Application of SVCs by CenterPoint Energy to Address Voltage Stability Issues: Planning and Design Considerations

Size: px
Start display at page:

Download "Application of SVCs by CenterPoint Energy to Address Voltage Stability Issues: Planning and Design Considerations"

Transcription

1 1 Application of SVCs by CenterPoint Energy to Address Voltage Stability Issues: Planning and Design Considerations Wesley Woitt, Alberto Benitez, David Mercado; CenterPoint Energy Frank Schettler, Heinz Tyll, Ralph Nagel, Brian Gemmell, Tammy Savoie; Siemens Abstract - CenterPoint Energy (CNP) is in the process of installing two SVCs on its transmission system which serves the greater Houston, Texas metropolitan area. Extensive voltage stability assessment was performed to understand the problem and determine the optimum size and location of the SVCs. This paper presents planning and design aspects of the SVC installations. As part of the planning consideration, the fundamental problem, alternative solutions evaluated, selection of the preferred option and other reactive power issues are covered. Additionally, as part of the design considerations, the SVC configuration, control strategy and other design issues are discussed. Index Terms- Voltage Stability, FACTS, SVC, STATCOM, and DVAR I. INTRODUCTION The last ten years have seen extraordinary changes to the operation of the electric grid of the Electric Reliability Council of Texas (ERCOT). Foremost among the changes was the deregulation of the wholesale and retail electricity markets starting in Many new generating plants were built from throughout the State of Texas which ultimately displaced many of the older less economical generating units. As a result of this change in generation dispatch, historical flow patterns were drastically changed across the ERCOT grid. Specifically, the CNP transmission system, which serves the greater Houston metropolitan area, prior to 2002 very little flow across the 345kV tie lines occurred that connect Houston with other parts of Texas; however, after 2002, imports into Houston across the 345kV tie lines of several thousand megawatts became routine. This occurred because more economical generation outside the Wesley Woitt, Alberto Benitez and David Mercado are with CenterPoint Energy, Houston, TX 77002, USA ( wesley.woitt@centerpointenergy.com, alberto.benitez@centerpointenergy.com and david.mercado@centerpointenergy.com). Frank Schettler, Heinz Tyll and Ralph Nagel are with Siemens AG PTD High Voltage Division, Power Transmission Solutions, Erlangen, Germany ( frank.schettler@siemens.com, heinz.tyll@siemens.com and ralph.nagel@siemens.com). Brian Gemmell and Tammy Savoie are with Siemens Power Transmission & Distribution, Inc. Wendell, NC 27591, USA ( brian.gemmell@siemens.com and tammy.savoie@siemens.com). Houston area began displacing large amounts of less economical generation within the Houston area. A by-product of this displacement was a reduction in local dynamic reactive support. History has shown that metropolitan areas that import large amounts of power are susceptible to voltage collapse events [1]. This situation is exacerbated for the CNP system since the Houston area has one of the highest concentrations of residential air conditioning load in the world. It is well known that residential air conditioners have response characteristics that contribute to slow transmission system voltage recovery during voltage dips. With these developments as a backdrop, CNP began investigating ways to mitigate risk, including adding new sources of dynamic reactive support to its transmission system. In 2003, CNP performed studies necessary to determine an under-voltage load shedding (UVLS) scheme, which was installed in In 2004, CNP completed a study which identified a set of projects that would allow additional transfer capability into the Houston area from both the north and the south. That study contained analysis that indicated the transmission system also required the addition of some amount of dynamic reactive support. The transmission projects were approved by ERCOT in March 2005 through their open planning process. Prior to ERCOT approval of the transmission projects, it was announced that 3,800MW of generation connected to the CNP transmission system was to be retired before the summer of It was at this point that CNP undertook an analysis that will be discussed in this paper and ultimately to the decision to install two 140MVar Static VAR Compensators (SVC) by summer This paper will discuss the planning and design aspects of the two SVCs. In Section II, the study methodology and performance criteria will be discussed, including the various dynamic models that were developed for the study. Section III will focus on the study results and the various technologies that were considered. Section IV discusses design considerations of the SVC as well as the control and protection philosophy.

2 2 II. STUDY METHODOLGY AND CRITERIA USED The CenterPoint Energy transmission system is extremely strong with high fault currents throughout the system. The Texas-New Mexico Power Company s (TNMP) Texas City and West Columbia systems are basically radial feeds from CNP s system totaling 2,100MW of load. The TNMP system and load are included in the detailed models that were developed for these studies. For system events, CNP and TNMP buses essentially act as one contiguous bus group, meaning severe voltage dips are felt across the entire system. CNP studied projected 2006 summer peak conditions with the expectation that summer peak conditions would provide the worst conditions for voltage recovery. The projected 2007 summer peak conditions included a CNP and TNMP system load of 20,936MW. CNP s stability studies included the normal ERCOT dynamics data as well as the following additional models that were deemed to be necessary for the study: Generator Over-excitation Limiter (OEL) models for units connected to the CNP transmission system Under-voltage load shedding (UVLS) models simulating the CNP UVLS scheme Load models which include explicit motor models Large motor contactor drop-out models A. Models Included for Voltage Recovery Studies 1) Generator OEL Models OEL models are intended to model the control characteristics of generators that reduce reactive output to continuous rating to avoid damage to the field windings. Generators typically allow several multiples of the steadystate reactive rating for a short length of time, approximately 10 seconds. For voltage recovery studies where low voltage persists for more than this length of time, OEL action needs to be considered because of its negative impact on recovery. With some exceptions, ERCOT Operating Guides require generators connected to the transmission system to have an over-excited (lagging) power factor capability of ninety-five hundredths (0.95) or less determined at the generating unit s maximum net power to be supplied to the transmission voltage level. Generators are modeled in steady-state base cases with reactive capability based on generator reactive test results and operational history. In some cases, this may result in even greater than 0.95 power factor capability. For the voltage recovery studies, CNP decided to set the OEL models to reduce reactive output down to the higher of the two levels. In other words, CNP modeled all generators providing reactive output equal to or greater than that required by ERCOT standards. The models were designed to allow the generator reactive power output to be driven by the excitation system model for an amount of time inversely proportional to the generator reactive output. Once the timer output has been met, the model reduces the reactive output to a continuous level as described above. For example, if the generator reactive output is twice rated value, the OEL model will limit its reactive output to its rated value after 10 seconds. 2) UVLS Models Models were included that represent the UVLS scheme installed on the CNP system. The system is designed to utilize an undervoltage element in the under-frequency load shedding relays that were already installed on the system. This represents about 25-30% of the non self-serve load connected to the CNP system. The scheme has three blocks of load, all with a voltage setpoint of 0.91 pu. Block 1 has a time delay of 3 seconds, block 2 has a time delay of 5 seconds, and block 3 has a time delay of 8 seconds. 3) Load Models Load modeling is incredibly important to voltage recovery studies, as has been demonstrated in many studies where actual voltage collapse events did not match simulated response. In many cases, one of the reasons for the disparity between simulated and actual response was incorrect load modeling. It has been proven that for voltage recovery studies the characteristics of motor response to voltages below about 80% of nominal must be taken into account to produce reasonable response. Therefore, CNP decided to convert the simple load modeled at each bus in the Houston area into load separated components, such as small motors, large motors, discharge lighting and resistive load. While this information can only be definitively determined by very involved research of the native load, reasonable assumptions can be made for each of these components. In this case, past ERCOT voltage studies had used load models developed by Powertech Labs, Inc. (Powertech) that were based on previous research [2]. CNP decided to use the same load models that were used for the previous ERCOT study. The method for determining the load model at a bus is to determine the breakdown of the load at the bus by percentage of load which is residential, commercial, and industrial. This is information that is readily available for the CNP system. The Powertech load model converts the residential, commercial and industrial load into various standard percentages of resistive, small motor, large motor and discharge lighting, as shown in Table 1. The small motor model is intended to represent the typical residential air conditioner load that exists at summer peak conditions. The derivation of the parameters for the small motor, large motor, and discharge lighting models is described in previous research [2]. These models were applied to distribution substations in both CNP s and TNMP s system, which represents 15,377MW of load. Most of the remaining load exists at customer-owned substations in CNP s transmission system. Nearly all of these substations are industrial in nature; therefore, the load components were broken down by applying the percentages associated with the industrial load

3 3 classification in Table 1. Any remaining loads in the CNP system were modeled as 100% constant MVA. All loads outside of the Houston area were modeled using a similar procedure based on load classifications taken from previous ERCOT study. Load Class / Season Residential / Summer Commercial / Summer Industrial / Summer Load Composition Small Resistive Motor Table 1: Residential, Commercial and Industrial Load Model Composition 4) Large Motor Contactor Drop-Out Large Motor Discharge Lighting 25% 75% 0% 0% 14% 51% 0% 35% 5% 20% 56% 19% CNP operational experience and research has led to the conclusion that at voltages less than 60% of nominal, large motors, such as those used in industrial applications, tend to disconnect or drop out due to the contactor opening after a short delay time and then are reconnected after the voltage has recovered. Since the amount of large motor load on the CNP system is a significant portion of the overall load (i.e. ~25%), the large motor contactor drop-out has a significant effect on overall system response and needs to be included. The specific model is applied to all load classified as large motor load. It drops the large motor load if the voltage dips below 60% of nominal for 0.5 seconds and then reconnects after the voltage rises above 80% of nominal for 1 second. B. Disturbances Studied CNP s Transmission Design Criteria specifically requires that system instability should not occur due to a three-phase fault and a breaker failure condition resulting in a common mode multiple contingency condition. This requirement is based on operational experience which shows that these types of disturbances are credible even though they are classified as Category D by the North American Electric Reliability Council (NERC) Reliability Standards [3]. C. Performance Criteria CNP chose to apply two different performance criteria to the voltage recovery studies, the first applies to voltages at generator terminals based on ERCOT criteria and the second applies to the amount of UVLS load that is shed. In 2005, ERCOT adopted a requirement for generators to remain connected to the grid for disturbances where voltage recovers to at least 90% of rated design voltage within 10 seconds. CNP chose to apply a companion criterion that requires system response to ensure that all generator terminal voltages recover to at least 90% of nominal within 10 seconds after falling below 90%for the breaker failure events described in Section II-B. Therefore, as long as generators are meeting the ERCOT requirements, the transmission system is designed to ensure no generators are tripped due to a low voltage event. The second performance criteria applied to CNP s voltage recovery studies is to limit the amount of load shed due to activation of the UVLS relays. CNP currently has about 25-30% of its summer peak load (approximately 5,000MW) available to be shed by UVLS relays. The potential UVLS load is considered a safety net to help protect the system during a severe system event; however, it seems unwise to plan for using the entire available UVLS load for a simulated event due to the uncertainty inherent in study assumptions. Also, too much load being removed from the system within a few seconds is likely to result in a frequency excursion which could put generators in danger of tripping due to overfrequency. Currently, the ERCOT transmission system is designed to withstand generation outages of 1,250MW; therefore, in a similar fashion, CNP chose to limit the UVLS load shed to 1,250MW for events described in Section II-B. D. Dynamic Reactive Device Models and Location CNP chose to evaluate a number of dynamic reactive device types to meet the performance criteria. The study evaluated synchronous condenser, Distribution Static Compensator (D-STATCOM), Static Synchronous Compensator (STATCOM), Static VAR Compensator (SVC), and Thyristor Switched Capacitor (TSC) solutions. For each of these types of devices, typical step-up transformers were modeled along with typical block diagrams and parameters. From CNP s discussions and meetings with other transmission companies and dynamic reactive device vendors, it became apparent that blocking voltage could be a concern. Basically, to protect the device or some component of the device, it would not react until the voltage rose above a safe level. For the disturbances on the CNP system, system-wide post-fault voltages could be pu at most buses. If the dynamic reactive device had a blocking control function in this voltage range, then CNP was concerned that it would be blocked from operation precisely when the system needed the reactive support the most. A model was developed that blocked each of the devices below a user defined voltage, except for the synchronous condenser which operates through low voltages. For the study, blocking voltages of 0.5 pu, 0.6 pu, and 0.7 pu were tested for each device. It was decided that dynamic reactive devices would be placed at not one, but two locations, to avoid a single point of failure and that the two devices would be of equal size. CNP investigated likely sites for locating dynamic reactive devices and determined the top three optimal sites: one Eastern, one Central and one Western location. III. STUDY RESULTS A. Screening Studies With the models described above, a screening analysis was performed on the base case to determine the fault locations resulting in the slowest voltage recovery. This screening study placed an 8 cycle three-phase fault on each 345kV bus

4 4 in the Houston area with subsequent clearing of a single 345kV transmission line connected to that same bus. 8 cycles is the breaker failure delayed clearing time for CNP s 345kV substations. All buses 138kV and above were monitored and the duration recorded for bus voltages to recover to 0.7 pu of its pre-fault value. The contingencies were then ranked by maximum duration to recover to 0.7 pu. The 20 worst contingencies were for outages at two 345kV buses that are very close to each other. Further analysis identified the worst contingency as one where the fault with breaker failure is followed by tripping one generator and one transmission line that share a common breaker at this 345kV substation. This contingency, which will be identified as #6-L72, was chosen for all remaining analysis. B. Voltage Recovery Studies Figure 1 shows Houston area bus voltage plots for contingency #6-L72. This disturbance resulted in 2709 MW of UVLS load shed; however, UVLS activation allowed all the generator terminal voltages to recover to 90% voltage well within 10 seconds. Therefore, for this contingency one of the two performance criteria were not met. At this point, the various dynamic reactive devices were added and studied at the various blocking voltages. always considered an optimal site. Subsequent discussion with dynamic reactive device vendors, led to the conclusion that specifying a blocking voltage of 0.5 pu or lower was appropriate for alleviating the blocking voltage concerns. It was determined that the TSC based SVC technology was best suited for this application. CNP issued a functional technical specification for two dynamic reactive devices, one at the Central 138kV substation and one at the Eastern 138kV substation. Figure 2 shows the expected reactive output from the Central and Eastern SVCs for the contingency #6-L72. Dynamic Reactive Device Synchronous Condenser D- STATCOM STATCOM SVC TSC Blocking Voltage (pu) Best Two of the Three Sites MVA of Each Device Resulting MW Load Shed N/A Western/Eastern Central/Eastern 35 1, Western/Eastern 40 1, Central/Eastern 70 1, Central/Eastern 85 1, Western/Eastern 95 1, Western/Eastern 160 1, Central/Eastern 120 1, Western/Eastern 130 1, Central/Eastern 200 1, Central/Eastern 140 1, Central/Eastern 255 1, Central/Eastern 360 1,204 Table 2: Reactive Device and Blocking Voltage Analysis Results Buf. Binary Result File Scenario Contingency 1 07bc+hill+.5tsc140_ _wapL.bin 07bc+hill+tsc 1 -- WAP#6-L bc+hill+.5tsc140_ _wapL.bin 07bc+hill+tsc 1 -- WAP#6-L72 Output of SHCUDM block (MVAR) 200 Bus # Bus Name ID Buf CROSBYSC block: QCOMP BELAIRSC block: QCOMP Figure 1: Houston Area Bus Voltages for Worst Case Contingency Table 2 lists the device sizes that need to be added at the two best locations to reduce the UVLS load shed below 1,250MW. It was not attempted to size the devices so that exactly 1,250MW of UVLS was shed, but the sizes were increased by 5MVar blocks until UVLS load shed fell below 1,250MW. The synchronous condenser results were primarily for comparison purposes as CNP was not considering synchronous condensers for installation. As seen in Table 2, the remaining devices all showed that the Eastern location was one of the best two locations. For devices with blocking voltages of 0.5 pu or 0.7 pu, the Central site was Time (sec) Figure 2: Simulated Reactive Power Output for Central and Eastern SVCs IV. SVC DESIGN CONSIDERATIONS TSAT Based on the study results in the previous Sections and in conjunction with CNP s specification, the contract to design and construct the Central and Eastern SVCs was awarded on a turnkey basis to Siemens, in partnership with Beta

5 5 Engineering, LLC for constructing two 140MVAr TSC based SVCs. Both SVCs are identical in topology, deriving their continuous 140MVar continuous rating from one 140MVar thyristor switched capacitor (TSC). A one-line diagram of the SVC is shown in Figure 3. The configuration of the TSC and the voltage level on the low side of the SVC coupling transformer were chosen by Siemens to optimize the performance and cost of the SVC components. V NHV = 138 kv, f N = 60 Hz V NLV = 26 kv S N = MVA u k =9.1 % CTSC The V-I characteristic of the SVCs as seen at the HV side is shown below in Figure 4, which was the basis for the determination of the secondary side connected components. The SVCs are designed to operate under system voltage conditions as shown in Figure 5. Table 3 shows the voltage and current stresses of the SVC components, related to the different system voltage conditions as defined in Figure 5. The capacitive design point of 140MVar is achieved with the TSC conducting and the reactive power of 0MVar at 1.0 pu voltage is achieved with the TSC branch blocked. Operation at 1.05 pu system voltage defines the rating of the transformer, with increased power output at 1.10 pu system voltage achieved by the transformer design. At 1.2 pu and 1.3 pu, the TSC branch is blocked and the power output at the HV side of the transformer is 0 MVAr. L TSC 2B TSC Figure 3: Central and Eastern Simplified SVC One-Line Diagram A. SVC Design The LV-side is connected to the HV system via an SVC coupling single phase transformers with a nominal power rating of 154.4MVA and a leakage impedance of 9.1%. The nominal voltage of the secondary busbar of the SVC was optimized with respect to best utilization of the thyristor current carrying capability to 26kV. The number of series connected anti-parallel thyristors is determined from transient stress calculations based on the assumption of having a misfiring in the TSC. Internally fused capacitors are used for the TSC capacitor bank. Each capacitor is rated 714kVAr at 9,817V. Figure 5: SVC Continuous and Overload Duty from the Specification V/I Stresses Time Continuous 180s 1s V NHV (pu) Q HV (MVar) Q LV (MVar) V NLV (pu) I TSC (A) V CTSC (pu) Table 3: Voltage and Current Stresses of TSC Components at Characteristic Operating Points (See Figure 5) The technical specification requirements specifically emphasized life cycle cost together with a loss evaluation which shows 0MVar operation for most of the time. This was considered an ideal application for a single TSC solution: at 0MVar the TSC is switched off and does not generate any load losses, nor excessive magnetic fields, nor load or harmonic current related audible noise. Figure 4: V-I Characteristic of the SVC at the HV-side of the Transformer B. SVC Control The redundant controller includes the control function of the SVC and also coordinates the switching interaction of: two existing 138kV mechanically switched capacitor (MSC) banks (129.6MVar and 108MVar) and one tap changer at the Central substation; one 115MVar MSC and one 75MVar reactor bank at the Eastern substation.

6 6 The control system of the SVC consists primarily of open and closed loop control functions. The controller has been built up in a fully redundant system which uses standardized hardware and software modules, which secures maximum availability of the SVCs. The Plant Control contains all the necessary functions to control and monitor the entire SVC components with associated control systems (e.g. protection, cooling, valve base electronics (VBE), local switchyard controls and remote control). A simplified control overview is shown in Figure 6. components are integrated in the input circuits of the controller. The signals are then transformed by galvanically isolated V/V or I/V converters into signals at control circuit potential with voltage limitation and interference suppression. Calibration facilities are integrated for each input. All frequency dependent circuits are automatically adjusted to the actual frequency of the power system. This feature ensures that the evaluation of the actual system values is precise for a system frequency range of 60Hz ±5Hz. 2) Control Philosophy The primary purpose of the two SVCs is to provide Dynamic Voltage Support (DVS Mode) for the CNP transmission grid for specific three-phase faults with delayed clearing under certain conditions. In addition, the SVCs shall be capable of controlling the 138kV bus voltage in steady state voltage regulation (SSVR Mode). The control loops are operational simultaneously and are adjustable independently of each other. a) 138kV Dynamic Voltage Support Mode Figure 6: Control Overview 1) Closed Loop Control Functions The control system of the SVC is of a three-phase symmetrical, closed loop voltage control type. The simplified block diagram of the closed loop controller is shown in Figure 7. Figure 7: Closed Loop Controller Central SVC a) Input Signal Processing The actual voltage signal V act is the average of the magnitudes of the 3-phase fundamental frequency busbar voltages V HV. This signal must be accurate, insensitive to system harmonics and system frequency deviations. Over-voltage protection devices and interference suppression filters to guard against high frequency voltage Dynamic Voltage Support (DVS) Mode is to provide voltage support for the transmission system during network faults, and is always active. If the system voltage drops below the adjusted V min setpoint, a sequence of events happens. At the Central substation, the TSC and MSCs are switched in to support the 138kV system voltage. During low voltage events the load tap changer (LTC) control will be blocked to prevent tap change operations in the event of a network breakdown. The short-circuit calculation and dead band adjustments are blocked if the system voltage decreases under the minimum voltage setpoint V min. With voltage recovery, the LTC control will be enabled at the adjusted LTC enable level. The MSCs will remain switched in and will only be switched off if there is an overvoltage condition >1.1 pu. During system faults the SVC will stay on-line to stabilize the system voltage. After a period of ten minutes following the low voltage event, the SVC control will return to steady state voltage support mode automatically. There is a similar sequence of events at the Eastern substation. Special additions must be incorporated into the secondary SVC equipment (i.e. cooling system). All primary and auxiliary equipment must be designed to ensure that the SVC can remain on-line for the low voltage ride through event. In this case, the primary cooling pumps used to cool the thyristor valve were supported via a set of stand-by redundant inverters. b) 138kV Steady State Voltage Regulation Mode The 138kV steady state bus voltages at the Central and Eastern Substations are controllable to a reference value which can be set by the operator to a continuously adjustable

7 7 value between 0.90 pu and 1.10 pu. The control objective is to maintain the steady state bus voltage close to the reference value. As can be seen from the block diagram in Figure 7, the Steady State Voltage Regulation mode can be activated or deactivated. The voltage deviation V determined by the difference between the V act and V ref voltage is fed to the deadband controller which is used for TSC, MSC and Tap Change control. Dependent of the measured short circuit level, the deadband is adjusted for each element. c) Special Control Functions Additional control functions are implemented and will override the normal control. Specific control features for optimal use of the SVC are explained below. Due to the fact that the SVC will operate in stand by position for most of the time, the TSC will be off for the majority of the time. To test the availability of the SVC, a periodical TSC on/off test function is integrated to the controls. Furthermore, to ensure optimum dynamic response of the SVC during various network conditions and to avoid continuous on/off actions of the TSC, automatic deadband adjustment dependent on the measured short circuit level is included in the regulator. A stability controller is integrated which is an important feature for stability improvement under very weak system conditions in combination with transient interactions. The voltage controller output is monitored in order to detect multiple consecutive changes in direction of the Q reg signal. In this case, it will increase the deadband stepwise until stability is reached. The deadband adaptation is activated for hunting above a pre-defined frequency level. This detection level ensures sufficient margin to avoid unwanted increases of the deadband in the lower frequency range of power swings. Such specific controls improve the SVC performance and provide benefits to the SVC user. d) Supervision and Protection Functions Special control and protection functions are integrated in the SVC controller to detect abnormal operating conditions and to react rapidly to avoid damage and unnecessary tripping by the plant protection system. These control features, which are included in the closed loop control software, are very flexible and can be adapted to specific customer requirements. The special control and protection functions consist of: HV Over-voltage Protection HV Under-voltage Protection LV Under-voltage Protection TSC Current Supervision TSC Thermal Replica The outputs of these protection devices are evaluated by the interrupt and protection logic for optimal reactions. These features increase the overload capability, in addition to improvements in the availability and performance of the SVC. e) Verification of Control Design The Control and Protection cubicles are connected to a Real Time Digital Simulator (RTDS TM ) which is used to perform all TNA tests of the SVCs in Erlangen, Germany. With this RTDS system, steady state and transient behaviors of the original control, measuring and protection equipment can be studied under real network conditions. Some of the specific tests are: Steady state and functional performance tests Verification of protection strategies Performance tests under transient system conditions The digital and real-time simulation is used to optimize the SVC control design and regulator adjustment and results in minor adjustments being required on site during commissioning. Thus the time required to put the SVCs in operation is minimized. 3) Control and Protection Summary The two static Var compensators installed at the Central and Eastern substations will improve the system stability by providing dynamic reactive power support in case of faults but also by controlling the 138kV bus voltage. As part of the SVC commissioning, the real time digital simulator tests proved to be particularly helpful in studying and understanding the control and protection systems of the SVCs. V. SUMMARY AND CONCLUSION In this paper, the results of the voltage stability assessment for CenterPoint Energy s transmission system are discussed. Metropolitan areas that import large amounts of power are susceptible to voltage collapse events. CenterPoint Energy had to include various models for their dynamic studies, as well as the performance criteria and evaluation of several Flexible Alternating Current Transmission Systems (FACTS) to mitigate the problem. Two identical 140MVar SVCs connected at Central and Eastern 138kV substations were selected as the preferred options. The two SVCs are expected to enter commercial service in May 2008, and a follow-up paper is planned which will present the construction and final commissioning considerations.

8 8 VI. REFERENCES [1] Krebs, R.; Lemmer, S.; Retzmann, D.; Sezi, T.; Weinhold, M., "Blackout Prevention by Online Network and Protection Security Assessment," IEEE Power Engineering Society General Meeting, pp.1-3, June [2] C.W.Taylor, Power System Voltage Stability, McGraw-Hill Inc, [3] North American Electric Reliability Council Standards, available at [4] H. Tyll, K. Leowald, F. Labrenz, D. Mader, Special Features of the Control System of the Brushy Hill SVC, CEA HVDC and SVC Control Committee, Power System Planning and Operating Section, March [5] S.R. Chano et al., Static Var Compensator Protection, IEEE Transactions on Power Delivery, Vol. 10, No. 3, July VII. BIOGRAPHIES Wesley D. Woitt received his Bachelors degree in Electrical Engineering from Mississippi State University in He joined CenterPoint Energy in 1993 and has worked in transmission planning functions for over 14 years where he is currently Supervising Engineer of the Special Studies group of Transmission Network Planning. Alberto Benitez received his BSEE and MEE from the University of Houston in 1993 and 1998, respectively. He joined CenterPoint Energy in 1994 in the Substation Project Department and is currently a Consulting Engineer for CenterPoint Energy. Department. Since 1996 he is responsible for Basic Design of SVC, SC and FACTS applications. He contributed to CIGRE WG 38 TFs and to relevant IEEE WG. He is member of IEEE and VDE. Ralph Nagel received his Dipl.-Ing. in Electrical Engineering from the Technical University of Leipzig, Germany in He has been with Siemens since 1991 and since 1996 working in the SVC Control and Protection engineering design group. He has been involved in design, test and commissioning of various SVC projects. Brian D. Gemmell (M 00) received his MEng and PhD in Electrical and Electronic Engineering from the University of Strathclyde, UK in 1990 in 1995 respectively. During 1992, he spent 6 months as a Visiting Engineer at the Massachusetts Institute of Technology. He worked for ScottishPower ( ) in Substation Engineering and Transmission Planning. He has spent the past 7 years working in FACTS & HVDC Business Development and is currently Director of Business Development with Siemens Power Transmission & Distribution, Inc., based in Wendell, NC. Tammy M. Savoie (M 97) received her BS in 1997 from North Carolina Weslayan and her MBA from the University of Houston in She is an Industrial Advisory Board Member for the Electrical and Computer Engineering Department at the University of Houston and a member of IEEE Women in Engineering. She has worked for Siemens for the past 13 years. David L. Mercado received his Bachelors of Science Degree in Electrical Engineering from Rice University in He joined CenterPoint Energy in 2001 and is currently working as an Engineer in the Special Studies group of Transmission Network Planning at CenterPoint Energy. Frank Schettler received his Dipl.-Ing. and PhD in Electrical Engineering from the Technical University of Ilmenau, Germany in 1992 and 2003 respectively. He has been working with Siemens in the field of power transmission and distribution for about 15 years. As a systems engineer he gained experience in the fields of power system design, development, application engineering and sales. He is currently head of the System Engineering team for FACTS in Siemens. Heinz Karl Tyll (M 88, SM 93) graduated in 1968 in Electrical Engineering from Coburg Polytechnikum. In 1974 he received the Diplom degree from the Technical University of Berlin. After joining Siemens AG, he worked in their High Voltage Transmission Engineering Department since 1975 in the field of network and SVC system analysis with transient network analyzer and digital programs. In 1988 he transferred to the System Engineering Group of the HVDC and SVC Sales

General Validation Test Program for Wind Power Plants Connected to the Hydro-Québec Transmission System

General Validation Test Program for Wind Power Plants Connected to the Hydro-Québec Transmission System General Validation Test Program for Wind Power Plants Connected to the Hydro-Québec Transmission System Direction Planification des actifs et expertise de transport February 2011 TABLE OF CONTENTS 1. CONDUCTING

More information

Nuclear Power Plant Electrical Power Supply System Requirements

Nuclear Power Plant Electrical Power Supply System Requirements 1 Nuclear Power Plant Electrical Power Supply System Requirements Željko Jurković, Krško NPP, zeljko.jurkovic@nek.si Abstract Various regulations and standards require from electrical power system of the

More information

CO-ORDINATION OF PARALLEL AC-DC SYSTEMS FOR OPTIMUM PERFORMANCE

CO-ORDINATION OF PARALLEL AC-DC SYSTEMS FOR OPTIMUM PERFORMANCE CO-ORDINATION OF PARALLEL AC-DC SYSTEMS FOR OPTIMUM PERFORMANCE Ana Diez Castro & Rickard Ellström Ying Jiang Häfner Christer Liljegren Vattenfall Utveckling AB ABB Power Systems Gotlands Energiverk AB

More information

The design and performance of Static Var Compensators for particle accelerators

The design and performance of Static Var Compensators for particle accelerators CERN-ACC-2015-0104 Karsten.Kahle@cern.ch The design and performance of Static Var Compensators for particle accelerators Karsten Kahle, Francisco R. Blánquez, Charles-Mathieu Genton CERN, Geneva, Switzerland,

More information

Chapter 5. System security and ancillary services

Chapter 5. System security and ancillary services Chapter 5. System security and ancillary services 1 Introduction Markets for electrical energy can function only if they are supported by the infrastructure of a power system. System should continue to

More information

FRCC Standards Handbook. FRCC Automatic Underfrequency Load Shedding Program. Revision Date: July 2003

FRCC Standards Handbook. FRCC Automatic Underfrequency Load Shedding Program. Revision Date: July 2003 F R C C FRCC Standards Handbook FRCC Automatic Underfrequency Load Shedding Program Revision Date: July 2003 FRCC Underfrequency Load Shedding Program Modification and Approval Process Requests to modify

More information

Midwest Reliability Organization Procedure For NERC PRC-012

Midwest Reliability Organization Procedure For NERC PRC-012 Midwest Reliability Organization Procedure For NERC PRC-012 A. Introduction The following procedure developed by the MRO Protective Relay Subcommittee (PRS) and Transmission Assessment Subcommittee (TAS)

More information

2012 San Francisco Colloquium

2012 San Francisco Colloquium 2012 San Francisco Colloquium http : //www.cigre.org HVDC and Power Electronic Systems for Overhead Line and Insulated Cable Applications B4-8 Trans Bay Cable A Breakthrough of VSC Multilevel Converters

More information

Requirements for Offshore Grid Connections. in the. Grid of TenneT TSO GmbH

Requirements for Offshore Grid Connections. in the. Grid of TenneT TSO GmbH Requirements for Offshore Grid Connections in the Grid of TenneT TSO GmbH Bernecker Straße 70, 95448 Bayreuth Updated: 21 December 2012 1/10 Requirements for Offshore Grid Connections in the Grid of TenneT

More information

Guidelines for Large Photovoltaic System Integration

Guidelines for Large Photovoltaic System Integration 1 Guidelines for Large Photovoltaic System Integration Silviu Darie, PhD(EE), PE(EE) Abstract- The paper summarizes the result of a research project funded by the Department of Energy (DOE) in collaboration

More information

Reactive Power and Importance to Bulk Power System OAK RIDGE NATIONAL LABORATORY ENGINEERING SCIENCE & TECHNOLOGY DIVISION

Reactive Power and Importance to Bulk Power System OAK RIDGE NATIONAL LABORATORY ENGINEERING SCIENCE & TECHNOLOGY DIVISION Reactive Power and Importance to Bulk Power System OAK RIDGE NATIONAL LABORATORY ENGINEERING SCIENCE & TECHNOLOGY DIVISION Outline What is Reactive Power and where does it come from? Why is it important?

More information

COMPARISON OF THE FACTS EQUIPMENT OPERATION IN TRANSMISSION AND DISTRIBUTION SYSTEMS

COMPARISON OF THE FACTS EQUIPMENT OPERATION IN TRANSMISSION AND DISTRIBUTION SYSTEMS COMPARISON OF THE FACTS EQUIPMENT OPERATION IN TRANSMISSION AND DISTRIBUTION SYSTEMS Afshin LASHKAR ARA Azad University of Dezfoul - Iran A_lashkarara@hotmail.com Seyed Ali NABAVI NIAKI University of Mazandaran

More information

LAB1 INTRODUCTION TO PSS/E EE 461 Power Systems Colorado State University

LAB1 INTRODUCTION TO PSS/E EE 461 Power Systems Colorado State University LAB1 INTRODUCTION TO PSS/E EE 461 Power Systems Colorado State University PURPOSE: The purpose of this lab is to introduce PSS/E. This lab will introduce the following aspects of PSS/E: Introduction to

More information

System Protection Schemes in Eastern Denmark

System Protection Schemes in Eastern Denmark System Protection Schemes in Eastern Denmark Joana Rasmussen COWI A/S, Energy Department System Protection Schemes in Eastern Denmark 1.Advanced system protection schemes are investigated and perspectives

More information

FULL ELECTRICAL LNG PLANTS: HIGHEST AVAILABILITY AND ENERGY EFFICIENCY THROUGH OVERALL SYSTEM DESIGN

FULL ELECTRICAL LNG PLANTS: HIGHEST AVAILABILITY AND ENERGY EFFICIENCY THROUGH OVERALL SYSTEM DESIGN FULL ELECTRICAL LN PLANTS: HIHEST AVAILABILITY AND ENERY EFFICIENCY THROUH OVERALL SYSTEM DESIN Dr. Edwin Lerch Siemens A Infrastructure and Cities Sector, IC S SE PTI, ermany Phone: 49-9131-7-34052 Fax:

More information

Transmissão em Corrente Contínua

Transmissão em Corrente Contínua Transmissão em Corrente Contínua Panorama Atual e Perspectivas Futuras no Brasil Multi-Terminal HVDC Classic Some Considerations Brazilian SC B4 Paulo Fischer de Toledo, ABB Basic considerations Traditional

More information

Power Technology Issue 104. Modeling of Two-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E

Power Technology Issue 104. Modeling of Two-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E SIEMENS Siemens Energy, Inc. Power Technology Issue 104 Modeling of TwoWinding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E Carlos GrandeMoran, Ph.D. Principal Consultant

More information

Standards in Marine Power Systems. APEC 2014 Session IS2.1 Power Electronic Standards Roger Dougal University of South Carolina Columbia, SC 29208

Standards in Marine Power Systems. APEC 2014 Session IS2.1 Power Electronic Standards Roger Dougal University of South Carolina Columbia, SC 29208 Standards in Marine Power Systems APEC 2014 Session IS2.1 Power Electronic Standards Roger Dougal University of South Carolina Columbia, SC 29208 Need is Driven by Electrification Oasis of the Seas DDG

More information

EMTP STUDIES PERFORMED TO INSERT LONG AC CABLES IN THE FRENCH GRID

EMTP STUDIES PERFORMED TO INSERT LONG AC CABLES IN THE FRENCH GRID Tension (kv) Impedance (Ohms) EMTP STUDIES PERFORMED TO INSERT LONG AC CABLES IN THE FRENCH GRID frequency (Hz) Simon DESCHANVRES Yannick VERNAY RTE, CNER, Substations Department t (ms) EMTP-RV Users Group

More information

Design of electrical power system for a 1000MW nuclear power generating station

Design of electrical power system for a 1000MW nuclear power generating station Design of electrical power system for a 1000MW nuclear power generating station K Raja, K Yesunadam Dept. of Electrical & Electronics Engineering, Lingaya s Institute of Management & Technology, Vijayawada,

More information

FACTS. Solutions to optimise network performance GRID

FACTS. Solutions to optimise network performance GRID Solutions to optimise network performance GRID Solutions to optimise your network Our worldwide presence: Better solutions for your network all around the world Tampere Philadelphia Stafford Konstanz Beijing

More information

ANCILLARY EQUIPMENT AND ELECTRICAL EQUIPMENT Power Supply Systems and Electrical Equipment for Desalination Plants - Y.M. Hamud and A.H.

ANCILLARY EQUIPMENT AND ELECTRICAL EQUIPMENT Power Supply Systems and Electrical Equipment for Desalination Plants - Y.M. Hamud and A.H. POWER SUPPLY SYSTEMS AND ELECTRICAL EQUIPMENT FOR DESALINATION PLANTS Y.M. Hamud and A.H. Anwar Abu Dhabi Water and Electricity Authority, Abu Dhabi, UAE Keywords : Electrical System, Network for Desalination,

More information

Isolated-Parallel UPS Configuration

Isolated-Parallel UPS Configuration Isolated-Parallel UPS Configuration 1 Inhalt 1 Introduction... 4 2 IP systems configuration... 6 3 Projects... 17 4 Conclusions... 17 2 Abstract The isolated-parallel UPS configuration has become well

More information

For a phase-to-phase voltage between 100 V and 1000 V. The standard ratings are: 400 V - 690 V - 1000 V (at 50 Hz)

For a phase-to-phase voltage between 100 V and 1000 V. The standard ratings are: 400 V - 690 V - 1000 V (at 50 Hz) 24 1. NETWORK CONFIGURATIONS definition Standard IEC 38 defines voltage ratings as follows: - Low voltage () For a phase-to-phase voltage between 100 V and 1000 V. The standard ratings are: 400 V - 690

More information

Application-oriented testing of line differential protection end to end in the field using the corresponding RelaySimTest template

Application-oriented testing of line differential protection end to end in the field using the corresponding RelaySimTest template Application Note Application-oriented testing of line differential protection end to end in the field using the corresponding RelaySimTest template Author Jens Baumeister jens.baumeister@omicron.at Date

More information

Generation Interconnection Feasibility Study Report-Web Version. PJM Generation Interconnection Request Queue Position Z1-055

Generation Interconnection Feasibility Study Report-Web Version. PJM Generation Interconnection Request Queue Position Z1-055 Generation Interconnection Feasibility Study Report-Web Version For PJM Generation Interconnection Request Queue Position Z1-055 South Bend Generation Project March 2014 PJM Interconnection 2014. All rights

More information

Analysis of requirements in selected Grid Codes. Willi Christiansen & David T. Johnsen

Analysis of requirements in selected Grid Codes. Willi Christiansen & David T. Johnsen Analysis of requirements in selected Grid Codes This page was intentionally left blank 1 Preface This report has been submitted to Ørsted DTU, Section of Electric power Engineering, Technical University

More information

VOLTAGE CONTROL IN DISTRIBUTION SYSTEMS AS A LIMITATION OF THE HOSTING CAPACITY FOR DISTRIBUTED ENERGY RESOURCES

VOLTAGE CONTROL IN DISTRIBUTION SYSTEMS AS A LIMITATION OF THE HOSTING CAPACITY FOR DISTRIBUTED ENERGY RESOURCES VOLTAGE CONTROL IN DISTRIBUTION SYSTEMS AS A LIMITATION OF THE HOSTING CAPACITY FOR DISTRIBUTED ENERGY RESOURCES C. Schwaegerl*, M.H.J. Bollen, K. Karoui #, A. Yagmur + *Siemens AG, # Tractebel STRI AB

More information

Solar Power Plant Design and Interconnection

Solar Power Plant Design and Interconnection Solar Power Plant Design and Interconnection Wind & Solar Super Session July 27, 2011 E.H. Camm, S.E. Williams S&C Electric Company Outline Introduction Utility-scale PV power plant Grounding Reactive

More information

16 West Coast Regional Plan

16 West Coast Regional Plan 16 West Coast Regional Plan 16.1 Regional overview 16.2 West Coast transmission system 16.3 West Coast demand 16.4 West Coast generation 16.5 West Coast significant maintenance work 16.6 Future West Coast

More information

Request for Payment Instructions Wholesale Distribution Access Tariff (WDAT) Attachment I - GIP

Request for Payment Instructions Wholesale Distribution Access Tariff (WDAT) Attachment I - GIP Grid Interconnection & Contract Development Request for Payment Instructions Wholesale Distribution Access Tariff (WDAT) Attachment I - GIP Submittal Instructions Prior to submitting your application and

More information

MINISTERIE VAN ECONOMISCHE ZAKEN GENERAL COST COMPARISON BETWEEN UNDERGROUND CABLES AND O.H. LINE SYSTEMS FOR H.V. TRANSMISSION

MINISTERIE VAN ECONOMISCHE ZAKEN GENERAL COST COMPARISON BETWEEN UNDERGROUND CABLES AND O.H. LINE SYSTEMS FOR H.V. TRANSMISSION MINISTERIE VAN ECONOMISCHE ZAKEN GENERAL COST COMPARISON BETWEEN UNDERGROUND CABLES AND O.H. LINE SYSTEMS FOR H.V. TRANSMISSION REPORT ON NETWORK RELIABILITY ASPECTS OF THE CHOICE LINE VERSUS CABLE FOR

More information

CLASS Voltage Regulation Scheme. 27 February 2014

CLASS Voltage Regulation Scheme. 27 February 2014 CLASS Voltage Regulation Scheme 27 February 2014 Functional Specifications and Voltage Regulation Scheme for the Autonomous Substation Controllers (ASCs) Date: 27 February 2014 Page 2 of 26 Table of Contents

More information

Engineering innovation

Engineering innovation Eaton's Electrical Engineering Services & Systems Solutions Focus Seamless Solutions for Reliable, Efficient and Safe Power Systems Engineering innovation Progressive solutions for today s power systems

More information

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

More information

Wide Area Monitoring Current Continental Europe TSOs Applications Overview

Wide Area Monitoring Current Continental Europe TSOs Applications Overview Wide Area Monitoring Current Continental Europe TSOs Applications Overview Version 5 System Protection & Dynamics Working Group 20th September 2015 1. Content 1. Content... 2 2. Introduction... 3 3. Main

More information

Product Data Bulletin

Product Data Bulletin Product Data Bulletin Power System Harmonics Causes and Effects of Variable Frequency Drives Relative to the IEEE 519-1992 Standard Raleigh, NC, U.S.A. INTRODUCTION This document describes power system

More information

Transmission Planning Study (Year 2022) for Cherokee 4 Replacement Alternatives. Final Report

Transmission Planning Study (Year 2022) for Cherokee 4 Replacement Alternatives. Final Report Transmission Planning Study (Year 2022) for Cherokee 4 Replacement Alternatives (Required per CPUC Decision No. C10-1328) Final Report (Submitted with Public Service s 2011 ERP) Executive Summary The objective

More information

Voltage Stability Improvement using Static Var Compensator in Power Systems

Voltage Stability Improvement using Static Var Compensator in Power Systems Leonardo Journal of Sciences ISSN 1583-0233 Issue 14, January-June 2009 p. 167-172 Voltage Stability Improvement using Static Var Compensator in Power Systems Department of Electrical/Computer Engineering,

More information

Integration of Distributed Generation in the Power System. IEEE Press Series on Power Engineering

Integration of Distributed Generation in the Power System. IEEE Press Series on Power Engineering Brochure More information from http://www.researchandmarkets.com/reports/2171489/ Integration of Distributed Generation in the Power System. IEEE Press Series on Power Engineering Description: A forward

More information

Topics. HVDC Fundamentals

Topics. HVDC Fundamentals Topics HVDC Fundamentals Conventional Converters Capacitor Commutated Converters Voltage Source Converters Reactive Power Requirements System Configurations Tapping Control basics High Power Transmission

More information

Typical Data Requirements Data Required for Power System Evaluation

Typical Data Requirements Data Required for Power System Evaluation Summary 66 Carey Road Queensbury, NY 12804 Ph: (518) 792-4776 Fax: (518) 792-5767 www.nepsi.com sales@nepsi.com Harmonic Filter & Power Capacitor Bank Application Studies This document describes NEPSI

More information

7. Reactive energy compensation

7. Reactive energy compensation 593 7. Reactive energy compensation 594 7. REACTIVE ENERGY COMPENSATION Reactive energy compensation is an important element for reducing the electricity bill and improving the quality of the electrical

More information

FACT SHEET. BSES, Delhi - Distribution Network. Power Systems Consultancy from ABB

FACT SHEET. BSES, Delhi - Distribution Network. Power Systems Consultancy from ABB BSES, Delhi - Distribution Network improve power quality System design for optimal techno-economic distribution network based on current and future load forecast Analysis of existing sub-transmission and

More information

Advanced Protection of Distribution Networks with Distributed Generators

Advanced Protection of Distribution Networks with Distributed Generators Date:- 8 10 March 2011 Venue: University of Manchester EES-UETP Course title Advanced Protection of Distribution Networks with Distributed Generators Peter Crossley Director of the Joule Centre School

More information

Chapter 9 Balanced Faults

Chapter 9 Balanced Faults Chapter 9 alanced Faults 9.1 Introduction The most common types of fault are (in order) single-line-to-ground fault, line-to-line fault, and double-line-to-ground fault. All of these are unbalanced faults.

More information

NTTG Study Plan for the 2014-2015 Public Policy Consideration Scenario

NTTG Study Plan for the 2014-2015 Public Policy Consideration Scenario NTTG Study Plan for the 2014-2015 Public Policy Consideration Scenario Table of Contents NTTG Study Plan for the 2014-2015 Public Policy Consideration Scenario Table of Contents... 2 1. Executive Summary...

More information

..OR How To Protect your 3-Phase Equipment Investment with 3-Phase Monitors from Time Mark...

..OR How To Protect your 3-Phase Equipment Investment with 3-Phase Monitors from Time Mark... ..OR How To Protect your 3-Phase Equipment Investment with 3-Phase Monitors from Time Mark... TIME MARK CORPORATION 11440 EAST PINE STREET TULSA, OK 74116 USA tel 918 438-1220 fax 918 437-7584 www.time-mark.com

More information

Power System review W I L L I A M V. T O R R E A P R I L 1 0, 2 0 1 3

Power System review W I L L I A M V. T O R R E A P R I L 1 0, 2 0 1 3 Power System review W I L L I A M V. T O R R E A P R I L 1 0, 2 0 1 3 Basics of Power systems Network topology Transmission and Distribution Load and Resource Balance Economic Dispatch Steady State System

More information

Interconnection of Generators to EDI s Distribution System

Interconnection of Generators to EDI s Distribution System Interconnection of Generators to EDI s Distribution System May 22, 2002 This document sets forth the guidelines for connecting a power producing facility to the Alberta Interconnected Electric System through

More information

Security Policy Review: Credible Event Management. Scope and Methodology Draft for Industry 2014

Security Policy Review: Credible Event Management. Scope and Methodology Draft for Industry 2014 Security Policy Review: Credible Event Management Scope and Methodology Draft for Industry 2014 Version Date Change 1 26/03/2014 Draft for industry Position Date Prepared By: Reviewed By: Ina Ilieva, Senior

More information

The stable way. Synchronous condenser solutions. siemens.com/energy/facts

The stable way. Synchronous condenser solutions. siemens.com/energy/facts The stable way Synchronous condenser solutions siemens.com/energy/facts Bringing grids in line with new requirements Global climate change poses new challenges for power generation and transmission. Innovative

More information

Preliminary Feasibility Assessment For. The Rio Tinto Alcan to BCH Transfer Limit of 460 MW. With 50% Series Compensation on Both KMO KIT lines

Preliminary Feasibility Assessment For. The Rio Tinto Alcan to BCH Transfer Limit of 460 MW. With 50% Series Compensation on Both KMO KIT lines Preliminary Feasibility Assessment For The Rio Tinto Alcan to BCH Transfer Limit of 460 MW With 50% Series Compensation on Both KMO KIT lines Report : ASP2010-T001 July 2010 Asset Strategy & Planning,

More information

DC TRANSMISSION BASED ON VOLTAGE SOURCE CONVERTERS

DC TRANSMISSION BASED ON VOLTAGE SOURCE CONVERTERS DC TRANSMISSION BASED ON VOLTAGE SOURCE CONVERTERS by Gunnar Asplund, Kjell Eriksson, Hongbo Jiang, Johan Lindberg, Rolf Pålsson, Kjell Svensson ABB Power Systems AB Sweden SUMMARY Voltage Source Converters

More information

Variable Frequency Drives - a Comparison of VSI versus LCI Systems

Variable Frequency Drives - a Comparison of VSI versus LCI Systems Variable Frequency Drives - a Comparison of VSI versus LCI Systems Introduction TMEIC is a leader in the innovative design and manufacture of large ac variable f requency drive systems. TMEIC has been

More information

Transmission Planning Standards for the Baltimore Gas & Electric Company Transmission System

Transmission Planning Standards for the Baltimore Gas & Electric Company Transmission System Transmission Planning Standards for the Baltimore Gas & Electric Company Transmission System Prepared By: Transmission Planning Unit Baltimore Gas & Electric Company Table of Contents 1. INTRODUCTION

More information

Introduction. Harmonics and IEEE 519 Page 1 of 19

Introduction. Harmonics and IEEE 519 Page 1 of 19 Introduction In an ideal power system, the voltage supplied to customer equipment, and the resulting load current are perfect sine waves. In practice, however, conditions are never ideal, so these waveforms

More information

Distribution Operations with High-penetration of Beyond the Meter Intermittent Renewables. Bob Yinger Southern California Edison April 15, 2014

Distribution Operations with High-penetration of Beyond the Meter Intermittent Renewables. Bob Yinger Southern California Edison April 15, 2014 1 Distribution Operations with High-penetration of Beyond the Meter Intermittent Renewables Bob Yinger Southern California Edison April 15, 2014 Southern California Edison SCE provides power to: Nearly

More information

Part 1 System Modeling & Studies for Existing Systems

Part 1 System Modeling & Studies for Existing Systems Part 1 System Modeling & Studies for Existing Systems Operation Technology, Inc. Copyright 2009 Result of rapid release of energy due to an arcing fault between two conductors. Bus voltages > 208V Temperatures

More information

ESB Networks Response. ERGEG Consultation. Voltage Quality Regulation in Europe

ESB Networks Response. ERGEG Consultation. Voltage Quality Regulation in Europe NETWORKS ESB Networks Response to ERGEG Consultation on Voltage Quality Regulation in Europe Date: 22 February 2007 Distribution System Operator ESB Networks Page 1 of 12 Contents 1.0 INTRODUCTION...3

More information

Application of Four-Pole Circuit Breakers within Data Centers

Application of Four-Pole Circuit Breakers within Data Centers Application of Four-Pole Circuit Breakers within Data Centers December 2013/AT324 by Frank Waterer, Fellow Engineer, Schneider Electric Engineering Services Make the most of your energy SM Revision #1

More information

300 MW Variable Speed Drives for Pump-Storage Plant Application Goldisthal

300 MW Variable Speed Drives for Pump-Storage Plant Application Goldisthal May 24 MW Variable Speed Drives for Aurélie Bocquel APCG / 4BOC4 (MW-Goldisthal 1-5-24).PPT MW Variable Speed Drives for Content Major benefits of the cyclo-converter driven doubly-fed induction machines

More information

Dynamic Security Assessment in the Future Grid. Vijay Vittal Ira A. Fulton Chair Professor Arizona State University

Dynamic Security Assessment in the Future Grid. Vijay Vittal Ira A. Fulton Chair Professor Arizona State University 1 Dynamic Security Assessment in the Future Grid Vijay Vittal Ira A. Fulton Chair Professor Arizona State University 2 Key requirements for DSA Need to perform DSA as close to real time as possible Need

More information

C.I.8.2 Offsite Power System. C.I.8.2.1 Description

C.I.8.2 Offsite Power System. C.I.8.2.1 Description C.I.8 Electric Power The electric power system is the source of power for station auxiliaries during normal operation, and for the reactor protection system and ESF during abnormal and accident conditions.

More information

Generation Interconnection System Impact Study Report. For. PJM Generation Interconnection Request Queue Position X1-114.

Generation Interconnection System Impact Study Report. For. PJM Generation Interconnection Request Queue Position X1-114. Generation Interconnection System Impact Study Report For PJM Generation Interconnection Request Queue Position X1-114 Sandyston January 2012 Preface The intent of the System Impact Study is to determine

More information

Synchronized real time data: a new foundation for the Electric Power Grid.

Synchronized real time data: a new foundation for the Electric Power Grid. Synchronized real time data: a new foundation for the Electric Power Grid. Pat Kennedy and Chuck Wells Conjecture: Synchronized GPS based data time stamping, high data sampling rates, phasor measurements

More information

STATCOM Application at VELCO Essex Substation

STATCOM Application at VELCO Essex Substation STATCOM Application at VELCO Essex Substation Gregory Reed John Paserba Terrence Croasdaile Mitsubishi Electric Power Products, Inc. Warrendale, Pennsylvania, USA Masatoshi Takeda Naoki Morishima Yoshi

More information

ECE 586b Course Project Report. Auto-Reclosing

ECE 586b Course Project Report. Auto-Reclosing ECE 586b Course Project Report Auto-Reclosing Srichand Injeti May 5, 2008 Department Of Electrical and computer Engineering University Of Western Ontario, London Ontario Table of contents 1. Introduction...1

More information

Mechanical and electrical rebuilding of a turbine generator for phase-shift operation

Mechanical and electrical rebuilding of a turbine generator for phase-shift operation www.siemens.com/energy Mechanical and electrical rebuilding of a turbine generator for phase-shift operation POWER-GEN Europe 2013 Vienna, Austria June 04-06, 2013 Authors: Detlef Frerichs Anastassios

More information

Distributed Flexible AC Transmission System (D FACTS) Jamie Weber. weber@powerworld.com, 217 384 6330 ext. 13

Distributed Flexible AC Transmission System (D FACTS) Jamie Weber. weber@powerworld.com, 217 384 6330 ext. 13 Distributed Flexible AC Transmission System (D FACTS) Jamie Weber weber@powerworld.com, 217 384 6330 ext. 13 Slide Preparation: Kate Rogers Davis kate@powerworld.com, 217 384 6330, Ext 14 2001 South First

More information

Cahier technique no. 196

Cahier technique no. 196 Collection Technique... Cahier technique no. 196 Integration of local power generation in industrial sites and commercial buildings T. Hazel "Cahiers Techniques" is a collection of documents intended for

More information

PSEG-LONG ISLAND SMART GRID SMALL GENERATOR INTERCONNECTION SCREENING CRITERIA FOR OPERATING IN PARALLEL WITH LIPA S DISTRIBUTION SYSTEM

PSEG-LONG ISLAND SMART GRID SMALL GENERATOR INTERCONNECTION SCREENING CRITERIA FOR OPERATING IN PARALLEL WITH LIPA S DISTRIBUTION SYSTEM PSEG-LONG ISLAND SMART GRID SMALL GENERATOR INTERCONNECTION SCREENING CRITERIA FOR OPERATING IN PARALLEL WITH LIPA S DISTRIBUTION SYSTEM PSEG-LI SGSGIP DG Screening Criteria 5-29-14 Table of Contents I.

More information

Unified requirements for systems with voltages above 1 kv up to 15 kv

Unified requirements for systems with voltages above 1 kv up to 15 kv (1991) (Rev.1 May 2001) (Rev.2 July 2003) (Rev.3 Feb 2015) Unified requirements for systems with voltages above 1 kv up to 15 kv 1. General 1.1 Field of application The following requirements apply to

More information

Voltage regulation in distribution systems - Tap changer and Wind Power

Voltage regulation in distribution systems - Tap changer and Wind Power CODEN:LUTEDX/(TEIE-5270)/1-59/(2010) Industrial Electrical Engineering and Automation Voltage regulation in distribution systems - Tap changer and Wind Power David Sáez Romero D of Industrial Electrical

More information

Step Voltage Regulators

Step Voltage Regulators Step Voltage Regulators Don Wareham Field Application Engineer Today s Agenda Introduction Voltage Regulator theory Voltage Regulator application considerations Installation and proper bypassing Wrap-up/questions

More information

SPECIFICATION COG-2007

SPECIFICATION COG-2007 Cleco Power LLC SPECIFICATION COG-2007 FOR PARALLEL OPPERATION OF CUSTOMER-OWNED GENERATION ON CLECO S ELECTRICAL SYSTEM Revised: March 7, 2014 CONTENTS ITEM NO. TITLE PAGE NO. 1.0 Scope 3 2.0 Policy On

More information

Power transformers. Phase shifting transformers Reliable and efficient power flow control

Power transformers. Phase shifting transformers Reliable and efficient power flow control Power transformers Phase shifting transformers Reliable and efficient power flow control 2 Phase shifting transformers Eliminating bottlenecks in AC networks Phase shifting transformers (PST) are crucial

More information

Bill is the author of 15 papers and lectures on transmission lines and other power system topics.

Bill is the author of 15 papers and lectures on transmission lines and other power system topics. Transmission Lines Electricity s Highway This talk starts with an explanation of Surge Impedance Loading and demonstrates how it is used for transmission line work. The St. Clair Curve widely used in transmission

More information

ADMS(Advanced Distribution Management System ) in Smart Grid

ADMS(Advanced Distribution Management System ) in Smart Grid ADMS(Advanced Distribution Management System ) in Smart Grid 柯 佾 寬 博 士 Yi-Kuan Ke, Ph.D. 2014/03/28 Smart Grid Solution Smart Grid Solution Overview Smart Grid Solutions Smart Network Operation - Distribution

More information

PacifiCorp Original Sheet No. 476 FERC Electric Tariff, Substitute 6 th Rev Volume No. 11 APPENDIX 2 TO SGIP

PacifiCorp Original Sheet No. 476 FERC Electric Tariff, Substitute 6 th Rev Volume No. 11 APPENDIX 2 TO SGIP PacifiCorp Original Sheet No. 476 APPENDIX 2 TO SGIP SMALL GENERATOR INTERCONNECTION REQUEST (Application Form) Transmission Provider: Designated Contact Person: Address: Telephone Number: An Interconnection

More information

How To Operate The Williston Uvls

How To Operate The Williston Uvls WND Winter Operating Guide 2012/2013 1 WND Operating Study Using EQ-890-2012WIN- FINAL.sav developed through the 890 process Got load updates from MDU, Central Power, UM G&T Made several topology updates

More information

Network Consulting for Power Grid Optimization

Network Consulting for Power Grid Optimization Network Consulting for Power Grid Optimization Project experience in India Network Consulting Competences Page 1 Our worldwide representation Manchester The Hague Denver Schenectady San Diego Houston Mexico

More information

Power Technology Issue 106. Modeling of Three-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E

Power Technology Issue 106. Modeling of Three-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E SIEMENS Siemens Energy, Inc. Power Technology Issue 106 Modeling of Three-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E Carlos Grande-Moran, Ph.D. Principal

More information

Project description. Power Electronics for Reliable and Energy efficient Renewable Energy Systems

Project description. Power Electronics for Reliable and Energy efficient Renewable Energy Systems Project description Title: Power Electronics for Reliable and Energy efficient Renewable Energy Systems OBJECTIVES Principal objective Provide competence and decision basis for enabling reliable and energy

More information

Study to Determine the Limit of Integrating Intermittent Renewable (wind and solar) Resources onto Pakistan's National Grid

Study to Determine the Limit of Integrating Intermittent Renewable (wind and solar) Resources onto Pakistan's National Grid Pakistan Study to Determine the Limit of Integrating Intermittent Renewable (wind and solar) Resources onto Pakistan's National Grid Final Report: Executive Summary - November 2015 for USAID Energy Policy

More information

Power Quality Standards for Electric Service

Power Quality Standards for Electric Service Power Quality Standards for Electric Service Effective June 1, 2008 A transition period will exist from June 1 through December 31, 2008 in which installations may be approved and connected as long as

More information

Power factor correction and harmonic filtering. Rectimat 2 Automatic capacitor banks. Catalogue. Building a New Electric World

Power factor correction and harmonic filtering. Rectimat 2 Automatic capacitor banks. Catalogue. Building a New Electric World Catalogue 2002 Automatic capacitor banks Building a New Electric World 0Contents Power factor correction 2 Power factor equipment selection guide 3 General technical data 4 Capacitors and banks 50 z 6

More information

4.1.1 Generator Owner 4.1.2 Transmission Owner that owns synchronous condenser(s)

4.1.1 Generator Owner 4.1.2 Transmission Owner that owns synchronous condenser(s) A. Introduction 1. Title: Verification and Data Reporting of Generator Real and Reactive Power Capability and Synchronous Condenser Reactive Power Capability 2. Number: MOD-025-2 3. Purpose: To ensure

More information

www.siemens.com/energy High Voltage Circuit Breakers 3AP Type 72.5 kv to 800 kv Answers for energy.

www.siemens.com/energy High Voltage Circuit Breakers 3AP Type 72.5 kv to 800 kv Answers for energy. s www.siemens.com/energy High Voltage Circuit Breakers AP Type 7.5 kv to 800 kv Answers for energy. The AP High Voltage Circuit Breakers Available up to 800 kv Decades of our experience in high voltage

More information

A Tariff for Reactive Power Christopher Tufon, Alan Isemonger, Brendan Kirby, Senior Member, John Kueck, Senior Member, and Fangxing Li, Senior Member

A Tariff for Reactive Power Christopher Tufon, Alan Isemonger, Brendan Kirby, Senior Member, John Kueck, Senior Member, and Fangxing Li, Senior Member 1 A Tariff for Reactive Power Christopher Tufon, Alan Isemonger, Brendan Kirby, Senior Member, John Kueck, Senior Member, and Fangxing Li, Senior Member Abstract-- This paper describes a suggested tariff

More information

Selecting Current Transformers Part 1 By Darrell G. Broussard, P.E.

Selecting Current Transformers Part 1 By Darrell G. Broussard, P.E. By Darrell G. Broussard, P.E. Introduction: As engineers, we are aware that electrical power systems have grown. How much have they grown? When was the last time you specified a 2400-volt system, a 4160-volt

More information

Knowing the FACTS. FACTS that enhance power quality in rail feeder systems

Knowing the FACTS. FACTS that enhance power quality in rail feeder systems Knowing the FACTS FACTS that enhance power quality in rail feeder systems ROLF GRÜNBAUM, PER HALVARSSON, BJÖRN THORVALDSSON The increase in traffic on existing tracks combined with new high-speed rail

More information

SDG&E Electric Distribution System Interconnection Handbook. <Revised as of 10/21/2015>

SDG&E Electric Distribution System Interconnection Handbook. <Revised as of 10/21/2015> TABLE OF CONTENTS 1 Introduction... 1 1.1 Purposes... 1 1.2 Applicability and Related Tariffs... 1 1.3 Interconnection Agreement Required... 1 1.4 Technical Requirement... 1

More information

Scope of Restoration Plan

Scope of Restoration Plan RWG Area Restoration Review Worksheet (10/28/09) EOP-006-02 Directory 8 EOP-005 NYSRG Rule G Text Restoration Plan Requirement R1.Each Reliability Coordinator shall have a Reliability Coordinator Area

More information

Earth Fault Detection Basics in Theory

Earth Fault Detection Basics in Theory Earth Fault Detection Basics in Theory Author: Dipl.-Ing. Ingo Kühnen Woodward Power Solutions Krefelder Weg 47 47906 Kempen, Germany Kempen, 16.04.2010 Earth_Fault_Detection_20100416.doc page 1 1. Star

More information

A Fuzzy Based Solution for Improving Power Quality in Electric Railway Networks

A Fuzzy Based Solution for Improving Power Quality in Electric Railway Networks A Fuzzy Based Solution for Improving Power Quality in Electric Railway Networks Mohammad Ali Sandidzadeh School of Railway Engineering, Iran University of Science & Technology, Tehran, Iran Tel: 98-21-7749-1030

More information

PI/PSLF Based Model Validation Application. Eric Bakie and Milorad Papic WECC JSIS Meeting Tempe, AZ January 21-23, 2014

PI/PSLF Based Model Validation Application. Eric Bakie and Milorad Papic WECC JSIS Meeting Tempe, AZ January 21-23, 2014 PI/PSLF Based Model Validation Application Eric Bakie and Milorad Papic WECC JSIS Meeting Tempe, AZ January 21-23, 2014 1 OUTLINE 1. Background Information 2. What is PI/PSLF Based PPMV Application? 3.

More information

AFFILIATIONS: Member, Association of Professional Engineers of Alberta.

AFFILIATIONS: Member, Association of Professional Engineers of Alberta. YAKOUT MANSOUR EDUCATION: M.Sc. in Electrical Engineering, University of Calgary, Alberta (March 1977) Diploma Graduate Courses in Electrical Power Systems University of Alexandria, Egypt (1973 to 1975)

More information

David Payne, P.E. Associate Director February 18, 2014

David Payne, P.E. Associate Director February 18, 2014 David Payne, P.E. Associate Director February 18, 2014 Overview of Texas A&M University State's first public institution of higher education, was opened on Oct. 4, 1876 as the Agricultural and Mechanical

More information