for these additional effects, a notch sensitivity factor q was developed: The values of q range from 0 (no notch effect, Kf = 1) to 1 (full theoretical effect, K f = K T ). A number of researchers have proposed analytical relationships for the determination of q, based on correlation to experimental data. The most common relationships are those proposed by Peterson and Neuber. Both the Peterson and Neuber relations are empirical curve fits to data. When used for analysis there is little difference to the approaches. Both methods show that q is related to material, notch geometry, and notch size. Thus, two notches can have the same K T value, but different K f values because of the different q values. Both approaches also appear to support a limiting value for K f. The limiting value is dependent on material, but is generally between 5 and 6. The Peterson Equation for notch factor sensitivity is: where r is the notch root radius and a is a material constant. The constant a depends on the material strength and ductility and is obtained experimentally from long life fatigue tests on both notched and unnotched specimens. Sharp notches in hard metals tend to be notch sensitive. For ferrousbased wrought metals, the constant a is given by: The Neuber Equation for notch factor sensitivity is:
7 where r is the notch root radius and ρ is a material constant that is related to the grain size of the material. The notch factor K f is usually used to correct the fatigue strength for the notched member. Although K f can be used to correct the entire SN curve, results tend to be conservative. Note that this module will calculate K f, but will not incorporate it into any solutions. The user must divide the unnotched fatigue strength (and S 1000 if desired) by the calculated Kf value to account for the effect of notches.
CH 6: Fatigue Failure Resulting from Variable Loading
CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).
More informationFatigue. 3. Final fracture (rough zone) 1. Fatigue origin. 2. Beach marks (velvety zone)
Fatigue Term fatigue introduced by Poncelet (France) 1839 progressive fracture is more descriptive 1. Minute crack at critical area of high local stress (geometric stress raiser, flaws, preexisting cracks)
More informationFATIGUE TESTS AND STRESSLIFE (SN) APPROACH
FATIGUE TESTS AND STRESSLIFE (SN) APPROACH FATIGUE TESTING LOADING TEST MACHINES SPECIMENS STANDARDS STRESSLIFE APPEROACH SN CURVES MEAN STRESS EFFECTS ON SN BEHAVIOR FACTORS INFLUENCING SN BEHAVIOR
More information9. TIME DEPENDENT BEHAVIOUR: CYCLIC FATIGUE
9. TIME DEPENDENT BEHAVIOUR: CYCLIC FATIGUE A machine part or structure will, if improperly designed and subjected to a repeated reversal or removal of an applied load, fail at a stress much lower than
More informationFatigue Testing. Objectives
Laboratory 8 Fatigue Testing Objectives Students are required to understand principle of fatigue testing as well as practice how to operate the fatigue testing machine in a reverse loading manner. Students
More informationDESIGN TO PREVENT FATIGUE
W H I T E P A P E R DESIGN TO PREVENT FATIGUE Overview In 1954, two crashes involving the world s first commercial airliner, the de Havilland Comet, brought the words metal fatigue to newspaper headlines
More informationFatigue of Metals Copper Alloys. Samuli Heikkinen 26.6.2003
Fatigue of Metals Copper Alloys Samuli Heikkinen 26.6.2003 T 70 C Temperature Profile of HDS Structure Stress amplitude 220 MPa Stress Profile of HDS Structure CLIC Number of Cycles f = 100 Hz 24 hours
More informationNOTCHES AND THEIR EFFECTS. Ali Fatemi  University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1
NOTCHES AND THEIR EFFECTS Ali Fatemi  University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1 CHAPTER OUTLINE Background Stress/Strain Concentrations SN Approach for Notched Members
More informationdifferent levels, also called repeated, alternating, or fluctuating stresses.
Fatigue and Dynamic Loading 1 Fti Fatigue fil failure: 2 Static ti conditions : loads are applied gradually, to give sufficient i time for the strain to fully develop. Variable conditions : stresses vary
More informationSTRAINLIFE (e N) APPROACH
CYCLIC DEFORMATION & STRAINLIFE (e N) APPROACH MONOTONIC TENSION TEST AND STRESSSTRAIN BEHAVIOR STRAINCONTROLLED TEST METHODS CYCLIC DEFORMATION AND STRESSSTRAIN BEHAVIOR STRAINBASED APPROACH TO
More informationChapter 7: Fatigue and Impact
Chapter 7: Fatigue and Impact All machine and structural designs are problems in fatigue because the forces of Nature are always at work and each object must respond in some fashion. Carl Osgood, Fatigue
More informationME311 Machine Design
ME Machine Design Lecture 5: FullyReversing Fatigue and the SN Diagram W Dornfeld Oct26 Fairfield University School of Engineering Discovering Fatigue With the Industrial Revolution came the steam engine
More informationGriffith theory of brittle fracture:
Griffith theory of brittle fracture: Observed fracture strength is always lower than theoretical cohesive strength. Griffith explained that the discrepancy is due to the inherent defects in brittle materials
More informationExperiment: Fatigue Testing
Experiment: Fatigue Testing Objectives  To demonstrate the use of the Instron servohydraulic testing machine for testing specimens subjected to cyclic (fatigue) loadings.  To analytically approximate
More informationObjective To conduct Charpy Vnotch impact test and determine the ductilebrittle transition temperature of steels.
IMPACT TESTING Objective To conduct Charpy Vnotch impact test and determine the ductilebrittle transition temperature of steels. Equipment Coolants Standard Charpy VNotched Test specimens Impact tester
More informationTensile Testing. Objectives
Laboratory 1 Tensile Testing Objectives Students are required to understand the principle of a uniaxial tensile testing and gain their practices on operating the tensile testing machine. Students are able
More informationMIME 3330 Mechanics Laboratory LAB 5: ROTATING BENDING FATIGUE
MIME 3330 Mechanics Laboratory LAB 5: ROTATING BENDING FATIGUE Introduction In this experiment, the finite life fatigue behavior of a smooth cylindrical specimen as shown in Figure 1 will be studied in
More informationFatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY)
Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY) Ali Fatemi, Jonathan Williams and Farzin Montazersadgh Professor and Graduate
More informationFatigue Life Estimates Using Goodman Diagrams
Fatigue Life Estimates Using Goodman Diagrams by Robert Stone The purpose of this paper is to review the proper methods by which spring manufacturers should estimate the fatigue life of a helical compression
More informationMAE 20 Winter 2011 Assignment 6
MAE 0 Winter 011 Assignment 6 8.3 If the specific surface energy for sodalime glass is 0.30 J/m, using data contained in Table 1.5, compute the critical stress required for the propagation of a surface
More informationMCEN 2024, Spring 2008 The week of Apr 07 HW 9 with Solutions
MCEN 2024, Spring 2008 The week of Apr 07 HW 9 with Solutions The Quiz questions based upon HW9 will open on Thursday, Apr. 11 and close on Wednesday, Apr 17 at 1:30 PM. References to A&J: Chapters 13,
More informationFATIGUE FROM VARIABLE AMPLITUDE LOADING. Ali Fatemi  University of Toledo All Rights Reserved Chapter 9 Variable Amplitude Loading 1
FATIGUE FROM VARIABLE AMPLITUDE LOADING Ali Fatemi  University of Toledo All Rights Reserved Chapter 9 Variable Amplitude Loading 1 FATIGUE FROM VARIABLE AMPLITUDE LOADING SPECTRUM LOADS AND CUMULATIVE
More informationCompletely reversed, strain controlled fatigue tests of a steel alloy with E=210000 MPa resulted in the following data:
Kul49.4350 Fatigue o Structure Example solutions 5 Problem 51. Completely reversed, strain controlled atigue tests o a steel alloy with E=10000 resulted in the ollowing data: a a, (o the stable curve)
More informationPrinciples of Fracture Mechanics
81 CHAPTER 8 FAILURE PROBLEM SOLUTIONS Principles of Fracture Mechanics 8.1 This problem asks that we compute the magnitude of the maximum stress that exists at the tip of an internal crack. Equation
More informationFatigue :Failure under fluctuating / cyclic stress
Fatigue :Failure under fluctuating / cyclic stress Under fluctuating / cyclic stresses, failure can occur at loads considerably lower than tensile or yield strengths of material under a static load: Fatigue
More informationObjectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.
Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity
More informationStress Strain Relationships
Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the
More informationIMPELLER FATIGUE ASSESSMENT USING AN SN APPROACH
ENGINEERING PAPER 524408 IMPELLER FATIGUE ASSESSMENT USING AN SN APPROACH Samuel Orr Engineering Analysis Manager Howden Technology AMCA International Engineering Conference Las Vegas, NV, USA 2 4 March
More informationCalculating and Displaying Fatigue Results
Calculating and Displaying Fatigue Results The ANSYS Fatigue Module has a wide range of features for performing calculations and presenting analysis results. By Raymond Browell Product Manager New Technologies
More informationSAMPLE FORMAL LABORATORY REPORT. Fatigue Failure through Bending Experiment Adapted from a report submitted by Sarah Thomas
SAMPLE FORMAL LABORATORY REPORT Fatigue Failure through Bending Experiment Adapted from a report submitted by Sarah Thomas Lab Partners: David Henry and James Johnson ME 498 November 10, 2004 Professor
More informationME 215 Engineering Materials I
ME 215 Engineering Materials I Chapter 3 Properties in Tension and Compression (Part III) Mechanical Engineering University of Gaziantep Dr. A. Tolga Bozdana www.gantep.edu.tr/~bozdana True Stress and
More informationFatigue Failure Due to Variable Loading
Fatigue Failure Due to Variable Loading Daniel Hendrickson Department of Computer Science, Physics, and Engineering University of Michigan Flint Advisor: Olanrewaju Aluko 1. Abstract Fatigue failure in
More informationFATIGUE CONSIDERATION IN DESIGN
FATIGUE CONSIDERATION IN DESIGN OBJECTIVES AND SCOPE In this module we will be discussing on design aspects related to fatigue failure, an important mode of failure in engineering components. Fatigue failure
More informationFatigue Analysis of an Inline Skate Axel
FATIGUE ANALYSIS OF AN INLINE SKATE AXEL 57 Fatigue Analysis of an Inline Skate Axel Authors: Faculty Sponsor: Department: Garrett Hansen, Mike Woizeschke Dr. Shanzhong (Shawn) Duan Mechanical Engineering
More informationThe factor of safety is a factor of ignorance. If the stress on a part at a critical location (the
Appendix C The Factor of Safety as a Design Variable C.1 INTRODUCTION The factor of safety is a factor of ignorance. If the stress on a part at a critical location (the applied stress) is known precisely,
More informationIMPACT AND FATIGUE CHARACTERIZATION OF SELECTED FERROUS P/M MATERIALS. Robert C. O'Brien. Hoeganaes Corporation River Road Riverton, New Jersey 08077
IMPACT AND FATIGUE CHARACTERIZATION OF SELECTED FERROUS P/M MATERIALS Robert C. O'Brien Hoeganaes Corporation River Road Riverton, New Jersey 08077 Presented at the Annual Powder Metallurgy Conference,
More informationPlastic Behaviour  Tensile Strength
Plastic Behaviour  Tensile Strength Transition of mechanical behaviour from elastic to plastic depends upon the material type and its condition as tested (hotrolled, coldrolled, heat treated, etc.).
More informationAdam Zaborski handouts for Afghans
Tensile test Adam Zaborski handouts for Afghans Outline Tensile test purpose Universal testing machines and test specimens Stressstrain diagram Mild steel : proportional stage, elastic limit, yielding
More informationTensile Testing Laboratory
Tensile Testing Laboratory By Stephan Favilla 0723668 ME 354 AC Date of Lab Report Submission: February 11 th 2010 Date of Lab Exercise: January 28 th 2010 1 Executive Summary Tensile tests are fundamental
More informationQuestion 6.5: A steel bar 100 mm (4.0 in.) long and having a square cross section 20 mm
14:440:407 Ch6 Question 6.3: A specimen of aluminum having a rectangular cross section 10 mm 12.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.
More informationFatigue crack propagation
1 (20) Repetition Ð Crack initiation and growth Small cracks Shear driven Interact with microstructure Mostly analyzed by continuum mechanics approaches Large cracks Tension driven Fairly insensitive to
More information1.Adapted from Gordon, J.E., Structures or why things don t fall down, Da Capo Press, Inc., New York, N.Y., 1978, Chapter 15.
Lecture 4: Cyclic loading and fatigue Safe working life: 1 All structures will be broken or destroyed in the end just as all people will die in the end. It is the purpose of medicine and engineering to
More informationMUKAVEMET KIRILMA HİPOTEZLERİ
1 MUKAVEMET KIRILMA HİPOTEZLERİ 17. Theories of failure or yield criteria (1) Maximum shearing stress theory (2) Octahedral shearing stress theory (3) Maximum normal stress theory for brittle materials.
More informationNumerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope
Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,
More informationMETU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING
METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING Met E 206 MATERIALS LABORATORY EXPERIMENT 1 Prof. Dr. Rıza GÜRBÜZ Res. Assist. Gül ÇEVİK (Room: B306) INTRODUCTION TENSION TEST Mechanical testing
More informationPROPERTIES OF MATERIALS
1 PROPERTIES OF MATERIALS 1.1 PROPERTIES OF MATERIALS Different materials possess different properties in varying degree and therefore behave in different ways under given conditions. These properties
More informationStructural Integrity Analysis
Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces
More informationShaft Design. Shaft Design. Shaft Design Procedure. Chapter 12
Shaft Design Chapter 1 Material taken from Mott, 003, Machine Elements in Mechanical Design Shaft Design A shaft is the component of a mechanical device that transmits rotational motion and power. It is
More informationFAILURE MODES and MATERIALS PROPERTIES. Component failures. Ductile and Brittle Fracture COMPONENT FAILURES. COMPONENT FAILURE MODES examples:
FAILURE MODES and MATERIALS PROPERTIES MECH2300  Materials Lecture 10 R. W. Truss Materials Engineering R.Truss@uq.edu.au COMPONENT FAILURES Structures lectures es on component es cause response in component
More information3. Test Methods for Evaluation of ESCR of Plastics
3. Test Methods for Evaluation of ESCR of Plastics A common laboratory request for ESCprone polymers is to check ESCR performance for quality control, competitive product evaluations, and research and
More informationCHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS
CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.1 Using mechanics of materials principles (i.e., equations of mechanical equilibrium applied to a freebody diagram),
More informationThe atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R
3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated
More informationYield Criteria for Ductile Materials and Fracture Mechanics of Brittle Materials. τ xy 2σ y. σ x 3. τ yz 2σ z 3. ) 2 + ( σ 3. σ 3
Yield Criteria for Ductile Materials and Fracture Mechanics of Brittle Materials Brittle materials are materials that display Hookean behavior (linear relationship between stress and strain) and which
More informationLABORATORY EXPERIMENTS TESTING OF MATERIALS
LABORATORY EXPERIMENTS TESTING OF MATERIALS 1. TENSION TEST: INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective
More informationFatigue. Figure 41 Typical Comparison of Metal and Composite Fatigue Damage [Salkind, Fatigue of Composites]
Chapter Four PERFORMANCE Fatigue A fundamental problem concerning the engineering uses of fiber reinforced plastics (FRP) is the determination of their resistance to combined states of cyclic stress. [41]
More informationFailure Analysis of a Cast A380 Aluminum Alloy Casting Using a Microstructurally Based Fatigue Model
Failure Analysis of a Cast A380 Aluminum Alloy Casting Using a Microstructurally Based Fatigue Model C.L. Burton, M.K. Jones, D.L. Oglesby A.L. Oppedal, M.Q. Chandler, M.F. Horstemeyer Center for Advanced
More informationFlaw Size Acceptance Limits for a Stainless Steel Pressure Vessel
Flaw Size Acceptance Limits for a Stainless Steel Pressure Vessel Consuelo GuzmanLeong Lucius Pitkin, Inc. Richland, Washington, U.S.A. Frederic A. Simonen, Ph.D. Lucius Pitkin, Inc. Richland, Washington,
More informationσ y ( ε f, σ f ) ( ε f
Typical stressstrain curves for mild steel and aluminum alloy from tensile tests L L( 1 + ε) A =  A u u 0 1 E l mild steel fracture u ( ε f, f ) ( ε f, f ) ε 0 ε 0.2 = 0.002 aluminum alloy fracture
More informationAutomotive Design Methods
Automotive Design Methods IHS ESDU IHS PRODUCT DESIGN The future of automotive design will be built on lightweight composites and aluminum. Start building the future today using independently validated
More informationME 343: Mechanical Design3
ME 343: Mechanical Design3 Design of Shaft (continue) Dr. Aly Mousaad Aly Department of Mechanical Engineering Faculty of Engineering, Alexandria University Objectives At the end of this lesson, we should
More informationFatigue Resistance of High Strength Bolts with Large Diameters
1 Fatigue Resistance of High Strength Bolts with Large Diameters Prof. Peter Schaumann; Dipl.Ing. Frithjof Marten Leibniz Universitaet Hannover Institute for Steel Construction Hannover, Germany schaumann@stahl.unihannover.de;
More informationLecture Slides. Chapter 10. Mechanical Springs
Lecture Slides Chapter 10 Mechanical Springs The McGrawHill Companies 2012 Chapter Outline Mechanical Springs Exert Force Provide flexibility Store or absorb energy Helical Spring Helical coil spring
More informationPREVENTING MECHANICAL FATIGUE
TECHNICAL PAPER PREVENTING MECHANICAL FATIGUE Overview Fatigue is the most common cause of catastrophic failure in metals and can occur in other materials as well. SolidWorks software provides a fast,
More informationMAE 20 Winter 2011 Assignment 5
MAE 20 Winter 2011 Assignment 5 6.7 For a bronze alloy, the stress at which plastic deformation begins is 275 MPa (40,000 psi), and the modulus of elasticity is 115 GPa (16.7 10 6 psi). (a) What is the
More informationANALYSIS OF THE FATIGUE STRENGTH UNDER TWO LOAD LEVELS OF A STAINLESS STEEL BASED ON ENERGY DISSIPATION
EPJ Web of Conferences 6, 6 38009 (00) DOI:0.05/epjconf/000638009 Owned by the authors, published by EDP Sciences, 00 ANALYSIS OF THE FATIGUE STRENGTH UNDER TWO LOAD LEVELS OF A STAINLESS STEEL BASED ON
More informationSolved with COMSOL Multiphysics 4.3
Vibrating String Introduction In the following example you compute the natural frequencies of a pretensioned string using the 2D Truss interface. This is an example of stress stiffening ; in fact the
More information2.1 CYCLIC/FATIGUE LOADING OF STRUCTURAL MEMBERS
CHAPTER TWO 2. CYCLIC/FATIGUE LOADING OF STRUCTURAL MEMBERS Quite a while ago, engineers discovered that if you repeatedly applied and then removed a nominal load to and from a metal part (known as cyclic
More informationFatigue Failure Resulting from Variable Loading
bud21932_ch06_257345 09/02/2006 12:06 AM Page 257 CONFIRMING PAGES 6 Fatigue Failure Resulting from Variable Loading Chapter Outline 6 1 Introduction to Fatigue in Metals 6 2 Approach to Fatigue Failure
More informationInteraction of Hydrogen and Deformation in 316L Stainless Steel
Proceedings of the SEM Annual Conference June 14, 2009 Albuquerque New Mexico USA 2009 Society for Experimental Mechanics Inc. Interaction of Hydrogen and Deformation in 316L Stainless Steel Bonnie R.
More informationModule 2 GEARS. Lecture 9  SPUR GEAR DESIGN
Module 2 GEARS Lecture 9  SPUR GEAR DESIGN Contents 9.1 Problem 1 Analysis 9.2 Problem 2 Spur gear 9.1 PROBLEM 1 SPUR GEAR DESIGN In a conveyor system a stepdown gear drive is used. The input pinion
More informationUniaxial Tension and Compression Testing of Materials. Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng
Uniaxial Tension and Compression Testing of Materials Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng 3.032 Lab Report September 25, 2013 I. Introduction Understanding material mechanics
More informationLecture 14. Chapter 81
Lecture 14 Fatigue & Creep in Engineering Materials (Chapter 8) Chapter 81 Fatigue Fatigue = failure under applied cyclic stress. specimen compression on top bearing bearing motor counter flex coupling
More informationCyclic Life Establishment of First Stage Compressor Blade  Aircraft Jet Engine
RESEARCH ARTICLE Cyclic Life Establishment of First Stage Compressor Blade  Aircraft Jet Engine KuberaganapathiVk 1,Sarathkumar SebastinJ 2 1 (Department of Aerospace Engineering, Madras institute Technology,
More informationAdvantages of Steel as a Structural Material
CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO STRUCTURAL STEEL DESIGN Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural
More informationComposite Design Fundamentals. David Richardson
Composite Design Fundamentals David Richardson Contents A review of the fundamental characteristics of composites Stiffness and Strength Anisotropic Role of fibre, matrix and interface Composite failure
More informationUltrasonic Technique and Device for Residual Stress Measurement
Ultrasonic Technique and Device for Residual Stress Measurement Y. Kudryavtsev, J. Kleiman Integrity Testing Laboratory Inc. 80 Esna Park Drive, Units 79, Markham, Ontario, L3R 2R7 Canada ykudryavtsev@itlinc.com
More informationDesign of steel sandwich panel joints
Sören Ehlers, Helsinki University of Technology, Ship Laboratory PL 5300, 02015 TKK, tel: +358 9 451 3497, fax: +358 9 451 349, email: soeren.ehlers@hut.fi Design of steel sandwich panel joints Abstract
More informationTubing Data. Contents. Tubing Selection. Tubing Handling. Tubing Material. Tubing Outside Diameter Hardness. Tubing Wall Thickness
www.swagelok.com Tubing Data Contents Tubing Selection... 1 Tubing Handling.... 1 Gas Service... 2 Tubing Installation.... 2 Suggested Allowable Working Pressure Tables Carbon Steel Tubing... 3 Stainless
More informationDesign strength of optical glass
Design strength of optical glass Keith B. Doyle Sigmadyne, Inc. Rochester, NY Mark A. Kahan Optical Research Associates Westborough, MA ABSTRACT Brittle materials such as glass do not possess a single
More informationDESIGN AND DEVELOPMENT OF AN ECONOMICAL TORSION TESTING MACHINE
DESIGN AND DEVELOPMENT OF AN ECONOMICAL TORSION TESTING MACHINE by GLENN E. VALLEE ASSISTANT PROFESSOR MECHANICAL ENGINEERING and ROBERT SHORT WESTERN NEW ENGLAND COLLEGE SPRINGFIELD MASSACHUSSETS Session
More informationUniversity of Portland School of Engineering LABORATORY OUTLINE: TENSILE TESTING OF STEEL & ALUMINUM ALLOYS (ASTM E8)
TENSILE TESTING OF STEEL & ALUMINUM ALLOYS (ASTM E8) To carry out a standard tensile test on specimens of a hot rolled steel (AISI 1045), Type 2024 T351 aluminum, polymers (UHMWPE, acrylic) and, from
More informationDIE CASTING ALLOYS. KenWalt Die Casting Company  All Rights Reserved
DIE CASTING ALLOYS A wide variety of die casting alloys, a mixture of two or more metals, are available with a comprehensive range of physical and mechanical properties for almost any application a designer
More informationLecture 12: Fundamental Concepts in Structural Plasticity
Lecture 12: Fundamental Concepts in Structural Plasticity Plastic properties of the material were already introduced briefly earlier in the present notes. The critical slenderness ratio of column is controlled
More informationInvestigation of Stress Intensity Factor of Axial Compressor Blade of Helicopter
Investigation of Stress Intensity Factor of Axial Compressor Blade of Helicopter Neelesh V K Mr. Manjunath M V Mr. Devaraj Dept. of Mechanical Engineering Asst prof, Dept. of Mechanical Engineering Asst
More informationTENSILE AND CREEP DATA OF 316L (N) STAINLESS STEEL ANALYSIS
TENSILE AND CREEP DATA OF 316L (N) STAINLESS STEEL ANALYSIS V. Bindu Neeharika, K. S. Narayana, V. Krishna and M. Prasanth Kumar Mechanical Department, ANITS, Sangivalasa, Visakhapatnam India binduneeharika@yahoo.co.in
More informationExperiment: Crystal Structure Analysis in Engineering Materials
Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of Xray diffraction techniques for investigating various types
More informationLecture Slides. Chapter 8. Screws, Fasteners, and the Design of Nonpermanent Joints
Lecture Slides Chapter 8 Screws, Fasteners, and the Design of Nonpermanent Joints The McGrawHill Companies 2012 Chapter Outline Reasons for Nonpermanent Fasteners Field assembly Disassembly Maintenance
More informationThe mechanical properties of metal affected by heat treatment are:
Training Objective After watching this video and reviewing the printed material, the student/trainee will learn the basic concepts of the heat treating processes as they pertain to carbon and alloy steels.
More informationSALT SPRAY AND IMMERSION CORROSION TESTING OF PM STAINLESS STEEL MATERIALS. W. Brian James Hoeganaes Corporation. Cinnaminson, NJ 08077
SALT SPRAY AND IMMERSION CORROSION TESTING OF PM STAINLESS STEEL MATERIALS W. Brian James Hoeganaes Corporation Cinnaminson, NJ 08077 Leander F. Pease III PowderTech Associates Inc. Andover, MA 01845
More informationMechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the
More informationMaterials Issues in Fatigue and Fracture
Materials Issues in Fatigue and Fracture 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Finite Life 5.4 Summary FCP 1 5.1 Fundamental Concepts Structural metals Process of fatigue A simple view
More informationPOWER SCREWS (ACME THREAD) DESIGN
POWER SCREWS (ACME THREAD) DESIGN There are at least three types of power screw threads: the square thread, the Acme thread, and the buttress thread. Of these, the square and buttress threads are the most
More informationEffect of Temperature and Aging Time on 2024 Aluminum Behavior
Proceedings of the XIth International Congress and Exposition June 25, 2008 Orlando, Florida USA 2008 Society for Experimental Mechanics Inc. Effect of Temperature and Aging Time on 2024 Aluminum Behavior
More informationINTEGRATION DE LA NOTION DES
Page 1 of 23 INTRODUCTION As we know, all manufacturing processes introduce residual stress into mechanical parts, which influences its fatigue behaviour and breaking strength and even its corrosion resistance.
More informationATI 2205 ATI 2205. Technical Data Sheet. Duplex Stainless Steel GENERAL PROPERTIES. (UNS S31803 and S32205)
ATI 2205 Duplex Stainless Steel (UNS S31803 and S32205) GENERAL PROPERTIES ATI 2205 alloy (UNS S31803 and/or S32205) is a nitrogenenhanced duplex stainless steel alloy. The nitrogen serves to significantly
More informationChapter 4: Summary and Conclusions
Chapter 4: Summary and Conclusions 4.1 Summary Three different models are presented and analyzed in this research for the purpose of studying the potential of using postbuckled or prebent elastic struts
More informationStructures and Stiffness
Structures and Stiffness ENGR 10 Introduction to Engineering Ken Youssefi/Thalia Anagnos Engineering 10, SJSU 1 Wind Turbine Structure The Goal The support structure should be optimized for weight and
More informationEffect of Heat Treatment Process on the Fatigue Behavior of AISI 1060 Steel
International International Journal of ISSI, Journal Vol. of 12 ISSI, (2015), Vol.10 No.1, (2013), pp. 2832 No.1 Effect of Heat Treatment Process on the Fatigue Behavior of AISI 1060 Steel M. Mehdinia
More informationINTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING
ISSN (ONLINE): 23213051 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING STRESS ANALYSIS OF THE LANDING GEARWELL BEAMS AND DAMAGE CALCULATION DUE TO LANDING CYCLES Karthik
More informationMultiaxial Fatigue. Professor Darrell Socie. 20082014 Darrell Socie, All Rights Reserved
Multiaxial Fatigue Professor Darrell Socie 20082014 Darrell Socie, All Rights Reserved Outline Stresses around holes Crack Nucleation Crack Growth MultiaxialFatigue 20082014 Darrell Socie, All Rights
More information