Thermal Analysis of Composites Using DSC

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Thermal Analysis of Composites Using DSC"

Transcription

1 Thermal Analysis of Composites Using DSC by Suchitra Mutlur Differential scanning calorimetry (DSC) is a technique that measures the difference in the heat flow to a sample and to a reference sample as a direct function of time or temperature under heating, cooling or isothermal conditions [1]. DSC is one of the most versatile thermal analysis techniques available. It can be used with composites and composite precursors to study thermodynamic processes (glass transition, specific heat capacity) and kinetic events such as cure and enthalpic relaxation associated with physical aging or stress [2]. The application of DSC to evaluate these material properties will be discussed in the following sections. 2.1 Background Thermal analysis is a family of techniques used for studying the thermophysical and kinetic properties of materials. The techniques include DSC; its advanced analog, modulated DSC (MDSC) (TA Instruments, New Castle, DE); thermomechanical analysis (TMA); dynamic mechanical analysis (DMA); and dielectric analysis (DEA). Thermal analysis can be used with composite materials to determine properties of the matrix material that are important for the analysis of the composite as a whole (especially where matrix dominated failures are likely to occur) [3]. The technique of DSC was introduced in the form of commercial instruments during the early 1960s, and it has been found to provide a convenient and useful method to measure the glass transition, melting, and crystallization temperatures of uncured prepregs and cured laminates, and also the degree of cure of the final product, the heat of reaction during prepreg processing, and relative resin reactivity. Its main advantages are the modest requirements in terms of sample size (~20 mg) and its ability to provide quantitative data on overall reaction kinetics, with relative speed and ease [2]. 11

2 12 Advanced Topics in Characterization of Composites 2.2 Types of DSC There are two basic types of DSC systems: heat flux DSC and power compensation DSC [4]. Although fundamentally different in operation, they produce comparable data Heat Flux DSC The heat flux DSC belongs to the class of heat-exchanging calorimeters [5]. In the heat flux DSC, the sample and the reference are heated from the same source and the temperature difference is measured. This signal is converted to a power difference using the calibration sensitivity [4]. The characteristic feature of this measuring system is that the main heat flow from the furnace to the sample and reference containers passes symmetrically through a thermally conductive disk. The sample containers are positioned on this disk symmetrical to the center, and the temperature sensors are integrated. Each temperature sensor covers more or less the area of support of the respective container (crucible, pan) so that calibration can be carried out independent of the sample position inside the container. To minimize measurement uncertainties, the arrangement of the containers and the temperature sensors must always be the same [6,7]. Sometimes a center pin is used for the alignment of the sample and reference pan. Metals, quartz glass, or ceramics are used as disk materials. Type (and number) of the temperature sensors (e.g., thermocouples, resistance thermometers) differ. The use of modern sensors on the basis of semiconducting material leads to a significant increase in the sensitivity. Figure 2.1 shows the typical heat-flux DSC. The components are the (1) disk, (2) furnace, (3) lid, (4) differential thermocouple(s), (5) programmer and controller, (S) crucible with sample substance, and (R) crucible with reference sample substance. The heat flow rate from the furnace to the sample crucible is FS ; FR is the heat flow rate from the furnace to the reference sample crucible; m is the measured heat flow rate; and K is the temperature dependent calibration factor.

3 Thermal Analysis of Composites Using DSC S R 5 1 T(t) FS 4 FR T Computer K(T) m Recorder m (T) FIGURE 2.1 Heat flux DSC [3] When the furnace is heated (typically a constant heating rate), heat flows through the disk to the samples. When the arrangement is ideally symmetrical (with samples of the same kind), the same heat flows into the sample and reference pans. The differential temperature signal T (normally in the form of an electrical potential difference) is then zero. If this steadystate equilibrium is disturbed by a sample transition, a differential signal is generated that is proportional to the difference between the heat flow rates to the sample and to the reference sample [5]: T = T S - T R (2.1) where T S is the temperature of the sample and T R is the temperature of the reference sample. As neither ideal thermal symmetry of the measuring system at all operating temperatures nor thermal identity of the samples can be attained in practical application, there will always be a signal T that depends on the temperature and the sample properties. The heat flow rate m (m: measured) is obtained by multiplying the differential temperature signal by factoryinstalled provisional calibration k' given as [5]: m = -k' T (2.2) The measurement signal output by the DSC and accessible to the user is m (in µw or mw). Heat Flux DSC is available for temperatures between -190 o C and 1600 o C. The maximum heating rates are about 100 k/min.

4 14 Advanced Topics in Characterization of Composites Power compensated DSC The power compensation DSC belongs to the class of heat-compensating calorimeters. The heat to be measured is almost totally compensated with electric energy. The measuring system consists of two identical micro furnaces that are mounted inside a metal block. The furnaces (often made of a platinum-iridium alloy) each contain a temperature sensor and a heating resistor. The maximum heating power of a micro furnace is about 15W, and the maximum heating rate is 500 k/min. Cooling rate can reach up to 200 k/min, depending on the temperature difference between the block and sample. Figure 2.2 shows the block diagram indicating the basic operating principle. Here, T s is the temperature of the sample furnace, T R is the temperature of the reference sample furnace, and P AV is the average heating power. T Calibration m P (T S -T R ) control P Sample- Furnace T S T R Referencefurnace T S T R P AV (T S +T R )/2 control P AV Programmer FIGURE 2.2 Power compensation DSC (Perkin-Elmer Instruments). During heating-up, the same heating power is supplied to both microfurnaces via a control circuit in order to change their mean temperature in accordance with the preset heating rate. If there is ideal thermal symmetry, the temperature of both micro furnaces is always the same. When an asymmetry occurs, for example, as a result of a sample reaction, a temperature difference results between the microfurnace accommodating the sample and the microfurnace containing the reference sample. The temperature difference is both the measurement signal and the T(t) Recorder m (t)

5 Thermal Analysis of Composites Using DSC 15 input signal of a second control circuit. This second circuit compensates most of the reaction heat flow rate by proportional control by increasing or decreasing an additional heating power of the sample furnace. The compensating heating power, P, is proportional to the remaining temperature difference, T, because of the proportional controller. The time integral over the compensating heating power is proportional to the heat that was consumed or released in the sample. Again, a heat flow rate m is assigned to the real measurement signal T as a result of a factory-installed calibration. The relations between T, m, and the compensating heating power P are as follows [5]: P = -k 1 T (2.3) m = -k 2 T (2.4) The factor k 1 is a factory-set fixed quantity of the proportional controller, and k 2 can be adjusted by software calibration. The factor k 2 is almost independent of measurement parameters (e.g., temperature). Therefore, k 2 can, in principle, be determined by one calibration measurement at only one temperature. The relation between the measured heat flow rate, m, and the true heat flow rate exchanged with the sample is and must also be determined by caloric calibration. true =K m, (2.5) 2.3 Applications of DSC Differential scanning calorimetry is the most popular thermal technique for polymer characterization. Uses for polymers include monitoring of cure of thermosetting resins, measuring the degree of cure of the final product, studying the crystallinity in thermoplastics, studying the compatibility of multiphase systems, and identifying transitions imposed upon the polymer by faulty processing or aging [3]. As the temperature of the sample is increased, the temperature is plotted on the x-axis and the difference in the heat flow between the sample and the reference on the y-axis [8].

6 16 Advanced Topics in Characterization of Composites Measurement of Heat Capacity of Composites (C p ) Heat capacity is an important material property for composites. Other than DSC, there is no other method which supplies the temperature dependent heat capacity as quickly and over such a large temperature range with sufficient accuracy. In a DSC, when the two pans are heated, the computer plots the difference in heat flow against temperature. So the heat absorbed by the polymer matrix is plotted against temperature, as given below [8]: exo Heat flow rate, dq/dt Temperature, T FIGURE 2.3 Heat flow rate measured by DSC * The heat flow rate is shown in units of heat, q supplied per unit time, t dq ϕ = = heat flow rate (2.6). dt The heating rate,, is the time rate of change of temperature, T [8]: dt β = = heating rate (2.7). dt The heat flow rate,, divided by the heating rate,, gives the heat capacity C p : ϕ dq dt = = dq dt = C p = heat capacity (2.8). β dt dt Therefore, the DSC plot gives the heat capacity of the sample. This plot of heat capacity is also required for the characterization of the glass transition process for polymer composites. * Note: In some systems exothermic heat flow is shown up on the y-axis, while in other systems the exothermic direction is down on the y-axis.

7 Thermal Analysis of Composites Using DSC Determination of Glass Transition temperature (T g ) Below a certain temperature, known as the glass transition temperature T g, the polymer matrix segments do not have enough energy to rearrange or to rotate themselves. Such a material is brittle and a glass. As the sample is heated, there is a small increase in volume and energy, until at T g the chains become more mobile and the polymer more plastic or rubbery. Also, the heat capacity of the sample increases, since the chains acquire further freedom of movement. Therefore, we observe a step and an increase C p, and also a change in the expansion [4]. The glass transition process does not involve a latent heat, and hence this transition is called a second order transition [7]. The physical properties such as hardness, volume, Young s modulus, and percent elongation-to-break undergo a drastic change at the glass transition temperature of any amorphous polymer [9]. Figures 2.4 and 2.5 show the changes in the volume and modulus at the glass transition. Rubbery Volume Glassy Modulus Glassy T g T g Temperature Temperature FIGURE 2.4 FIGURE 2.5 Typical volume change vs Typical modulus change vs temperature Ref [9] temperature Ref [9] The glass transition region occurs over a temperature range. So, T g is typically defined as the point of inflection of the DSC curve, as illustrated in Figure 2.6. ASTM Standard Test Method E gives further guidelines for assigning the glass transition temperature using DSC [10].

8 18 Advanced Topics in Characterization of Composites exo Heat flow rate, FIGURE 2.6 Heat flow rate measured by DSC showing practical determination of Tg Tg is a time-dependant phenomenon. A polymer may slowly distort at a low temperature, but may behave in a brittle fashion when bent rapidly. While the Tg bears a marked resemblance to true second-order thermodynamic transitions, which always occur over a fixed, equilibrium temperature range, the value obtained for Tg depends greatly on the heating and cooling rates used in the DSC run, molecular weight, plasticizer content, sample size, cross-linking, crystallinity, and degree of cure. If the heating rate is very low, say 0.1 K/min, the T g may be low, say 80 C, and this value is obtained again if the sample is cooled at the same rate. However, if the sample is heated and cooled at 20 K/min, the T g may increase to 85 C or higher. If the heating and cooling rates are not the same, the sample that has been cooled slowly (say 0.1 K/min) goes through its T g at 80 C. If it is then heated at 20 K/min, it does not transform until 85 C. This means that the sample must absorb more energy to reach the enthalpy of the rubbery state. This results in an endotherm, superimposed on the glass transition step, as shown in Figure 2.7. The heating and the cooling rates must therefore be stated [4]. T g Temperature exo Heat flow rate, Temperature Endothermic Peak FIGURE 2.7 DSC curve for polymer heated at a much lower rate than is was cooled Experimentally, T g is a function of molecular weight. Enhanced molecular weights increase T g up to a plateau level. The rubbery nature of

9 Thermal Analysis of Composites Using DSC 19 the liquid above T g becomes increasingly pronounced with higher molecular weights [11], as shown in Figure 2.8. Temperature Viscous Liquid Rubbery Liquid Rubbery T m Mobile Liquid T g Crystalline solid Rigid Semi- Crystalline solid Molecular Weight FIGURE 2.8 Approximate relations between temperature, molecular weight, and physical state for a semi crystalline polymer The addition of a plasticizer also influences the glass transition temperature. A plasticizer is added to the polymer matrix composite so as to increase its free volume. Therefore, the T g is lowered, making the composite more pliable and easier to work with [8]. In composites, the T g of the matrix should be checked for indications of overcure, which can lead to microcracking. For multiphase resin (for example, elastomeric or thermoplastic modified), DSC can determine the T g of the modifying second phase. If such a fingerprint differs to a significant degree from a constant sample, there may be a problem with the composition of the modifier, the resin preparation (for example, improper prereaction), the formulation (too little or too much modifier), or the cure cycle. These T g differences could indicate that the modifiers are not acting to toughen the resin effectively, which could lead to low interlaminar toughness in fiber-reinforced composite systems [3]. Usually, it is neither possible nor informative to compare the T g of a laminate to a literature or brochure value. It is therefore necessary to run a control specimen with a test specimen from the failed laminate. Ideally, the control laminate should be made from a batch of prepreg that is within composition specifications for which quality control data are available from both the manufacturer and end user. The control laminate lay-up should be of the same configuration as the failed laminate and should be performed under controlled, or at least monitored, humidity. Also, it should then be cured under the same cycle as was the test specimen. Thus a thermal analysis can be performed, and the T g and other transitions for both

10 20 Advanced Topics in Characterization of Composites specimens can be compared. There are several reasons that T g may be lower in the test laminate than in the control laminate. The test laminate may have been undercured because an incorrect cure cycle was used. This sometimes occurs if the cure cycle is controlled using tool temperature rather than part temperature, when the specified sample is based on part temperature. The T g also can be lower if the prepregs were cut and laid up under high relative humidity (RH). For example, T g can be lowered by as much as 20 o C if it is exposed to 80% RH at 30 o C for 4h (compared with dry prepreg). Incorrect formulation can also lead to a low T g. The T g of the failed laminate could be higher than the control laminate if an incorrect cure or postcure were used. In addition, if temperatures higher than cure or postcure were experienced in service, T g could be increased. Incorrect formulation can also raise T g. The low-energy T g signal that is easily observed by DSC in a neat polymer or a lightly filled polymer-matrix composite may be difficult or impossible to detect in a highly filled composite of the same polymer due to damping effect of the fillers. Also, quantitative accuracy can be affected by variability of fiber (and filler) content in the small samples used [3] Determination of Melting Temperature (T m ) Melting is a transition which occurs in thermoplastic semi-crystalline polymers such as PEEK, polypropylene, polyvinyl chloride, polystyrene, and polyphenylene sulphide used in composites. Melting happens when the polymer chains fall out of their crystal structures and become a disordered liquid [8]. When a crystalline polymer is heated, the temperature increases at a constant rate until it reaches its melting point. The temperature will hold steady for a while until the polymer has completely melted, even though the heating continues. All the energy added to the crystalline polymer at its melting point goes into melting, and none of it goes towards raising the temperature. This heat is called the latent heat of melting. Once the polymer has melted, the temperature begins to rise again, but now it rises at a slower rate. The molten polymer has a higher heat capacity than the solid crystalline polymer, so it can absorb more heat with a smaller increase in temperature. So when a crystalline polymer melts, it absorbs a certain amount of heat (the latent heat of melting) and it undergoes a change in its heat capacity. This is called a first-order transition [7]. This extra heat flow during melting shows up as a large endothermic melting peak in the DSC plot, as indicated in Figure 2.10.

11 Thermal Analysis of Composites Using DSC 21 exo Heat flow rate, T g T c Melting Peak Temperature T m Optional Crystallization Dip FIGURE 2.10 DSC curve for semi-crystalline polymer showing melting temperature The heat of melting can be obtained by measuring the area of this peak. The temperature at the apex of the peak is taken to be the point where the polymer is completely melted. Because energy is added to the polymer to make it melt, this process is called as an endothermic transition. But even crystalline polymers will have some amorphous portion. This portion usually makes up 40-70% of the polymer sample. This is why the same sample of a polymer can have both a glass transition temperature and a melting temperature [8]. Upon heating above the T g, an exothermic crystallization dip may be present (see Figure 2.10). This is an indication that additional crystals are forming, as the polymers have more mobility above the T g. This crystallization dip will only occur if the polymer did not crystallize to the maximum of its capacity when cooled. The temperature at the bottom of the crystallization dip is the crystallization temperature, T c. The melting temperature, T m, determines the upper service temperature of semi-crystalline thermoplastics. Between T g and T m, semi-crystalline polymers tend to be rough and leathery. Brittleness begins to set in below T g of amorphous regions, although secondary transitions below T g are also important in this connection. As a general rule, however, semi-crystalline plastics are used at temperatures between T g and a practical softening temperature, which lies above T g and below T m [11] Determination of Degree of Crystallinity of Thermoplastics Changes in the crystallinity of thermoplastics result in significant changes in the mechanical behavior of composites containing them, particularly those that are matrix dominant, such as buckling, compression or creep. For this reason, the ability to characterize precisely the polymer crystallinity in thermoplastic composites becomes an important requirement. Owing to the

12 22 Advanced Topics in Characterization of Composites heterogeneous nature of the composite, determination of crystallinity becomes more complicated. DSC analysis provides the modifications necessary for precise application to thermoplastic composites [12]. The determination of the degree of crystallinity (DOC) by differential scanning calorimeter is an indirect method, with the actual parameter measured being the heat of fusion. There are two ways of finding the DOC by this method: the cooling mode and the heating mode [13]. There are two methods of studying the crystallization kinetics in the cooling mode. To induce isothermal crystallization, the tested sample is first heated above its melting temperature, and then rapidly quenched to the prescribed crystallization temperature so that crystallization occurs isothermally. In non-isothermal crystallization, the tested sample is first heated to a prescribed temperature above its melting point, and then cooled at a preset cooling rate. The DOC is calculated from the heat of crystallization evolved during either process. In the heating mode, a sample is heated up from ambient temperature in the DSC at a preset rate until it reaches its melting point. The DOC of the sample is then calculated by comparing the heat of fusion obtained for the tested sample with that of a reference sample with 100% DOC. The DOC obtained in the heating mode will differ from that obtained by the cooling mode. At present there is no consensus as to which mode gives the true DOC of the sample. In any case, whichever mode is used, it has been pointed out that DSC does recrystallize the test sample (especially if it is highly amorphous) during the dynamic scan, and produces a higher than actual DOC. The degree of crystallinity is calculated by computing the net heats of fusion and crystallization over the range of the DSC scan. For an amorphous material or one of low DOC, recrystallization is inevitable during the scan. It is thus necessary to subtract this exothermic heat of crystallization from the total heat of fusion. In the case of highly crystalline material, there will be a secondary endothermic heat of reaction if it goes through an annealing process. The DOC can be calculated from the following equations: [13] H + % = m Hc 100% H f DOC (2.9) H + % = m H a 100% H f DOC (2.11) In the above equations, H m is the heat of fusion (endothermic); H c is the heat of cold-crystallization (exothermic); H a is the premelt heat of crystallization (endothermic), which corresponds to the secondary

13 Thermal Analysis of Composites Using DSC 23 crystallization phase of the structure; and H f corresponds to the heat of fusion for a 100% crystalline material. The above equations are valid for virgin or unfilled materials (i.e., without reinforcement). The equations must be modified if they are to be used for fiber-reinforced composites. If W f is the weight fraction of fiber content in a composite, then the 100% heat of fusion for this composite becomes H f (1-W f ). Equations (2.9) and (2.11) then become: and % H + = m Hc 100% H (1 ) f W f DOC (2.12) % H + = m H a 100% H (1 ) f W f DOC (2.13) Characterization of Thermosets using DSC DSC is a valuable analytical tool for the analysis and characterization of thermosetting materials, such as epoxies, polyesters, and bismaleimides. Thermosetting materials are those which existed in an unreacted or partially reacted state and which underwent crosslinking after mixing the base components or heating to elevated temperatures. The properties of thermosetting materials are very much dependent upon their chemical formulation or composition along with the conditions (e.g., time and temperature) to which the resins are exposed during processing. Small changes in the formulation or processing conditions, which can effect the curing of the resins, can significantly affect the properties of the end product. The use of thermal characterization studies on thermosetting resin materials will avoid production problems and will be useful for troubleshooting purposes [14]. A thermosetting resin undergoes an irreversible chemical reaction during curing. As the components of the resin system cure, heat is evolved by the resin, which is monitored by DSC. Figure 2.11 represent the changes taking place during crosslinking. These changes can be readily observed by DSC [15].

14 24 Advanced Topics in Characterization of Composites uncured partially cured totally cured FIGURE 2.11 Representation of increase in crosslink density of a thermosetting material, Ref [17] Figure 2.12 shows typical DSC results obtained by heating an uncured thermosetting resin system at a constant rate. Heat flow rate, T g Exothermic Cure exo Temperature FIGURE 2.12 DSC results for an uncured thermosetting resin The curing is observed as a large exothermic peak. The onset of cure is the temperature at which heat flow deviates from a linear response, and the exothermic peak temperature reflects the maximum rate of curing of resin. At the completion of curing or crosslinking, the DSC heat flow returns to a quasi-linear response. The area under the exothermic peak can be integrated to give the heat of cure, (H cure -J/g). As the thermosetting resin cures or crosslinks, the T g increases and heat of cure decreases. These changes in T g and heat of cure can be used to characterize and quantify the degree of cure of the resin system, which is given in equation (2.14) as [16]: H ( t) α = (2.14) H R

15 Thermal Analysis of Composites Using DSC 25 where H(t) is the heat of cure up to time t and H R is the total heat of cure (or enthalpy of reaction). The degree of cure,, ranges from zero (uncured) to unity (fully cured). As the resin system approaches complete cure, the T g will achieve a maximum value, T g ( ), which is indicated in Figure 2.13 below: Heat flow rate, Less Cured More Cured exo Temperature FIGURE 2.13 DSC curves showing increase in Tg as a function of cure for a thermosetting resin, Ref [17] The increase in T g, observed as a function of the degree of cure, represents an increase in the cross link density of the resin system. The actual value of the T g ( ) is dependent upon the chemical make-up of the particular resin system. The increase in Tg with regards to cure time is shown in Figure 2.14 for a given thermosetting resin system:

16 26 Advanced Topics in Characterization of Composites Glass Transition Temperature, T g Cure Time FIGURE 2.14 Increase in T g with cure time at a constant temperature for thermosetting resin, Ref [17] As the resin becomes more crosslinked, the residual heat of curing becomes increasingly smaller, and as the material becomes completely cured, the heat of cure becomes undetectable. This phenomenon is illustrated in Figure 2.15, where samples of increasing degrees of cure are analyzed using DSC: Heat flow rate, More Cured Less Cured Completely Cured Temperature FIGURE 2.15 Decrease in residual cure exotherm for thermosetting resin with increasing cure levels, Ref [17] The residual heat of cure may be used to determine the degree of cure of the material, given by the ratio of the residual heat of cure to the heat of cure

17 Thermal Analysis of Composites Using DSC 27 of uncured resin material [17]. If no heat of cure is observed, then the value of is 100%, and it is assumed that the resin is completely cured. In reality the resin may still have some lingering residual cure, but the DSC is no longer sensitive enough to detect this. The degree of cure value is important for end products generated from thermosetting resins, as it is related to brittleness, impact resistance, long term stability, creep, solvent resistance and product integrity[18]. 2.4 Kinetic analysis A good example of where a complete understanding of cure parameters can be cost effective is the exotherm of thick parts. Many resins have a fairly small temperature window in which the rate of reaction increases rapidly. A cure cycle is required that will not allow an excessive exotherm to degrade the material, but will complete the cure in a reasonable amount of time, with acceptable flow. A complete understanding of the cure kinetics can assist in establishing the cure cycle and the safety margin present. Generation of DSC data involves a significant amount of time and expense. Time can be compressed by cure modeling, with little additional cost. Many different cure parameters (time, temperature history) can be investigated within a short period of time. Once the candidate cure cycle has been entered, the model is run in a matter of seconds. Cure cycle generation has been an iterative process in the past. Usually the first acceptable rather than an optimized cure is accepted because of the time and expense. For the same reasons, determination of which families of tools can be cured together has often been arbitrary. A cure model helps in making informed decisions about these types of issues. The primary advantage of cure modeling is that a complete understanding of the primary factors during cure can be realized, rather than a limited understanding from a series of data points. Cure modeling does not interrupt the ongoing production or testing activities, but supports them offline, quickly evaluating cures and answering what if questions [19]. In kinetic analysis, it is generally assumed that the rate of reaction can be described by two separable functions, K(T) and f(), such that [16] dα = K( T ) f ( α) dt (2.15)

18 28 Advanced Topics in Characterization of Composites where d/dt is the rate of reaction, K(T) is the temperature-dependent rate constant, and f() corresponds to the reaction model. The temperature dependence of the reaction rate is described by the Arrhenius equation: [17] E K( T) = A exp RT (2.16) where R is the universal gas constant, E is the activation energy, and A is the pre-exponential factor. For experiments in which samples are heated at a constant rate, the explicit time dependence in equation (2.15) can be eliminated so that [16] dα A E = exp f ( α) (2.17) dt β RT where = dt / dt is the heating rate. The kinetic parameters (A and E) are obtained by a linear transformation of equation (2.17) so that: dα ln dt A E = ln f ( α) β RT (2.18) This equation, which has the form y = a 0 +a 1 y, can be used to determine the optimal fit of the kinetic parameters by multiple linear regression. However, the form of f() must be chosen a priori. Typical reaction models for thermosetting polymers are second order, f() = (1-) 2 ; nth order, f() = (1-) n ; and autocatalytic, f() = (1-) n m [16]. A relatively new approach to kinetic modeling is the model-free isoconversional method. This method assumes that both the activation energy and pre-exponential factor are not constants, but functions of the degree of cure [20]. The isoconversional approach can be used to evaluate both simple and complex chemical reactions. For the evaluation of data with this method, no kinetic rate expression is assumed a priori. 2.5 Modes of Operation DSCs are operated by a controlled program which changes the temperature in time. We distinguish between those modes of operation that leave the heating rate constant (i. e., the classical DSC operation mode) and those with variable (periodical or non-periodical) change of the heating rate.

19 Thermal Analysis of Composites Using DSC Constant Heating Rate In the constant heating rate mode of operation, the sample temperature is controlled by the following relation [5]: T(t)=T o + 0 t (2.19) where T o is the starting temperature of the run and 0 is the heating or cooling (negative) rate. In other words, the temperature changes linearly in time. A special case is the isothermal mode, in which the heating rate ( 0 in equation 2.19) is zero, i.e., the temperature T o is kept constant. Consequently, if no transitions or reactions take place in the sample, there is no heat exchanged with the sample and the heat flow rate should read zero. In practice this is not the case, as all DSC systems are not perfectly symmetric, and the heat exchange of the sample and reference sample with the surroundings is somewhat different. This results in a non-zero heat flow rate, even in the isothermal case. One reason to perform isothermal measurements in a DSC is to measure and check this asymmetry. Isotherms are used for calculation of heat flow rate corrections due to asymmetries. They are included before and after scanning sections in the case of precise heat capacity measurements. Another reason to perform isothermal measurements is to determine the latent heat of reactions or transitions taking place in the sample at a certain temperature. Of course, the baseline (the isotherm obtained without processes of the sample) must be subtracted from the measured curve to get the true reaction heat flow rate. In the non-isothermal constant heating rate mode, the temperature changes linearly in time. In a DSC the differential heat flow rate depends on the differential heat capacity and heating rate as given by equation 2.20 [5] dt ϕ C p = C p (2.20) dt Generally, the measured heat flow rate in scanning mode is never zero and is made up of three parts: (T, t) = 0 (T) + Cp (T) + r (T, t) (2.21) The first term on the right hand side is caused by the unavoidable asymmetry of the DSC; the second term is caused by the difference in heat capacity of the sample and reference sample; and the third term is the heat flow contribution from a reaction or transition (latent heat) occurring in the sample. The first two parts define the "baseline" and the third part the

20 30 Advanced Topics in Characterization of Composites "peak" of the measured curve. Scanning is the most commonly used mode of operation with DSC Modulated DSC (MDSC) The technique of modulated DSC was commercialized by TA Instruments in Instead of using a single linear heating rate, as used in traditional DSC, it employs a modulated or sinusoidal change in heating rate in order to automatically separate the heat capacity baseline from the total heat flow signal. This means that it is possible to identify, measure, and quantify kinetic processes in a single experiment. The heat flow signal is composed of several parts, but traditional DSC can only measure the sum of those parts and illustrate the sum in a single signal. With MDSC, multiple signals are generated in a single experiment so that each of the components to the total heat flow signal can be shown and analyzed independently [21,22]. In the variable heating rate operation, a certain modulation term is added to the linear part of the temperature-time function. The simplest and most frequently used modulation type is the periodic (sinusoidal) type governed by equation 2.22 [5]: T(t) =T t + T A sin(t) (2.22) where T A is the amplitude and is the angular frequency of the modulation. Together with 0, the "underlying" heating rate, there are three parameters that can be chosen freely within certain limits. This influences the heating rate, which follows from Equation (2.22) as: dt/dt = o + T A cos(t) (2.23) Depending on the relation of o to T A, we can distinguish four cases: quasi-isothermal, heating-cooling, heating only, and heating-iso [5]. In the quasi-isothermal mode of operation, the underlying heating rate is zero and the temperature varies around a constant temperature. As the amplitude of the modulation is low (0.01 to 0.5 K normally), the temperature is almost constant. The heating/cooling rate varies between ±T A. The advantage of using this mode is the possibility to determine heat capacities, even in the isothermal case, which otherwise is not possible. In the heating-cooling mode, the amplitude is so large with respect to o that the heating rate changes its sign periodically, i. e., the sample is periodically heated and cooled. This is the case if the product T A is

21 Thermal Analysis of Composites Using DSC 31 larger than the underlying heating rate o. The advantage of this mode is the rather large heating rate and subsequent good signal-to-noise ratio, which is in particular useful if we have small sample masses. The disadvantage is that the sample is heated and cooled during the run, which may cause problems in some cases, e.g., for polymers where different processes (with different time constants) could occur within the heating and cooling period. This would complicate the evaluation of the processes. For the heating-only mode, the amplitude is so small that the heating rate is always positive, i.e. the sample is only heated and never cooled during a run. This is the case if the product T A is smaller than the underlying heating rate o. The advantage of this mode is that all processes which only occur during cooling of the sample are suppressed, and the remaining processes are easier to evaluate. The disadvantage is the bad signal-to-noise ratio for all quantities derived from it. The heating-iso mode is the limiting case between the two modes above, where T A = o. The heating rate varies periodically between T A + o and zero. This mode has the maximum signal-to-noise ratio but without cooling the sample. 2.6 Conclusion DSC thermal analysis is an important tool in the experimental characterization of composite materials. It is used to evaluate polymers and polymer matrix composites for diverse applications such as automobiles, aircrafts, space vehicles, containers, and piping systems for the marine and petrochemical industries [15,17]. DSC equipment and modes of operation vary from heat flux DSC to power compensated DSC and constant heating rate DSC to modulated DSC. Fundamentally the DSC measures the heat capacity of a sample by recording the heat flow rate into the sample and comparing it to a reference sample. From the DSC curve one can determine materials transition points such as the glass transition temperature and melting temperature. The DSC can also quantify the degree of crystallinity for thermoplastic matrices and the residual heat of reaction for thermosetting resins. Additionally, the curing characteristics of thermosetting matrices can be modeled from limited DSC curves to develop a mathematical cure kinetic model that can be used for process optimization and curing simulations.

22 32 Advanced Topics in Characterization of Composites References 1. T. Hatakeyama and F.X. Quinn, Thermal Analysis : Fundamentals and Applications to PolymerScience, Chichester [England] ; New York John Wiley & Sons, Ltd.(UK), J.M. Barton, The Application of Differential Scanning Calorimetry (DSC) to the Study of Epoxy Resins Curing Reactions. Vol. 72, pp (04/06/2004) 3. G. Dallas, Thermal Analysis, ASM Handbook Composites, ASM International, Vol. 21, pp , Materials Park, OH, P.J.Haines, Thermal Methods of Analysis, London New York Blackie Academic & Professional st ed (P ) (04/02/2004) 5. G.H. Hohne, W.F. Hemminger, and H.J. Flammersheim, Differential Scanning Calorimetry, Springer Publishers (Engineering Index, 02/06/2004) 6. Cornerstone Research Group, Inc. Online. Internet. May 2, 2004 <http://www.crgrp.net/dsc.htm> 7. Department of Polymer Science, University of Southern Mississippi. Online. May 2, 2004 <http://www.psrc.usm.edu/macrog/dsc.htm> 8. Department of Polymer Science, University of Southern Mississippi. Online. May 2, 2004 <http://www.psrc.usm.edu/macrog/tg.htm> 9. University of Missouri Columbia. Online. May 2, 2004 <http://www.missouri.edu/~crrwww/katti/thermal%20behavior%20of %20Polymers.pdf> 10. ASTM E Standard Test Method for Assignment of the Glass Transition Temperatures by Differential Scanning Calorimetry, Annual Book of ASTM standards, Vol A. Rudin, Elements of Polymer Science and Engineering, Introductory Text and Reference for Engineers and Chemists 12. C.J. Wolf and J.A. Bornmann, Differential Scanning Calorimetry (DSC) to Determine Crystallinity in Poly (aryl-ether-ether-ketone) PEEK, National SAMPE Symposium and Exhibition (Proceedings), v 35, n pt 2, Apr, 1990, p T.H. Lee, F.Y.C. Boey and K.A. Khor, On the determination of polymer crystallinity for a thermoplastic PPS composite by thermal analysis, Composites Science and Technology, v 53, n 3, 1995, p (11/22/94) 14. D.J. Plazek and Z.N. Frund Jr., Epoxy Resins (DGEBA): The Curing and Physical Aging process, Journal of Polymer Science, Part B: Polymer Physics, v 28, n 4, Mar, 1990, p Y.I. Xiao-Su, Matrix resin improvement for aerospace polymer matrix composites, 46th International SAMPE Symposium, May 6-10, M.R. Kessler, S.R. White, Cure Kinetics of the Ring-Opening Metathesis Polymerization of Dicylcopentadine, Journal of Polymer Science A: Polymer Chemistr.y 2002;

23 Thermal Analysis of Composites Using DSC W.J. Sichina, Characterization of Epoxy Resins Using DSC, Perkin Elmer Instruments. Online <http://las.perkinelmer.com/content/applicationnotes/ta%20petech- 70.PDF> 18. J.W. Chin, T. Nguyen, and K. Aouadi, Effects of environmental exposure on Fiber-Reinforced Plastic (FRP) materials used in Construction, ASTM, E. Bryant, Crosslink density and glass transition in thermosetting polymers. Online. May 2, 2004 <http://www.udri.udayton.edu/rpdl/paper_crosdens/paper.htm> 20. S. Vyazovkin, A unified approach to kinetic processing of nonisothermal data (1996), John Wiley and Sons, Inc. 21. L.C.Thomas, Use of multiple heating rate DSC and modulated temperature DSC to detect and analyze temperature-time-dependant transitions in materials, January 2001 <http://www.iscpubs.com/articles/al/a0101tho.pdf> 22. R.B Prime, Vol 2, E.A.Turi, Ed., Academic Press, 1997, chap.6, Thermal characterization of polymeric materials

24

Measurement of Tg by DSC

Measurement of Tg by DSC application note Measurement of Tg by DSC W.J. Sichina What is Tg? Tg is the accepted abbreviation for the glass transition temperature. All amorphous (non-crystalline or semi-crystalline) materials will

More information

Characterization of Electronic Materials Using Thermal Analysis

Characterization of Electronic Materials Using Thermal Analysis application Note Thermal Analysis Characterization of Electronic Materials Using Thermal Analysis Thermal analysis comprises a series of powerful techniques for the characterization of the thermal, physical,

More information

Differential Scanning Calorimetry theoretical background

Differential Scanning Calorimetry theoretical background Differential Scanning Calorimetry theoretical background Galina Kubyshkina Elektromaterial Lendava d.d., Slovenia Crystalline materials Typical features presence of a unit (cell), which is periodically

More information

Dielectric Analysis Permittivity and dielectric loss 100. Dynamic Mechanical Analysis Mechanical strength and energy loss 200

Dielectric Analysis Permittivity and dielectric loss 100. Dynamic Mechanical Analysis Mechanical strength and energy loss 200 Relative Signal Technique Property Measured Change at Tg Differential Scanning Calorimetry Heat flow (heat capacity) 0.2 Thermomechanical Analysis Expansion coefficient or softening 3 Dielectric Analysis

More information

4 Thermomechanical Analysis (TMA)

4 Thermomechanical Analysis (TMA) 172 4 Thermomechanical Analysis 4 Thermomechanical Analysis (TMA) 4.1 Principles of TMA 4.1.1 Introduction A dilatometer is used to determine the linear thermal expansion of a solid as a function of temperature.

More information

Better DSC Isothermal Cure Kinetics Studies Using Power Compensation DSC

Better DSC Isothermal Cure Kinetics Studies Using Power Compensation DSC application Note Thermal Analysis Better DSC Isothermal Cure Kinetics Studies Using Power Compensation DSC Introduction One important aspect of a thermosetting resin, such as an epoxy, is the cure kinetics

More information

6.2 Determination of Heats of Reaction

6.2 Determination of Heats of Reaction 162 6 Applications of Differential Scanning Calorimetry 6.2 Determination of Heats of Reaction The aim is to determine a thermodynamically well defined (temperature dependent) reaction enthalpy. If a subsequent

More information

Investigation of Polymers with Differential Scanning Calorimetry

Investigation of Polymers with Differential Scanning Calorimetry HUMBOLDT UNIVERSITÄT ZU BERLIN MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT I INSTITUT FÜR PHYSIK Investigation of Polymers with Differential Scanning Calorimetry Contents 1 Introduction 1 2 Thermal Properties

More information

TA Instruments User Training

TA Instruments User Training TA Instruments User Training DSC 原 理 與 應 用 2012 年 9 月 7 日 國 立 台 灣 大 學 化 學 系 潘 貫 講 堂 (B 棟 積 學 館 2 樓 演 講 廳 ) 基 礎 應 用 許 炎 山 TA Instruments, Waters LLC 美 商 沃 特 斯 國 際 股 份 有 限 公 司 台 灣 分 公 司 TA Taipei office:

More information

TA INSTRUMENTS DIFFERENTIAL SCANNING CALORIMETER (DSC) Insert Nickname Here. Operating Instructions

TA INSTRUMENTS DIFFERENTIAL SCANNING CALORIMETER (DSC) Insert Nickname Here. Operating Instructions TA INSTRUMENTS DIFFERENTIAL SCANNING CALORIMETER (DSC) Insert Nickname Here Operating Instructions Table of Contents 1 INTRODUCTION Safety 2 Sample Preparation 3 2 BACKGROUND Background Information 4 Resources

More information

CHARACTERIZATION OF POLYMERS BY TMA. W.J. Sichina, National Marketing Manager

CHARACTERIZATION OF POLYMERS BY TMA. W.J. Sichina, National Marketing Manager PERKIN ELMER Polymers technical note CHARACTERIZATION OF POLYMERS BY W.J. Sichina, National Marketing Manager Thermomechanical analysis () is one of the important characterization techniques in the field

More information

DSC Differential Scanning Calorimeter

DSC Differential Scanning Calorimeter DSC Differential Scanning Calorimeter Introduction The Differential Scanning Calorimetry (DSC) is the most popular thermal analysis technique to measure endothermic and exothermic transitions as a function

More information

2. Thermal analysis of polymer films 2.1 Introduction

2. Thermal analysis of polymer films 2.1 Introduction 2. 2.1 Introduction DSC and TMA are widely used to determine the glass transition temperature T g of free films [48,64-67]. The glass transition temperature is defined as the transformation of a substance

More information

DETERMINATION OF THE HEAT STORAGE CAPACITY OF PCM AND PCM-OBJECTS AS A FUNCTION OF TEMPERATURE. E. Günther, S. Hiebler, H. Mehling

DETERMINATION OF THE HEAT STORAGE CAPACITY OF PCM AND PCM-OBJECTS AS A FUNCTION OF TEMPERATURE. E. Günther, S. Hiebler, H. Mehling DETERMINATION OF THE HEAT STORAGE CAPACITY OF PCM AND PCM-OBJECTS AS A FUNCTION OF TEMPERATURE E. Günther, S. Hiebler, H. Mehling Bavarian Center for Applied Energy Research (ZAE Bayern) Walther-Meißner-Str.

More information

Characterization of Polyketone Copolymer by High Speed DSC

Characterization of Polyketone Copolymer by High Speed DSC application Note Thermal Analysis Authors Wim M. Groenewoud Eerste Hervendreef 32 5232 JK S Hertogenbosh The Netherlands Nik Boer PerkinElmer, Groningen The Netherlands Phil Robinson Thermal Analysis Consultant

More information

DSC823 e Module. Differential scanning calorimetry for all requirements

DSC823 e Module. Differential scanning calorimetry for all requirements DSC823 e Module Differential scanning calorimetry for all requirements METTLER TOLEDO DSC823 e Measuring module Unmatched DSC Sensitivity with the MultiSTAR DSC Sensors Differential scanning calorimetry

More information

Differential Scanning Calorimetry of Polystyrene

Differential Scanning Calorimetry of Polystyrene CHEM 331L Physical Chemistry I Laboratory Revision 2.0 Differential Scanning Calorimetry of Polystyrene In this laboratory exercise we will measure the glass transition temperature of Polystyrene. The

More information

Effects of Tg and CTE on Semiconductor Encapsulants

Effects of Tg and CTE on Semiconductor Encapsulants Effects of Tg and CTE on Semiconductor Encapsulants Dr. Mark M. Konarski Loctite Corporation www.loctite.com Abstract As the role of direct-chip-attachment increases in the electronics industry, the reliability

More information

Thermal Analysis Differential scanning calorimetry for all requirements.

Thermal Analysis Differential scanning calorimetry for all requirements. Thermal Analysis Differential scanning calorimetry for all requirements. DSC822 e Module METTLER TOLEDO DSC822 e Measuring module Outstanding performance, simple and easy to operate. Differential scanning

More information

DETERMINATION OF TIME-TEMPERATURE SHIFT FACTOR FOR LONG-TERM LIFE PREDICTION OF POLYMER COMPOSITES

DETERMINATION OF TIME-TEMPERATURE SHIFT FACTOR FOR LONG-TERM LIFE PREDICTION OF POLYMER COMPOSITES DETERMINATION OF TIME-TEMPERATURE SHIFT FACTOR FOR LONG-TERM LIFE PREDICTION OF POLYMER COMPOSITES K. Fukushima*, H. Cai**, M. Nakada*** and Y. Miyano*** * Graduate School, Kanazawa Institute of Technology

More information

Characterization of Polymers Using TGA

Characterization of Polymers Using TGA application note Characterization of Polymers Using TGA W.J. Sichina, Marketing Manager Introduction Thermogravimetric analysis (TGA) is one of the members of the family of thermal analysis techniques

More information

Thermogravimetric Analysis (TGA) & Differential Scanning Calorimetry (DSC)

Thermogravimetric Analysis (TGA) & Differential Scanning Calorimetry (DSC) Thermogravimetric Analysis (TGA) & Differential Scanning Calorimetry (DSC) Mark McKinnon Lab Test Methods Day 2014 6/25/2014 Thermogravimetric Analysis (TGA) Test method capable of measuring the mass evolution

More information

Glass-Rubber Transition. A Second order Transition Important in Polymeric Systems

Glass-Rubber Transition. A Second order Transition Important in Polymeric Systems Glass-Rubber Transition A Second order Transition Important in Polymeric Systems Change in Specific Volume 11/14/2010 2 Effect of structure, side chain effect 11/14/2010 3 Effect of structure, flexible

More information

Thermal Analysis. Application Handbook. Thermal Analysis of Polymers Selected Applications

Thermal Analysis. Application Handbook. Thermal Analysis of Polymers Selected Applications Thermal Analysis Application Handbook Thermal Analysis of Polymers Selected Applications Selected Applications Thermal Analysis Thermal Analysis of Polymers This application handbook presents selected

More information

FULL PAPER Standardization of PCM Characterization via DSC

FULL PAPER Standardization of PCM Characterization via DSC FULL PAPER Standardization of PCM Characterization via DSC Stefan Gschwander 1, Thomas Haussmann 1, Georg Hagelstein 1, Aran Sole 2, Luisa F. Cabeza 2 Gonzalo Diarce 3, Wolfgang Hohenauer 4, Daniel Lager

More information

Chapter 15: Processing of Polymers

Chapter 15: Processing of Polymers Chapter 15: Characteristics, Applications & Processing of Polymers ISSUES TO ADDRESS... What are the tensile properties of polymers and how are they affected by basic microstructural features? Hardening,

More information

INVESTIGATION OF VISCOELASTICITY AND CURE SHRINKAGE IN AN EPOXY RESIN DURING PROCESSING

INVESTIGATION OF VISCOELASTICITY AND CURE SHRINKAGE IN AN EPOXY RESIN DURING PROCESSING TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS INVESTIGATION OF VISCOELASTICITY AND CURE SHRINKAGE IN AN EPOXY RESIN DURING PROCESSING T. Shimizu *, H. Koinuma, K. Nagai Mitsubishi Heavy Industries,

More information

Thermal Analysis TGA / DTA. Linda Fröberg

Thermal Analysis TGA / DTA. Linda Fröberg Thermal Analysis TGA / DTA Linda Fröberg Outline Definitions What is thermal analysis? Instrumentation & origin of the TGA-DTA signal. TGA DTA Basics and applications Phase diagrams & Thermal analysis

More information

Purity Determinations By Differential Scanning Calorimetry 1

Purity Determinations By Differential Scanning Calorimetry 1 Purity Determinations By Differential Scanning Calorimetry 1 Purpose: Determine the purity of a compound using freezing point depression measurements with a differential scanning calorimeter. Prelab: The

More information

Differential Scanning Calorimetry DSC

Differential Scanning Calorimetry DSC Analyzing & Testing Differential Scanning Calorimetry DSC Technique, Instrument, Applications DSC 3500 Sirius DSC 3500 Sirius Principle of Operation Differential Scanning Calorimetry Differential Scanning

More information

Table of content. L81/RITA high speed Thermo Balance. Quattro Dilatometer. L75/1250/B/S Macro Dilatometer. New air cooled furnace program

Table of content. L81/RITA high speed Thermo Balance. Quattro Dilatometer. L75/1250/B/S Macro Dilatometer. New air cooled furnace program THERMAL TRENDS 2 Table of content L75/SDC simultaneous-dilatometer/calorimeter L75/SDD simultaneous Dilatometer/DTA L81/RITA high speed Thermo Balance Quattro Dilatometer L75/1250/B/S Macro Dilatometer

More information

Stress Strain Behavior (I) Stress Strain Behavior (II) Stress Strain Behavior (III)

Stress Strain Behavior (I) Stress Strain Behavior (II) Stress Strain Behavior (III) Chapter Outline: Characteristics, Applications, and Processing of Polymers Mechanical properties Stress-Strain Behavior Deformation of Semicrystalline Polymers Crystallization, Melting, Glass Transition

More information

Determination of the heat storage capacity of PCM and PCM objects as a function of temperature

Determination of the heat storage capacity of PCM and PCM objects as a function of temperature Determination of the heat storage capacity of PCM and PCM objects as a function of temperature E. Günther, S. Hiebler, H. Mehling ZAE Bayern, Walther-Meißner-Str. 6, 85748 Garching, Germany Outline Introduction

More information

High Precision Heat Capacity Measurements of Metals by Modulated DSC

High Precision Heat Capacity Measurements of Metals by Modulated DSC High Precision Heat Capacity Measurements of Metals by Modulated DSC Carlton G. Slough, Ph.D. and Nathan D. Hesse, Ph.D. TA Instruments, 109 Lukens Drive, New Castle DE 19720, USA ABSTRACT Accurate measurement

More information

M n = (DP)m = (25,000)(104.14 g/mol) = 2.60! 10 6 g/mol

M n = (DP)m = (25,000)(104.14 g/mol) = 2.60! 10 6 g/mol 14.4 (a) Compute the repeat unit molecular weight of polystyrene. (b) Compute the number-average molecular weight for a polystyrene for which the degree of polymerization is 25,000. (a) The repeat unit

More information

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue

More information

Exergy: the quality of energy N. Woudstra

Exergy: the quality of energy N. Woudstra Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if

More information

Thermoplastic Material Testing for Use in Sigmasoft

Thermoplastic Material Testing for Use in Sigmasoft Thermoplastic Material Testing for Use in Sigmasoft + technical center for materials a DatapointLabs affiliate Materials Testing Data Infrastructure Productivity Software Plastic Rubber Film Metal Foam

More information

DSC 4000 DSC 8000 DSC 8500 with Autosampler DSC 6000 with Autosampler. A Beginner's Guide

DSC 4000 DSC 8000 DSC 8500 with Autosampler DSC 6000 with Autosampler. A Beginner's Guide FREQUENTLY ASKED QUESTIONS Differential Scanning Calorimetry (DSC) DSC 4000 DSC 8000 DSC 8500 with Autosampler DSC 6000 with Autosampler PerkinElmer's DSC Family A Beginner's Guide This booklet provides

More information

HW 10. = 3.3 GPa (483,000 psi)

HW 10. = 3.3 GPa (483,000 psi) HW 10 Problem 15.1 Elastic modulus and tensile strength of poly(methyl methacrylate) at room temperature [20 C (68 F)]. Compare these with the corresponding values in Table 15.1. Figure 15.3 is accurate;

More information

Plastics, Rubber and Composites Processing and Applications 31(2002). 377-384

Plastics, Rubber and Composites Processing and Applications 31(2002). 377-384 Investigation of cure induced shrinkage in unreinforced epoxy resin Mauro Zarrelli*, Alexandros A Skordos and Ivana K Partridge Advanced Materials Dept, Cranfield University, Cranfield, Bedford, MK43 AL,

More information

Thermal Analysis Option

Thermal Analysis Option Thermal Analysis Option The TGA-Sorption System is available in two versions. Each consists of a thermoanalyzer, a humidity generator, and an interface. In the simpler version, the humidified gas produced

More information

LONG-TERM PHYSICAL AND MECHANICAL PROPERTIES OF COLD CURING STRUCTURAL EPOXY ADHESIVES

LONG-TERM PHYSICAL AND MECHANICAL PROPERTIES OF COLD CURING STRUCTURAL EPOXY ADHESIVES LONG-TERM PHYSICAL AND MECHANICAL PROPERTIES OF COLD CURING STRUCTURAL EPOXY ADHESIVES Omar MOUSSA Title: Civil engineer, MSc. Affiliation: Composite Construction Laboratory (CCLab) École Polytechnique

More information

POM PA 12 PA 6 PA 66 PBT. Melting peaks of various semicrystalline thermoplastics

POM PA 12 PA 6 PA 66 PBT. Melting peaks of various semicrystalline thermoplastics 1.2 Procedure 63 1.2.3 Real-Life Examples 1.2.3.1 Identification of Plastics Polymers have a characteristic molecular structure and morphology. DSC often enables unknown polymers to be identified from

More information

Long term performance of polymers

Long term performance of polymers 1.0 Introduction Long term performance of polymers Polymer materials exhibit time dependent behavior. The stress and strain induced when a load is applied are a function of time. In the most general form

More information

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India Material Science Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore 5612 India Chapter 15. Thermal properties Engineering materials are important

More information

FTIR and DSC of polymer films used for packaging: LLDPE, PP and PVDC

FTIR and DSC of polymer films used for packaging: LLDPE, PP and PVDC FTIR and DS of polymer films used for packaging: LLDPE, PP and PVD John Petrovich SHAPE American High School Abstract: Polymers are compounds used in various materials. There are a plethora of methods

More information

Latent Heat of Vaporisation of Liquid Nitrogen

Latent Heat of Vaporisation of Liquid Nitrogen Latent Heat of Vaporisation of Liquid Nitrogen S. A. Lucas Department of Physics and Astronomy University College London 0 th March 010 Abstract: The latent heat of liquid Nitrogen has been determined

More information

Differential Scanning Calorimetry; First and Second Order Transitions in Polymers

Differential Scanning Calorimetry; First and Second Order Transitions in Polymers Differential Scanning Calorimetry; First and Second Order Transitions in Polymers Purpose: Determine the enthalpy of melting (fusion) of polyethylene and the heat capacity, glass transition temperature,

More information

Thermal Analysis Applications in the Semiconductor Packaging Industry

Thermal Analysis Applications in the Semiconductor Packaging Industry application Note Thermal Analysis Authors Tiffany Kang Taiwan Boon-Chun Tan Malaysia Thermal Analysis Applications in the Semiconductor Packaging Industry PerkinElmer can provide a complete solution of

More information

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R 3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated

More information

Lecture 4.1: Thermoplastics and Thermosets

Lecture 4.1: Thermoplastics and Thermosets Lecture 4.1: Thermoplastics and Thermosets The word plastic comes from the Greek word Plastikos, meaning able to be shaped and molded. Plastics can be broadly classified into two major groups on the basis

More information

Thermal Analysis Excellence

Thermal Analysis Excellence Thermal Analysis Excellence DSC 1 STAR e System Innovative Technology Versatile Modularity Swiss Quality Differential Scanning Calorimetry for all Requirements DSC Excellence Unmatched DSC Performance

More information

Expansion and shrinkage of fibers

Expansion and shrinkage of fibers Expansion and shrinkage of fibers Introduction Fibers are produced worldwide in enormous quantities. More than 20 million tons of synthetic fibers and 20 million tons of natural fibers are manufactured

More information

Thermoplastic composites

Thermoplastic composites Thermoplastic composites Definition By definition, a thermoplastic is a material based on polymer (macromolecular compound) which can be shaped, in a liquid (viscous) state at a temperature either higher

More information

Phase Transitions and Differential Scanning Calorimetry

Phase Transitions and Differential Scanning Calorimetry Phase Transitions and Differential Scanning Calorimetry Overview Differential scanning calorimetry (DSC) is an inexpensive and rapid method to measure heat capacities of condensed phases. From these measuremenmst,

More information

15.32 Of those polymers listed in Table 15.2, which polymer(s) would be best suited for use as ice cube trays? Why?

15.32 Of those polymers listed in Table 15.2, which polymer(s) would be best suited for use as ice cube trays? Why? 15.31 Name the following polymer(s) that would be suitable for the fabrication of cups to contain hot coffee: polyethylene, polypropylene, poly(vinyl chloride), PET polyester, and polycarbonate. Why? This

More information

THERMAL CONDUCTIVITY AND THERMAL EXPANSION COEFFICIENT OF GFRP COMPOSITE LAMINATES WITH FILLERS

THERMAL CONDUCTIVITY AND THERMAL EXPANSION COEFFICIENT OF GFRP COMPOSITE LAMINATES WITH FILLERS THERMAL CONDUCTIVITY AND THERMAL EXPANSION COEFFICIENT OF GFRP COMPOSITE LAMINATES WITH FILLERS K. Devendra $ and T. Rangaswamy & $ Asst. Professor, Dept. of Mech. Engineering, SKSVMACET, Laxmeshwar, KA,

More information

Fatigue. Figure 4-1 Typical Comparison of Metal and Composite Fatigue Damage [Salkind, Fatigue of Composites]

Fatigue. Figure 4-1 Typical Comparison of Metal and Composite Fatigue Damage [Salkind, Fatigue of Composites] Chapter Four PERFORMANCE Fatigue A fundamental problem concerning the engineering uses of fiber reinforced plastics (FRP) is the determination of their resistance to combined states of cyclic stress. [4-1]

More information

q = (mass) x (specific heat) x T = m c T (1)

q = (mass) x (specific heat) x T = m c T (1) Experiment: Heat Effects and Calorimetry Heat is a form of energy, sometimes called thermal energy, which can pass spontaneously from an object at a high temperature to an object at a lower temperature.

More information

Heat as Energy Transfer. Heat is energy transferred from one object to another because of a difference in temperature

Heat as Energy Transfer. Heat is energy transferred from one object to another because of a difference in temperature Unit of heat: calorie (cal) Heat as Energy Transfer Heat is energy transferred from one object to another because of a difference in temperature 1 cal is the amount of heat necessary to raise the temperature

More information

TGA Decomposition Kinetics

TGA Decomposition Kinetics TGA Decomposition Kinetics Decomposition Kinetics Background Includes isothermal and constant heating rate methods. Constant heating rate method is the fastest and will be discussed here. Based on method

More information

High Temperature Resistant Adhesives Beat the Heat

High Temperature Resistant Adhesives Beat the Heat TECH SPOTLIGHT High Temperature Resistant Adhesives Beat the Heat Master Bond Inc. 154 Hobart Street, Hackensack, NJ 07601 USA Phone +1.201.343.8983 Fax +1.201.343.2132 WhitePaper@masterbond.com High Temperature

More information

Development of an innovative bio-based structural adhesive

Development of an innovative bio-based structural adhesive Development of an innovative bio-based structural adhesive Blanca Palomo, R&D Engineer blanca.palomo@rescoll.fr RESCOLL Independent research company located in Pessac (33) specialized in technologic innovation

More information

Solidification, Crystallization & Glass Transition

Solidification, Crystallization & Glass Transition Solidification, Crystallization & Glass Transition Cooling the Melt solidification Crystallization versus Formation of Glass Parameters related to the formaton of glass Effect of cooling rate Glass transition

More information

Notes on Polymer Rheology Outline

Notes on Polymer Rheology Outline 1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity

More information

This chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections:

This chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections: Chapter 21. Melting Modeling Solidification and This chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections: Section 21.1: Overview

More information

Application Lab for Volume Dilatometry. Measurements of the Specific Volume and the Thermal Volume Expansion of Materials.

Application Lab for Volume Dilatometry. Measurements of the Specific Volume and the Thermal Volume Expansion of Materials. Application Lab for Volume Dilatometry Measurements of the Specific Volume and the Thermal Volume Expansion of Materials InnoMat GmbH Problem definition Volume shrinkage during the curing of resins causes

More information

DILATOMETER L 76 L 75 Horizontal L 75 Vertical

DILATOMETER L 76 L 75 Horizontal L 75 Vertical DILATOMETER L 76 L 75 Horizontal L 75 Vertical General Products Dilatometry is a technique which measures the dimensional change of a substance as a function of temperature while the substance is subjected

More information

A Beginner s Guide DMA

A Beginner s Guide DMA FREQUENTLY ASKED QUESTIONS Dynamic Mechanical Analysis (DMA) A Beginner s Guide This booklet provides an introduction to the concepts of Dynamic Mechanical Analysis (DMA). It is written for the materials

More information

UTL CONSOLIDATION AND OUT-OF-AUTOCLAVE CURING OF THICK COMPOSITE STRUCTURES

UTL CONSOLIDATION AND OUT-OF-AUTOCLAVE CURING OF THICK COMPOSITE STRUCTURES UTL CONSOLIDATION AND OUT-OF-AUTOCLAVE CURING OF THICK COMPOSITE STRUCTURES John Player, Margaret Roylance, Walter Zukas, Foster-Miller, Waltham, MA David K. Roylance, Department of Materials Science and

More information

Material Testing Services

Material Testing Services Material Testing Services Hawk offers state-of-the-art equipment for your analysis needs. Specific instrumental analysis capabilities and potential applications are as follows: Material Identification:

More information

Aerogel an excellent thermal insulator (known as frozen smoke)

Aerogel an excellent thermal insulator (known as frozen smoke) Aerogel an excellent thermal insulator (known as frozen smoke) 2 Thermal images of a dog (top) and a snake wrapped around a human arm (bottom) Thermal Properties (1) Heat Capacity Heat Capacity When heated,

More information

University of Cambridge, Materials Science & Metallurgy. Dilatometry

University of Cambridge, Materials Science & Metallurgy. Dilatometry University of Cambridge, Materials Science & Metallurgy H. K. D. H. Bhadeshia Dilatometry The dilatometric method utilises either transformation strains or thermal strains; the basic data generated are

More information

Thermal Analysis Excellence

Thermal Analysis Excellence Thermal Analysis Excellence DSC 3 STAR e System Innovative Technology Versatile Modularity Swiss Quality Differential Scanning Calorimetry for Routine Analysis DSC Excellence Unmatched DSC Performance

More information

Basic Concepts of Thermodynamics

Basic Concepts of Thermodynamics Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. recise definition of basic concepts forms a sound foundation for development of a science and prevents possible

More information

Table 1 Typical Physical and Thermal Properties of Mylar Polyester Film. Property Typical Value Unit Test Method

Table 1 Typical Physical and Thermal Properties of Mylar Polyester Film. Property Typical Value Unit Test Method Product Information Mylar polyester film Physical-Thermal Properties Mylar polyester film retains good physical properties over a wide temperature range ( 7 to 15 C [ 9 to 3 F]), and it is also used at

More information

Materials and Structures. Indian Institute of Technology Kanpur

Materials and Structures. Indian Institute of Technology Kanpur Introduction to Composite Materials and Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 13 Other Manufacturing Methods for Composites Composite Fabrication Using Preformed Molding

More information

Chapter 19. Chemical Thermodynamics. The reverse reaction (two eggs leaping into your hand with their shells back intact) is not spontaneous.

Chapter 19. Chemical Thermodynamics. The reverse reaction (two eggs leaping into your hand with their shells back intact) is not spontaneous. Chapter 19. Chemical Thermodynamics SOURCE: Chemistry the Central Science: Prentice hall I. Spontaneous Processes Thermodynamics is concerned with the question: will a reaction occur? First Law of Thermodynamics:

More information

Characteristics of Vinyl Ester Laminates Suitable for Chimney Liner Applications after High Temperature Thermal Stress

Characteristics of Vinyl Ester Laminates Suitable for Chimney Liner Applications after High Temperature Thermal Stress Characteristics of Vinyl Ester Laminates Suitable for Chimney Liner Applications after Author: Scott Lane Date: October 18 20, 2006 INTRODUCTION Chimney liner fiberglass laminates made from vinyl ester

More information

Differential Scanning Calorimetry. Derrick Dean University of Alabama at Birmingham

Differential Scanning Calorimetry. Derrick Dean University of Alabama at Birmingham Differential Scanning Calorimetry Derrick Dean University of Alabama at Birmingham Agenda Brief overview of polymers DSC Basics Applications Melting transitions, T m The glass transition, T g Thermal Stability

More information

Simple Experiments in Thermochemistry

Simple Experiments in Thermochemistry Simple Experiments in Thermochemistry Purpose: To demonstrate the law of conservation of energy and propose a method for making a chemical heat pack using the heats of solution of sodium bicarbonate and

More information

The Equipartition Theorem

The Equipartition Theorem The Equipartition Theorem Degrees of freedom are associated with the kinetic energy of translations, rotation, vibration and the potential energy of vibrations. A result from classical statistical mechanics

More information

Mechanical Testing of Composites. 2003, P. Joyce

Mechanical Testing of Composites. 2003, P. Joyce Mechanical Testing of Composites Tests Accepted by Mil-Hdbk Hdbk-17 Test Category Source of Test Method ASTM SACMA Prepreg tests Resin content D2539, C613 D5300 RM 23, RM 24 Volatiles content D3530 --

More information

AP Physics Problems Kinetic Theory, Heat, and Thermodynamics

AP Physics Problems Kinetic Theory, Heat, and Thermodynamics AP Physics Problems Kinetic Theory, Heat, and Thermodynamics 1. 1974-6 (KT & TD) One-tenth of a mole of an ideal monatomic gas undergoes a process described by the straight-line path AB shown in the p-v

More information

HEAT, TEMPERATURE, & THERMAL ENERGY

HEAT, TEMPERATURE, & THERMAL ENERGY HEAT, TEMPERATURE, & THERMAL ENERGY Energy A property of matter describing the ability to do. Work - is done when an object is moved through a distance by a force acting on the object. Kinetic Energy Associated

More information

V. Water Vapour in Air

V. Water Vapour in Air V. Water Vapour in Air V. Water Vapour in Air So far we have indicated the presence of water vapour in the air through the vapour pressure e that it exerts. V. Water Vapour in Air So far we have indicated

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

RESULTS OF ICARUS 9 EXPERIMENTS RUN AT IMRA EUROPE

RESULTS OF ICARUS 9 EXPERIMENTS RUN AT IMRA EUROPE Roulette, T., J. Roulette, and S. Pons. Results of ICARUS 9 Experiments Run at IMRA Europe. in Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya, Hokkaido,

More information

IPC-TM-650 TEST METHODS MANUAL

IPC-TM-650 TEST METHODS MANUAL The Institute for Interconnecting and Packaging Electronic Circuits 2215 Sanders Road Northbrook, IL 60062-6135 TEST METHODS MANUAL Number Glass Transition Temperature and Thermal Expansion of Materials

More information

Thermochemistry: Calorimetry and Hess s Law

Thermochemistry: Calorimetry and Hess s Law Thermochemistry: Calorimetry and Hess s Law Some chemical reactions are endothermic and proceed with absorption of heat while others are exothermic and proceed with an evolution of heat. The magnitude

More information

Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) R f = k f * C A (2) R b = k b * C B (3)

Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) R f = k f * C A (2) R b = k b * C B (3) Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) 1. Background Consider the reaction given below: A B (1) If k f and k b are the rate constants of the forward

More information

Review of Chemical Thermodynamics 7.51 September 1999

Review of Chemical Thermodynamics 7.51 September 1999 Review of Chemical Thermodynamics 7.51 September 1999 If you haven t had thermodynamics before, you ll probably need to do some background reading. Possibilities include: Moore, W.J. (1972) Physical Chemistry,

More information

Good Boards = Results

Good Boards = Results Section 2: Printed Circuit Board Fabrication & Solderability Good Boards = Results Board fabrication is one aspect of the electronics production industry that SMT assembly engineers often know little about.

More information

IB PHYSICS HL REVIEW PACKET: THERMODYNAMICS (2) (3)

IB PHYSICS HL REVIEW PACKET: THERMODYNAMICS (2) (3) NAME IB PHYSICS HL REVIEW PACKET: THERMODYNAMICS 1. This question is about gases and specific heat capacity. (a) State what is meant by an ideal gas.......... An ideal gas occupies a volume of 1.2 m 3

More information

Precision and Bias of the ASTM Test E1952 for Thermal Conductivity by Modulated Temperature DSC 1

Precision and Bias of the ASTM Test E1952 for Thermal Conductivity by Modulated Temperature DSC 1 Precision and Bias of the ASTM Test E1952 for Thermal Conductivity by Modulated Temperature DSC 1 Roger L. Blaine and R. Bruce Cassel TA Instruments, 109 Lukens Drive, New Castle DE 19720 ABSTRACT An interlaboratory

More information

PRODUCT / APPLICATION INFORMATION

PRODUCT / APPLICATION INFORMATION Abstract This paper will discuss performance life testing and stability testing used for self-regulating heating cables. It will show how the techniques were developed and evolved from the 970 s to the

More information

Polymer Analysis with MCR Rheometers. MCR Series

Polymer Analysis with MCR Rheometers. MCR Series Polymer Analysis with MCR Rheometers MCR Series Polymer Analysis Today, polymers are among the most important materials in existence as the properties of polymers can be adapted in a very wide range to

More information

Epoxy Innovations Drive Adhesive Bonding Growth

Epoxy Innovations Drive Adhesive Bonding Growth TECH SPOTLIGHT Epoxy Innovations Drive Adhesive Bonding Growth Master Bond Inc. 154 Hobart Street, Hackensack, NJ 07601 USA Phone +1.201.343.8983 Fax +1.201.343.2132 WhitePaper@masterbond.com T E C H S

More information

PROCESSING OF VARIOUS MATERIALS

PROCESSING OF VARIOUS MATERIALS 4 PROCESSING OF VARIOUS MATERIALS CHAPTER CONTENTS 4.1 Shaping Processes for Polymers Polymers Manufacturing Processes for Polymers 4.2 Rubber Processing Technology Processing of rubber into finished good

More information