Information visualization examples
|
|
|
- Amber Matthews
- 9 years ago
- Views:
Transcription
1 Information visualization examples : GenICT II 37
2 Information visualization examples : GenICT II 38
3 Information visualization examples : GenICT II 39
4 Information visualization examples : GenICT II 40
5 Information visualization examples : GenICT II 41
6 Information visualization examples : GenICT II 42
7 2.3 Visual encoding in Python
8 Pygal Dynamic charting library for Python : GenICT II 44
9 Line Charts : GenICT II 45
10 Line Charts : GenICT II 46
11 Stacked Line Chart : GenICT II 47
12 Bar Charts : GenICT II 48
13 Pyramid Charts : GenICT II 49
14 Pyramid Charts : GenICT II 50
15 Dot Charts : GenICT II 51
16 Boxplots : GenICT II 52
17 Pie Charts : GenICT II 53
18 Scatterplots : GenICT II 54
19 Radar Charts : GenICT II 55
20 World Maps : GenICT II 56
21 3. Visualization Principles and Best Practices
22 Good and bad visualizations : GenICT II 58
23 Good and bad visualizations : GenICT II 59
24 Good and bad visualizations : GenICT II 60
25 Good and bad visualizations : GenICT II 61
26 Good and bad visualizations : GenICT II 62
27 Good and bad visualizations : GenICT II 63
28 Good and bad visualizations : GenICT II 64
29 Good and bad visualizations : GenICT II 65
30 Good and bad visualizations : GenICT II 66
31 Good and bad visualizations : GenICT II 67
32 Good and bad visualizations : GenICT II 68
33 Good and bad visualizations : GenICT II 69
34 Good and bad visualizations : GenICT II 70
35 Good and bad visualizations : GenICT II 71
36 Good and bad visualizations : GenICT II 72
37 4. Visual encoding
38 Visual encoding We have seen that attributes may have different characteristics (numerical, ordered, categorical). Special attributes are time (temporal dimension) and geographical location (spatial dimensions) in case of spatiotemporal data. Entities are typically visually encoded by some kind of glyph. Glyphs vary with respect to position, size, shape, orientation, color, and texture. Visual encoding is the mapping of attributes of the entity to specifics of the glyph : GenICT II 74
39 Visual encoding The exact visual encoding of a data set depends on the number and characteristics of the available attributes and on the analysis tasks of the given application. Interaction mechanisms allow for switching between different attributes to allow for different views on the attributes and to fulfill different tasks. Still, there are guidelines for mapping attributes to visual cues : GenICT II 75
40 Visual cues color texture shape : GenICT II 76
41 Guidelines location size color orientation texture shape geospatial time numerical (continuous) numerical (discrete) ordered categorical : GenICT II 77
42 Perception One needs to consider that certain visual cues are more perceptionally relevant than others. Color is a pre-attentive feature that can be seen immediately. Location and size are also easy to perceive. Shape is more difficult to distinguish. Orientation and texture do not allow for detecting subtle changes easily : GenICT II 78
Data Visualization Handbook
SAP Lumira Data Visualization Handbook www.saplumira.com 1 Table of Content 3 Introduction 20 Ranking 4 Know Your Purpose 23 Part-to-Whole 5 Know Your Data 25 Distribution 9 Crafting Your Message 29 Correlation
Lecture 2: Descriptive Statistics and Exploratory Data Analysis
Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals
Visualizing Multidimensional Data Through Time Stephen Few July 2005
Visualizing Multidimensional Data Through Time Stephen Few July 2005 This is the first of three columns that will feature the winners of DM Review's 2005 data visualization competition. I want to extend
Visualization Software
Visualization Software Maneesh Agrawala CS 294-10: Visualization Fall 2007 Assignment 1b: Deconstruction & Redesign Due before class on Sep 12, 2007 1 Assignment 2: Creating Visualizations Use existing
Diagrams and Graphs of Statistical Data
Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in
Visibility optimization for data visualization: A Survey of Issues and Techniques
Visibility optimization for data visualization: A Survey of Issues and Techniques Ch Harika, Dr.Supreethi K.P Student, M.Tech, Assistant Professor College of Engineering, Jawaharlal Nehru Technological
Choosing a successful structure for your visualization
IBM Software Business Analytics Visualization Choosing a successful structure for your visualization By Noah Iliinsky, IBM Visualization Expert 2 Choosing a successful structure for your visualization
CS171 Visualization. The Visualization Alphabet: Marks and Channels. Alexander Lex [email protected]. [xkcd]
CS171 Visualization Alexander Lex [email protected] The Visualization Alphabet: Marks and Channels [xkcd] This Week Thursday: Task Abstraction, Validation Homework 1 due on Friday! Any more problems
TABLEAU COURSE CONTENT. Presented By 3S Business Corporation Inc www.3sbc.com Call us at : 281-823-9222 Mail us at : [email protected]
TABLEAU COURSE CONTENT Presented By 3S Business Corporation Inc www.3sbc.com Call us at : 281-823-9222 Mail us at : [email protected] Introduction and Overview Why Tableau? Why Visualization? Level Setting
Microsoft Business Intelligence Visualization Comparisons by Tool
Microsoft Business Intelligence Visualization Comparisons by Tool Version 3: 10/29/2012 Purpose: Purpose of this document is to provide a quick reference of visualization options available in each tool.
Principles of Data Visualization for Exploratory Data Analysis. Renee M. P. Teate. SYS 6023 Cognitive Systems Engineering April 28, 2015
Principles of Data Visualization for Exploratory Data Analysis Renee M. P. Teate SYS 6023 Cognitive Systems Engineering April 28, 2015 Introduction Exploratory Data Analysis (EDA) is the phase of analysis
All Visualizations Documentation
All Visualizations Documentation All Visualizations Documentation 2 Copyright and Trademarks Licensed Materials - Property of IBM. Copyright IBM Corp. 2013 IBM, the IBM logo, and Cognos are trademarks
Visualization Quick Guide
Visualization Quick Guide A best practice guide to help you find the right visualization for your data WHAT IS DOMO? Domo is a new form of business intelligence (BI) unlike anything before an executive
B. 3 essay questions. Samples of potential questions are available in part IV. This list is not exhaustive it is just a sample.
IS482/682 Information for First Test I. What is the structure of the test? A. 20-25 multiple-choice questions. B. 3 essay questions. Samples of potential questions are available in part IV. This list is
usiness Intelligence and Map Visualization ith Oracle Spatial
usiness Intelligence and Map Visualization ith Oracle Spatial iva Ravada enior Director of Devlopment racle Spatial and MapViewer siness Intelligence Effective interactive visualization and analysis are
Data Visualization & Dashboard Design Best Practices and Tips
Data Visualization & Dashboard Design Best Practices and Tips Understanding the User is the Key to Designing User-Centric Analytical Dashboards User-centric design is Catered specifically to the needs
Variable: characteristic that varies from one individual to another in the population
Goals: Recognize variables as: Qualitative or Quantitative Discrete Continuous Study Ch. 2.1, # 1 13 : Prof. G. Battaly, Westchester Community College, NY Study Ch. 2.1, # 1 13 Variable: characteristic
Perception of Light and Color
Perception of Light and Color Theory and Practice Trichromacy Three cones types in retina a b G+B +R Cone sensitivity functions 100 80 60 40 20 400 500 600 700 Wavelength (nm) Short wavelength sensitive
an introduction to VISUALIZING DATA by joel laumans
an introduction to VISUALIZING DATA by joel laumans an introduction to VISUALIZING DATA iii AN INTRODUCTION TO VISUALIZING DATA by Joel Laumans Table of Contents 1 Introduction 1 Definition Purpose 2 Data
The Value of Visualization 2
The Value of Visualization 2 G Janacek -0.69 1.11-3.1 4.0 GJJ () Visualization 1 / 21 Parallel coordinates Parallel coordinates is a common way of visualising high-dimensional geometry and analysing multivariate
Multi-Dimensional Data Visualization. Slides courtesy of Chris North
Multi-Dimensional Data Visualization Slides courtesy of Chris North What is the Cleveland s ranking for quantitative data among the visual variables: Angle, area, length, position, color Where are we?!
Microsoft Excel 2010 Charts and Graphs
Microsoft Excel 2010 Charts and Graphs Email: [email protected] Web Page: http://training.health.ufl.edu Microsoft Excel 2010: Charts and Graphs 2.0 hours Topics include data groupings; creating
Quantitative vs. Categorical Data: A Difference Worth Knowing Stephen Few April 2005
Quantitative vs. Categorical Data: A Difference Worth Knowing Stephen Few April 2005 When you create a graph, you step through a series of choices, including which type of graph you should use and several
Visualizations. Cyclical data. Comparison. What would you like to show? Composition. Simple share of total. Relative and absolute differences matter
Visualizations Variable width chart Table or tables with embedded charts Bar chart horizontal Circular area chart per item Many categories Cyclical data Non-cyclical data Single or few categories Many
Iris Sample Data Set. Basic Visualization Techniques: Charts, Graphs and Maps. Summary Statistics. Frequency and Mode
Iris Sample Data Set Basic Visualization Techniques: Charts, Graphs and Maps CS598 Information Visualization Spring 2010 Many of the exploratory data techniques are illustrated with the Iris Plant data
What is Visualization? Information Visualization An Overview. Information Visualization. Definitions
What is Visualization? Information Visualization An Overview Jonathan I. Maletic, Ph.D. Computer Science Kent State University Visualize/Visualization: To form a mental image or vision of [some
Visualization. For Novices. ( Ted Hall ) University of Michigan 3D Lab Digital Media Commons, Library http://um3d.dc.umich.edu
Visualization For Novices ( Ted Hall ) University of Michigan 3D Lab Digital Media Commons, Library http://um3d.dc.umich.edu Data Visualization Data visualization deals with communicating information about
Good Scientific Visualization Practices + Python
Good Scientific Visualization Practices + Python Kristen Thyng Python in Geosciences September 19, 2013 Kristen Thyng (Texas A&M) Visualization September 19, 2013 1 / 29 Outline Overview of Bad Plotting
Effective Big Data Visualization
Effective Big Data Visualization Every Picture Tells A Story Don t It? Mark Gamble Dir Technical Marketing Actuate Corporation 1 Data Driven Summit 2014 Agenda What is data visualization? What is good?
What is GIS? Geographic Information Systems. Introduction to ArcGIS. GIS Maps Contain Layers. What Can You Do With GIS? Layers Can Contain Features
What is GIS? Geographic Information Systems Introduction to ArcGIS A database system in which the organizing principle is explicitly SPATIAL For CPSC 178 Visualization: Data, Pixels, and Ideas. What Can
The Problem: Challenges in Visualizing Pharmaceutical Business Information
Challenges in Visualizing Pharmaceutical Business Information II-SDV, Nice, France Diane Webb, President, BizInt Solutions Inc. The Problem: Visualizations developed for scientific and patent data do not
Data Visualization. Scientific Principles, Design Choices and Implementation in LabKey. Cory Nathe Software Engineer, LabKey cnathe@labkey.
Data Visualization Scientific Principles, Design Choices and Implementation in LabKey Catherine Richards, PhD, MPH Staff Scientist, HICOR [email protected] Cory Nathe Software Engineer, LabKey [email protected]
Common Mistakes in Data Presentation Stephen Few September 4, 2004
Common Mistakes in Data Presentation Stephen Few September 4, 2004 I'm going to take you on a short stream-of-consciousness tour through a few of the most common and sometimes downright amusing problems
Kyubit Business Intelligence OLAP analysis - User Manual
Using OLAP analysis features of Kyubit Business Intelligence www.kyubit.com Kyubit Business Intelligence OLAP analysis - User Manual Using OLAP analysis features of Kyubit Business Intelligence 2016, All
<no narration for this slide>
1 2 The standard narration text is : After completing this lesson, you will be able to: < > SAP Visual Intelligence is our latest innovation
Instagram Post Data Analysis
Instagram Post Data Analysis Yanling He Xin Yang Xiaoyi Zhang Abstract Because of the spread of the Internet, social platforms become big data pools. From there we can learn about the trends, culture and
Assignment #1: Spreadsheets and Basic Data Visualization Sample Solution
Assignment #1: Spreadsheets and Basic Data Visualization Sample Solution Part 1: Spreadsheet Data Analysis Problem 1. Football data: Find the average difference between game predictions and actual outcomes,
MTH 140 Statistics Videos
MTH 140 Statistics Videos Chapter 1 Picturing Distributions with Graphs Individuals and Variables Categorical Variables: Pie Charts and Bar Graphs Categorical Variables: Pie Charts and Bar Graphs Quantitative
Quantitative Displays for Combining Time-Series and Part-to-Whole Relationships
Quantitative Displays for Combining Time-Series and Part-to-Whole Relationships Stephen Few, Perceptual Edge Visual Business Intelligence Newsletter January, February, and March 211 Graphical displays
MetroBoston DataCommon Training
MetroBoston DataCommon Training Whether you are a data novice or an expert researcher, the MetroBoston DataCommon can help you get the information you need to learn more about your community, understand
Figure 1. An embedded chart on a worksheet.
8. Excel Charts and Analysis ToolPak Charts, also known as graphs, have been an integral part of spreadsheets since the early days of Lotus 1-2-3. Charting features have improved significantly over the
Information Visualization Multivariate Data Visualization Krešimir Matković
Information Visualization Multivariate Data Visualization Krešimir Matković Vienna University of Technology, VRVis Research Center, Vienna Multivariable >3D Data Tables have so many variables that orthogonal
Modifying Colors and Symbols in ArcMap
Modifying Colors and Symbols in ArcMap Contents Introduction... 1 Displaying Categorical Data... 3 Creating New Categories... 5 Displaying Numeric Data... 6 Graduated Colors... 6 Graduated Symbols... 9
Create Cool Lumira Visualization Extensions with SAP Web IDE Dong Pan SAP PM and RIG Analytics Henry Kam Senior Product Manager, Developer Ecosystem
Create Cool Lumira Visualization Extensions with SAP Web IDE Dong Pan SAP PM and RIG Analytics Henry Kam Senior Product Manager, Developer Ecosystem 2015 SAP SE or an SAP affiliate company. All rights
The Big Picture. Describing Data: Categorical and Quantitative Variables Population. Descriptive Statistics. Community Coalitions (n = 175)
Describing Data: Categorical and Quantitative Variables Population The Big Picture Sampling Statistical Inference Sample Exploratory Data Analysis Descriptive Statistics In order to make sense of data,
Data Visualization. or Graphical Data Presentation. Jerzy Stefanowski Instytut Informatyki
Data Visualization or Graphical Data Presentation Jerzy Stefanowski Instytut Informatyki Data mining for SE -- 2013 Ack. Inspirations are coming from: G.Piatetsky Schapiro lectures on KDD J.Han on Data
MicroStrategy Desktop
MicroStrategy Desktop Quick Start Guide MicroStrategy Desktop is designed to enable business professionals like you to explore data, simply and without needing direct support from IT. 1 Import data from
Binocular Vision and The Perception of Depth
Binocular Vision and The Perception of Depth Visual Perception How one visually interprets a scene 4 forms of perception to be studied: Depth Color Temporal Motion Depth Perception How does one determine
DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7
DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7 Contents GIS and maps The visualization process Visualization and strategies
Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller
Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller Getting to know the data An important first step before performing any kind of statistical analysis is to familiarize
Part 2: Data Visualization How to communicate complex ideas with simple, efficient and accurate data graphics
Part 2: Data Visualization How to communicate complex ideas with simple, efficient and accurate data graphics Why visualize data? The human eye is extremely sensitive to differences in: Pattern Colors
Spotfire v6 New Features. TIBCO Spotfire Delta Training Jumpstart
Spotfire v6 New Features TIBCO Spotfire Delta Training Jumpstart Map charts New map chart Layers control Navigation control Interaction mode control Scale Web map Creating a map chart Layers are added
INFOASSIST: REPORTING MADE SIMPLE
INFOASSIST: REPORTING MADE SIMPLE BRIAN CARTER INFORMATION BUILDERS SUMMIT 2010 USERS CONFERENCE JUNE 2010 Presentation Abstract: InfoAssist, WebFOCUS' browser-based ad hoc reporting tool, provides a single
Analyzing and creating GIS data using Python programming. Josh Foery, JR Franks, Connor McMillan
Analyzing and creating GIS data using Python programming Josh Foery, JR Franks, Connor McMillan Introduction In the digital age, modern companies and organizations have acquired vast quantities of geospatial
Data Visualization Best Practice. Sophie Sparkes Data Analyst
Data Visualization Best Practice Sophie Sparkes Data Analyst http://graphics.wsj.com/infectious-diseases-and-vaccines/ http://blogs.sas.com/content/jmp/2015/03/05/graph-makeover-measles-heat-map/ http://graphics.wsj.com/infectious-diseases-and-vaccines/
Time Series Data Visualization
Time Series Data Visualization Time Series Data Fundamental chronological component to the data set Random sample of 4000 graphics from 15 of world s newspapers and magazines from 74-80 found that 75%
EXPLORING SPATIAL PATTERNS IN YOUR DATA
EXPLORING SPATIAL PATTERNS IN YOUR DATA OBJECTIVES Learn how to examine your data using the Geostatistical Analysis tools in ArcMap. Learn how to use descriptive statistics in ArcMap and Geoda to analyze
CIS 467/602-01: Data Visualization
CIS 467/602-01: Data Visualization Maps Dr. David Koop Assignment 3 http://www.cis.umassd.edu/ ~dkoop/cis467/assignment3.html Networks and Maps Little East Women's Basketball data Network of games with
Flexible Web Visualization for Alert-Based Network Security Analytics
Flexible Web Visualization for Alert-Based Network Security Analytics Lihua Hao 1, Christopher G. Healey 1, Steve E. Hutchinson 2 1 North Carolina State University, 2 U.S. Army Research Laboratory [email protected]
DESIGN THINKING FOR VISUALIZATION
DESIGN THINKING FOR VISUALIZATION Steven Braun Informatics/Data Services Specialist University of Minnesota, Health Sciences Libraries DASHCamp 2014 OBJECTIVE Become more critical consumers and producers
GRAPHING DATA FOR DECISION-MAKING
GRAPHING DATA FOR DECISION-MAKING Tibor Tóth, Ph.D. Center for Applied Demography and Survey Research (CADSR) University of Delaware Fall, 2006 TABLE OF CONTENTS Introduction... 3 Use High Information
Summarizing and Displaying Categorical Data
Summarizing and Displaying Categorical Data Categorical data can be summarized in a frequency distribution which counts the number of cases, or frequency, that fall into each category, or a relative frequency
BI Requirements Checklist
The BI Requirements Checklist is designed to provide a framework for gathering user requirements for BI technology. The framework covers, not only the obvious BI functions, but also the follow-up actions
GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION
GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION GIS Syllabus - Version 1.2 January 2007 Copyright AICA-CEPIS 2009 1 Version 1 January 2007 GIS Certification Programme 1. Target The GIS certification is aimed
VISUALIZATION OF GEOSPATIAL METADATA FOR SELECTING GEOGRAPHIC DATASETS
Helsinki University of Technology Publications in Cartography and Geoinformatics Teknillisen korkeakoulun kartografian ja geoinformatiikan julkaisuja Espoo 2005 TKK-ICG-6 VISUALIZATION OF GEOSPATIAL METADATA
Visualizing Data from Government Census and Surveys: Plans for the Future
Censuses and Surveys of Governments: A Workshop on the Research and Methodology behind the Estimates Visualizing Data from Government Census and Surveys: Plans for the Future Kerstin Edwards March 15,
Plotting Likert and Other Rating Scales
Plotting Likert and Other Rating Scales Naomi B. Robbins 1, Richard M. Heiberger 2 1 NBR, 11 Christine Court, Wayne, NJ 07470-6523 2 Temple University, 332 Speakman Hall (006-12), Philadelphia, PA 19122-6083
P6 Analytics Reference Manual
P6 Analytics Reference Manual Release 3.2 October 2013 Contents Getting Started... 7 About P6 Analytics... 7 Prerequisites to Use Analytics... 8 About Analyses... 9 About... 9 About Dashboards... 10 Logging
Desktop Studio: Importing Crystal Reports
Desktop Studio: Importing Crystal Reports Intellicus Web-based Reporting Suite Version 4.5 Enterprise Professional Smart Developer Smart Viewer Intellicus Technologies [email protected] www.intellicus.com
Visualization of missing values using the R-package VIM
Institut f. Statistik u. Wahrscheinlichkeitstheorie 040 Wien, Wiedner Hauptstr. 8-0/07 AUSTRIA http://www.statistik.tuwien.ac.at Visualization of missing values using the R-package VIM M. Templ and P.
Strategic Plan Proposal: Learning science by experiencing science: A proposal for new active learning courses in Psychology
Strategic Plan Proposal: Learning science by experiencing science: A proposal for new active learning courses in Psychology Contacts: Jacob Feldman, ([email protected], 848-445-1621) Eileen Kowler
Table of Contents Find the story within your data
Visualizations 101 Table of Contents Find the story within your data Introduction 2 Types of Visualizations 3 Static vs. Animated Charts 6 Drilldowns and Drillthroughs 6 About Logi Analytics 7 1 For centuries,
Draft Martin Doerr ICS-FORTH, Heraklion, Crete Oct 4, 2001
A comparison of the OpenGIS TM Abstract Specification with the CIDOC CRM 3.2 Draft Martin Doerr ICS-FORTH, Heraklion, Crete Oct 4, 2001 1 Introduction This Mapping has the purpose to identify, if the OpenGIS
Performance Management and KPIs
Performance Management and KPIs Outline Business Performance Management (BPM) Dashboards SSAS: KPI and Dashboards 2 Business Performance Management (BPM) 3 Business Performance Management (BPM) BPM encompasses
Visualization Techniques for Geospatial Data IDV 2015/2016
Interactive Data Visualization 07 Visualization Techniques for Geospatial Data IDV 2015/2016 Notice n Author t João Moura Pires ([email protected]) n This material can be freely used for personal or academic
Design Considerations for a Visualization and Simulation Tool for CBMS Data
Design Considerations for a Visualization and Simulation Tool for CBMS Data Nelson Marcos 1,*, Gerardo Largoza 2, Briane Paul Samson 3, Johnn Jelvin S. Base 4, Lawrence Patrick C. Calulo 5, Bervyn S. Co
R Graphics Cookbook. Chang O'REILLY. Winston. Tokyo. Beijing Cambridge. Farnham Koln Sebastopol
R Graphics Cookbook Winston Chang Beijing Cambridge Farnham Koln Sebastopol O'REILLY Tokyo Table of Contents Preface ix 1. R Basics 1 1.1. Installing a Package 1 1.2. Loading a Package 2 1.3. Loading a
Utilizing spatial information systems for non-spatial-data analysis
Jointly published by Akadémiai Kiadó, Budapest Scientometrics, and Kluwer Academic Publishers, Dordrecht Vol. 51, No. 3 (2001) 563 571 Utilizing spatial information systems for non-spatial-data analysis
6. Geographic Visualization
6. Geographic Visualization Martin Nöllenburg Geographic visualizations always played an important role in human history, especially in the earth sciences, long before computer visualizations became popular.
Understanding and Selecting Geospatial Analytics Tools
Understanding and Selecting Geospatial Analytics Tools A Practical Example COLLABORATIVE WHITEPAPER SERIES Geospatial Business Intelligence (BI) has been in the conversation related to BI now for quite
Demographics of Atlanta, Georgia:
Demographics of Atlanta, Georgia: A Visual Analysis of the 2000 and 2010 Census Data 36-315 Final Project Rachel Cohen, Kathryn McKeough, Minnar Xie & David Zimmerman Ethnicities of Atlanta Figure 1: From
Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics
Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),
Data Visualization. BUS 230: Business and Economic Research and Communication
Data Visualization BUS 230: Business and Economic Research and Communication Data Visualization 1/ 16 Purpose of graphs and charts is to show a picture that can enhance a message, or quickly communicate
Real-time Processing and Visualization of Massive Air-Traffic Data in Digital Landscapes
Real-time Processing and Visualization of Massive Air-Traffic Data in Digital Landscapes Digital Landscape Architecture 2015, Dessau Stefan Buschmann, Matthias Trapp, and Jürgen Döllner Hasso-Plattner-Institut,
Information Literacy Program
Information Literacy Program Excel (2013) Advanced Charts 2015 ANU Library anulib.anu.edu.au/training [email protected] Table of Contents Excel (2013) Advanced Charts Overview of charts... 1 Create a chart...
Practice#1(chapter1,2) Name
Practice#1(chapter1,2) Name Solve the problem. 1) The average age of the students in a statistics class is 22 years. Does this statement describe descriptive or inferential statistics? A) inferential statistics
Building Capacity to Use Infographic Tools
Building Capacity to Use Infographic Tools free options for creating charts, graphs, and pictorial infographics Arielle Winchester and Amanda Makulec John Snow Inc. Objectives Describe two reasons for
