Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM

Size: px
Start display at page:

Download "Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM"

Transcription

1 Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM Hugh Morrison and Wojciech Grabowski NCAR* (MMM Division, NESL) Marat Khairoutdinov Stony Brook University *NCAR is sponsored by the National Science Foundation

2 Outline 1. Motivation - Indirect aerosol effects 2. CSRM simulations of convective radiative quasiequilibrium 3. CSRM simulations of real case study (TWP-ICE) 4. SpCAM simulations with new microphysics scheme

3 Microphysics plays a key role in cloud, climate and weather models - Latent heating/cooling (condensation, evaporation, deposition, sublimation, freezing, melting) - Condensate loading (mass of the condensate carried by the flow) - Precipitation (fallout of larger particles) - Coupling with surface processes (moist downdrafts leading to surface-wind gustiness, cloud shading) - Radiative transfer (mostly mass for absorption/emission of LW, particle size also important for SW) - Cloud-aerosol-precipitation interactions (aerosol affect clouds: indirect aerosol effects, but clouds process aerosols as well) Stephens (2005)

4 cloud base cloud updraft maritime ( clean ) continental ( polluted )

5 Ship tracks: spectacular example of indirect effects caused by ship exhausts acting as CCN (long-lasting, feedback on cloud dynamics?)

6 IPCC 2007; Synthesis Report

7 Issues: - Difficulty of current observational techniques in untangling relationship between aerosols and clouds on spatial and temporal scales relevant to climate: correlation versus causality - Traditional general circulation models cannot resolve the cloud dynamics that are critical to cloud-aerosol-precipitation interactions parameterized microphysics in parameterized clouds parameterization 2

8 - Aerosol indirect effects are especially uncertain for deep convective clouds because of the complexity of microphysical processes (both liquid and ice) and close coupling between cloud-scale dynamics and microphysics. - High resolution cloud models (GCRMs and MMF) can resolve deep-convective and mesoscale motion and therefore are better suited to the problem.

9 Koren et al. (2010) Rosenfeld et al. Science, Example of hypothesized aerosolmicrophysicsdynamics interactions in deep convection

10 single-cloud reasoning versus cloud-ensemble reasoning Arguably, the cloud-ensemble reasoning is more appropriate for climate. Another way to think about the problem: single-process reasoning (e.g., microphysics) versus the system-dynamics approach. Only the latter includes all the feedbacks and forcings in the system.

11 Convective-radiative quasi-equilibrium is the simplest system that includes interactions between clouds and their environment ( system-dynamics approach ).

12 Convective-radiative quasi-equilibrium mimicking planetary energy budget using a 2D cloud-system resolving model solar input 342 Wm columns (200 columns) height 61 levels horizontal distance Surface temperature = 15 C Surface relative humidity = 85% Surface albedo = 0.15 Grabowski J. Climate 2006, Grabowski and Morrison J. Climate 2010 (submitted)

13 Numerical model: Dynamics: 2D super-parameterization model (Grabowski 2001) Radiation: NCAR s Community Climate System Model (CCSM) (Kiehl et al 1994) in the Independent Column Approximation (ICA) mode columns (Δx=1-2km) and 61 levels (stretched; 12 levels below 2 km; top at km) Grabowski 2006; Grabowski and Morrison 2010

14 Simulations with the new two-moment bulk microphysics: Warm-rain scheme of Morrison and Grabowski (JAS 2007, 2008a) predicts concentrations and mixing ratios of cloud water and rain water; relatively sophisticated CCN activation scheme, contrasting pristine and polluted CCN spectra, and better representation of the homogeneity of subgrid-scale mixing. Ice scheme of Morrison and Grabowski (JAS 2008b; 2010) predicts concentrations and two mixing ratios of ice particles to keep track of mass grown by diffusion and by riming; heterogeneous and homogeneous ice nucleation with the same IN characteristics for pristine and polluted conditions.

15 Cloud water and drizzle/rain fields Solid: polluted Dashed: pristine Ice field

16 Cloud fraction profiles Grabowski J. Climate 2006 (G06) Grabowski and Morrison J. Climate 2010 (submitted) (GM10) G06 1-moment microphysics GM10 2-moment microphysics Solid: polluted Dashed: pristine Horizontal bars: standard deviation of temporal evolution (measure of statistical significance of the difference)

17

18 Pot. temperature profiles in the lower troposphere: Dashed: domain-averaged Solid: within raining regions only G06 GM10 GM10: 1-moment rain Mean of rainy grids Domain mean Deviation from surface temperature

19 Idealized convective-radiative quasi-equilibrium simulations using the two-moment bulk microphysics result in the mean atmospheric state similar to previous simulations with one-moment microphysics. Bowen ratio: two-moment microphysics has a different impact on cold-pool temperature and moisture due to smaller rate of rain evaporation. Precipitation: Little difference in atm. radiative cooling between PRISTINE and POLLUTED little impact of aerosol on surface precipitation TOA net shortwave: between PRISTINE and POLLUTED is down to about 9 Wm -2 from about 20 Wm -2 in one-moment simulations.

20 Next we move to a less idealized, time-evolving framework less stringent constraints relative to CRE

21 16-day, 2D simulations of TWP-ICE, using observed large-scale forcing similar setup to other GCSS case studies Prescribed large-scale forcing of T, qv, 6 hr nudging of u to observations 200 columns height 97 levels horizontal distance Surface temperature = 29 C

22 Tropical Western Pacific International Cloud Experiment (TWP-ICE)

23 - Question: how does parameterization of microphysics and model resolution in a CSRM impact simulation of aerosol effects on clouds and precipitation for tropical deep convection?

24 BASE Baseline configuration (Morrison and Grabowski 2007; 2008a,b) FRZ Heterogeneous droplet freezing of Bigg (1953) replaced by Barklie and Gokhale (1959), ~ factor of 100 reduction in freezing rate GRPL Graupel density decreased by ~ factor of 3 Resolution Horizontal grid spacing varied from 2 km to 500 m - Aerosol specification, similar to Fridlind et al. (2010, in prep)

25 Impact on surface precipitation PRISTINE (SOLID LINES) POLLUTED (DOTTED LINES) ACTIVE MONSOON SUPPRESSED MONSOON BASE FRZ GRP OBS

26 ACTIVE MONSOON PRISTINE (SOLID LINES) POLLUTED (DOTTED LINES) SUPPRESSED MONSOON

27 PRISTINE (SOLID LINES) POLLUTED (DOTTED LINES)\ OBSERVED

28 DROPLET CONCENTRATION ICE CONCENTRATION DROPLET EFF RADIUS ICE EFF RADIUS IMPACT ON MICROPHYSICS PRISTINE (SOLID) POLLUTED (DOTTED) LIQUID WATER CONTENT ICE WATER CONTENT

29 Impact on TOA radiative fluxes TOA upwelling SW PRISTINE (SOLID LINES) POLLUTED (DOTTED LINES) BASE FRZ GRP OBS

30 What is the role of internal variability in explaining these differences? Run 5-member ensemble of simulations (pristine and polluted) with different initial seed for random noise ACTIVE MONSOON SUPPRESSED MONSOON W m -2 /µm hr -1 ENSEMBLE SPREAD

31 Given a standard deviation of 10 W m -2 in aerosol indirect effect, statistical significance at 95% level roughly requires: Size of indirect effect 3 W m ensemble members 2 W m ensemble members 1 W m ensemble members

32 Summary of TWP-ICE results Precipitation: little impact of aerosol over timescales longer than a few days, consistent with systems dynamics reasoning and results for CRE Radiation: impact of aerosol difficult to discern from large internal variability ensemble approach Caution is needed when quantifying indirect effects in GCSStype modeling frameworks as used here, less problematic for 3D?? Sensitivity to microphysics and resolution: nearly all tests lie within the ensemble spread

33 Microphysics and aerosol indirect effects in MMF Recent effort to incorporate 2-moment microphysics scheme (Morrison et al. 2009) into SpCAM that predicts cloud particle number concentration and allows coupling with aerosol Parallel effort underway (led by PNNL) to incorporate cloud-aerosol interaction in SpCAM using a more complicated framework (Explicit Clouds-Parameterized Pollutants) Preliminary results using 2-moment scheme and comparison with default SpCAM microphysics 2-moment scheme is out of the box, no tuning

34 From M. Khairoutdinov DJF Precipitation Rate (mm hr -1 )

35 From M. Khairoutdinov DJF Outgoing Longwave Radiation, OLR (W m -2 )

36 From M. Khairoutdinov DJF Absorbed Solar Radiation (W m -2 )

37 Overall results: not greatly different with 2-moment and 1- moment microphysics Computational cost: ~ factor of 2 with 2-moment efforts underway to increase efficiency (e.g., reducing # of prognostic variables) Some tuning of 2-moment scheme is required to increase TOA reflected solar radiation and achieve radiative balance Aerosol indirect effects: coupling of 2-moment scheme to CAM aerosol is underway to simulate indirect effects in SpCAM Uncertainties: shallow clouds (Cu, Sc), due to general difficulty of representing these clouds in SpCAM, and specifically because droplet activation is mostly driven by sub-grid vertical motion in these clouds explicit coupling with sub-grid scheme

38 Thank you. We acknowledge funding from CMMAP, NOAA, and DOE ARM/ASR.

39

What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper

What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low

More information

Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data

Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Kate Thayer-Calder and Dave Randall Colorado State University October 24, 2012 NOAA's 37th Climate Diagnostics and Prediction Workshop Convective

More information

An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models

An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models Steven Krueger1 and Peter Bogenschutz2 1University of Utah, 2National

More information

Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment

Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment Atmos. Chem. Phys., 11, 10503 10523, 2011 doi:10.5194/acp-11-10503-2011 Author(s) 2011. CC Attribution 3.0 License. Atmospheric Chemistry and Physics Cloud-system resolving model simulations of aerosol

More information

GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency

GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency In Sik Kang Seoul National University Young Min Yang (UH) and Wei Kuo Tao (GSFC) Content 1. Conventional

More information

MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION

MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION Blake J. Allen National Weather Center Research Experience For Undergraduates, Norman, Oklahoma and Pittsburg State University, Pittsburg,

More information

Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography

Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu

More information

Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model simulations of TWP ICE

Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model simulations of TWP ICE Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 734 754, April 2012 A Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model

More information

Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model

Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric,

More information

Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models

Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models S. A. Klein National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics

More information

Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations

Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang

More information

Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A.

Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A. 376 THE SIMULATION OF TROPICAL CONVECTIVE SYSTEMS William M. Frank and Charles Cohen Department of Meteorology The Pennsylvania State University University Park, PA, 16801 -U.S.A. ABSTRACT IN NUMERICAL

More information

Research Objective 4: Develop improved parameterizations of boundary-layer clouds and turbulence for use in MMFs and GCRMs

Research Objective 4: Develop improved parameterizations of boundary-layer clouds and turbulence for use in MMFs and GCRMs Research Objective 4: Develop improved parameterizations of boundary-layer clouds and turbulence for use in MMFs and GCRMs Steve Krueger and Chin-Hoh Moeng CMMAP Site Review 31 May 2007 Scales of Atmospheric

More information

Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP

Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP X. Wu Department of Geological and Atmospheric Sciences Iowa State University Ames, Iowa X.-Z.

More information

The formation of wider and deeper clouds through cold-pool dynamics

The formation of wider and deeper clouds through cold-pool dynamics The formation of wider and deeper clouds through cold-pool dynamics Linda Schlemmer, Cathy Hohenegger e for Meteorology, Hamburg 2013-09-03 Bergen COST Meeting Linda Schlemmer 1 / 27 1 Motivation 2 Simulations

More information

Cloud-Resolving Simulations of Convection during DYNAMO

Cloud-Resolving Simulations of Convection during DYNAMO Cloud-Resolving Simulations of Convection during DYNAMO Matthew A. Janiga and Chidong Zhang University of Miami, RSMAS 2013 Fall ASR Workshop Outline Overview of observations. Methodology. Simulation results.

More information

Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals

Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals Leo Donner and Will Cooke GFDL/NOAA, Princeton University DOE ASR Meeting, Potomac, MD, 10-13 March 2013 Motivation

More information

RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE. Peter J. Lamb. Cooperative Institute for Mesoscale Meteorological Studies

RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE. Peter J. Lamb. Cooperative Institute for Mesoscale Meteorological Studies RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE by Peter J. Lamb Cooperative Institute for Mesoscale Meteorological Studies and School of Meteorology The University of Oklahoma

More information

How To Understand And Understand The Physics Of Clouds And Precipitation

How To Understand And Understand The Physics Of Clouds And Precipitation Deutscher Wetterdienst Research and Development Physical Parameterizations: Cloud Microphysics and Subgrid-Scale Cloudiness Axel Seifert Deutscher Wetterdienst, Offenbach Deutscher Wetterdienst Research

More information

Boundary-Layer Cloud Feedbacks on Climate An MMF Perspective

Boundary-Layer Cloud Feedbacks on Climate An MMF Perspective Boundary-Layer Cloud Feedbacks on Climate An MMF Perspective Matthew E. Wyant Peter N. Blossey Christopher S. Bretherton University of Washington Marat Khairoutdinov Minghua Zhang Stony Brook University

More information

Turbulence-microphysics interactions in boundary layer clouds

Turbulence-microphysics interactions in boundary layer clouds Turbulence-microphysics interactions in boundary layer clouds Wojciech W. Grabowski 1 with contributions from D. Jarecka 2, H. Morrison 1, H. Pawlowska 2, J.Slawinska 3, L.-P. Wang 4 A. A. Wyszogrodzki

More information

Climate Models: Uncertainties due to Clouds. Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography

Climate Models: Uncertainties due to Clouds. Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography Climate Models: Uncertainties due to Clouds Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography Global mean radiative forcing of the climate system for

More information

Roelof Bruintjes, Sarah Tessendorf, Jim Wilson, Rita Roberts, Courtney Weeks and Duncan Axisa WMA Annual meeting 26 April 2012

Roelof Bruintjes, Sarah Tessendorf, Jim Wilson, Rita Roberts, Courtney Weeks and Duncan Axisa WMA Annual meeting 26 April 2012 Aerosol affects on the microphysics of precipitation development in tropical and sub-tropical convective clouds using dual-polarization radar and airborne measurements. Roelof Bruintjes, Sarah Tessendorf,

More information

Fundamentals of Climate Change (PCC 587): Water Vapor

Fundamentals of Climate Change (PCC 587): Water Vapor Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor

More information

Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux

Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux Cloud-resolving modelling : perspectives Improvement of models, new ways of using them, renewed views And

More information

Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS

Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS Introduction Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS Zhanqing Li and Seoung-Soo Lee University of Maryland NOAA/NCEP/EMC Collaborators

More information

ASR CRM Intercomparison Study on Deep Convective Clouds and Aerosol Impacts

ASR CRM Intercomparison Study on Deep Convective Clouds and Aerosol Impacts ASR CRM Intercomparison Study on Deep Convective Clouds and Aerosol Impacts J. FAN, B. HAN, PNNL H. MORRISON, A. VARBLE, S. COLLIS, X. DONG, S. GIANGRANDE, M. JENSEN, P. KOLLIAS, E. MANSELL, T. TOTO April

More information

4.2 OBSERVATIONS OF THE WIDTH OF CLOUD DROPLET SPECTRA IN STRATOCUMULUS

4.2 OBSERVATIONS OF THE WIDTH OF CLOUD DROPLET SPECTRA IN STRATOCUMULUS 4.2 OBSERVATIONS OF THE WIDTH OF CLOUD DROPLET SPECTRA IN STRATOCUMULUS Hanna Pawlowska 1 and Wojciech W. Grabowski 2 1 Institute of Geophysics, Warsaw University, Poland 2 NCAR, Boulder, Colorado, USA

More information

Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework

Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework Kuan-Man Xu and Anning Cheng NASA Langley Research Center Hampton, Virginia Motivation and outline of this talk From Teixeira

More information

Description of zero-buoyancy entraining plume model

Description of zero-buoyancy entraining plume model Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium Supplementary information Martin S. Singh & Paul A. O Gorman S1 CRM simulations Here we give more

More information

Number of activated CCN as a key property in cloud-aerosol interactions. Or, More on simplicity in complex systems

Number of activated CCN as a key property in cloud-aerosol interactions. Or, More on simplicity in complex systems Number of activated CCN as a key property in cloud-aerosol interactions Or, More on simplicity in complex systems 1 Daniel Rosenfeld and Eyal Freud The Hebrew University of Jerusalem, Israel Uncertainties

More information

Limitations of Equilibrium Or: What if τ LS τ adj?

Limitations of Equilibrium Or: What if τ LS τ adj? Limitations of Equilibrium Or: What if τ LS τ adj? Bob Plant, Laura Davies Department of Meteorology, University of Reading, UK With thanks to: Steve Derbyshire, Alan Grant, Steve Woolnough and Jeff Chagnon

More information

Sub-grid cloud parametrization issues in Met Office Unified Model

Sub-grid cloud parametrization issues in Met Office Unified Model Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012 Table of

More information

National Center for Atmospheric Research,* Boulder, Colorado V. TATARSKII

National Center for Atmospheric Research,* Boulder, Colorado V. TATARSKII MARCH 2009 M O R R I S O N E T A L. 991 Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes H. MORRISON

More information

Titelmasterformat durch Klicken. bearbeiten

Titelmasterformat durch Klicken. bearbeiten Evaluation of a Fully Coupled Atmospheric Hydrological Modeling System for the Sissili Watershed in the West African Sudanian Savannah Titelmasterformat durch Klicken June, 11, 2014 1 st European Fully

More information

How To Model The Weather

How To Model The Weather Convection Resolving Model (CRM) MOLOCH 1-Breve descrizione del CRM sviluppato all ISAC-CNR 2-Ipotesi alla base della parametrizzazione dei processi microfisici Objectives Develop a tool for very high

More information

Cloud Radiation and the Law of Attraction

Cloud Radiation and the Law of Attraction Convec,on, cloud and radia,on Convection redistributes the thermal energy yielding (globally-averaged), a mean lapse rate of ~ -6.5 o C/km. Radiative processes tend to produce a more negative temperature

More information

On the use of Synthetic Satellite Imagery to Evaluate Numerically Simulated Clouds

On the use of Synthetic Satellite Imagery to Evaluate Numerically Simulated Clouds On the use of Synthetic Satellite Imagery to Evaluate Numerically Simulated Clouds Lewis D. Grasso (1) Cooperative Institute for Research in the Atmosphere, Fort Collins, Colorado Don Hillger NOAA/NESDIS/STAR/RAMMB,

More information

How To Model An Ac Cloud

How To Model An Ac Cloud Development of an Elevated Mixed Layer Model for Parameterizing Altocumulus Cloud Layers S. Liu and S. K. Krueger Department of Meteorology University of Utah, Salt Lake City, Utah Introduction Altocumulus

More information

A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields

A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D13, 4376, doi:10.1029/2002jd003322, 2003 A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields Robert Pincus

More information

Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium

Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L08802, doi:10.1029/2007gl033029, 2008 Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium D. J. Posselt, 1 S. C. van

More information

A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale convective event

A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale convective event JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011jd016447, 2012 A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale convective event Ping Zhu, 1 Jim Dudhia,

More information

The horizontal diffusion issue in CRM simulations of moist convection

The horizontal diffusion issue in CRM simulations of moist convection The horizontal diffusion issue in CRM simulations of moist convection Wolfgang Langhans Institute for Atmospheric and Climate Science, ETH Zurich June 9, 2009 Wolfgang Langhans Group retreat/bergell June

More information

A Review on the Uses of Cloud-(System-)Resolving Models

A Review on the Uses of Cloud-(System-)Resolving Models A Review on the Uses of Cloud-(System-)Resolving Models Jeffrey D. Duda Since their advent into the meteorological modeling world, cloud-(system)-resolving models (CRMs or CSRMs) have become very important

More information

Improving Representation of Turbulence and Clouds In Coarse-Grid CRMs

Improving Representation of Turbulence and Clouds In Coarse-Grid CRMs Improving Representation of Turbulence and Clouds In CoarseGrid CRMs Peter A. Bogenschutz and Steven K. Krueger University of Utah, Salt Lake City, UT Motivation Embedded CRMs in MMF typically have horizontal

More information

Turbulent mixing in clouds latent heat and cloud microphysics effects

Turbulent mixing in clouds latent heat and cloud microphysics effects Turbulent mixing in clouds latent heat and cloud microphysics effects Szymon P. Malinowski1*, Mirosław Andrejczuk2, Wojciech W. Grabowski3, Piotr Korczyk4, Tomasz A. Kowalewski4 and Piotr K. Smolarkiewicz3

More information

Chapter 6 Atmospheric Aerosol and Cloud Processes Spring 2015 Cloud Physics Initiation and development of cloud droplets Special interest: Explain how droplet formation results in rain in approximately

More information

Super-parametrization in climate and what do we learn from high-resolution

Super-parametrization in climate and what do we learn from high-resolution Super-parametrization in climate and what do we learn from high-resolution Marat Khairoutdinov Stony Brook University USA ECMWF Annual Seminar, 1-4 September 2015 scales-separation parameterized convection

More information

STRATEGY & Parametrized Convection

STRATEGY & Parametrized Convection for WP4.1.3 // meeting, 22 Sept 2005 morning, Francoise Guichard some inferences from the EUROCS project EUROCS: european project on cloud systems in NWP/climate models European Component of GCSS (GEWEX

More information

Energy Pathways in Earth s Atmosphere

Energy Pathways in Earth s Atmosphere BRSP - 10 Page 1 Solar radiation reaching Earth s atmosphere includes a wide spectrum of wavelengths. In addition to visible light there is radiation of higher energy and shorter wavelength called ultraviolet

More information

SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment

SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment Mark Webb, Adrian Lock (Met Office), Sandrine Bony (IPSL), Chris Bretherton (UW), Tsuyoshi Koshiro, Hideaki Kawai (MRI), Thorsten Mauritsen

More information

Clouds and Convection

Clouds and Convection Max-Planck-Institut Clouds and Convection Cathy Hohenegger, Axel Seifert, Bjorn Stevens, Verena Grützun, Thijs Heus, Linda Schlemmer, Malte Rieck Max-Planck-Institut Shallow convection Deep convection

More information

Guy Carpenter Asia-Pacific Climate Impact Centre, School of energy and Environment, City University of Hong Kong

Guy Carpenter Asia-Pacific Climate Impact Centre, School of energy and Environment, City University of Hong Kong Diurnal and Semi-diurnal Variations of Rainfall in Southeast China Judy Huang and Johnny Chan Guy Carpenter Asia-Pacific Climate Impact Centre School of Energy and Environment City University of Hong Kong

More information

An Introduction to Twomey Effect

An Introduction to Twomey Effect An Introduction to Twomey Effect Guillaume Mauger Aihua Zhu Mauna Loa, Hawaii on a clear day Mauna Loa, Hawaii on a dusty day Rayleigh scattering Mie scattering Non-selective scattering. The impact of

More information

Can latent heat release have a negative effect on polar low intensity?

Can latent heat release have a negative effect on polar low intensity? Can latent heat release have a negative effect on polar low intensity? Ivan Føre, Jon Egill Kristjansson, Erik W. Kolstad, Thomas J. Bracegirdle and Øyvind Sætra Polar lows: are intense mesoscale cyclones

More information

Clouds and the Energy Cycle

Clouds and the Energy Cycle August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and

More information

The impact of parametrized convection on cloud feedback.

The impact of parametrized convection on cloud feedback. The impact of parametrized convection on cloud feedback. Mark Webb, Adrian Lock (Met Office) Thanks also to Chris Bretherton (UW), Sandrine Bony (IPSL),Jason Cole (CCCma), Abderrahmane Idelkadi (IPSL),

More information

A new positive cloud feedback?

A new positive cloud feedback? A new positive cloud feedback? Bjorn Stevens Max-Planck-Institut für Meteorologie KlimaCampus, Hamburg (Based on joint work with Louise Nuijens and Malte Rieck) Slide 1/31 Prehistory [W]ater vapor, confessedly

More information

Clouds. Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada

Clouds. Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada Clouds Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada Outline of this Lecture Overview of clouds Warm cloud formation Precipitation formation

More information

The Surface Energy Budget

The Surface Energy Budget The Surface Energy Budget The radiation (R) budget Shortwave (solar) Radiation Longwave Radiation R SW R SW α α = surface albedo R LW εσt 4 ε = emissivity σ = Stefan-Boltzman constant T = temperature Subsurface

More information

Long-Term Cloud-Resolving Model Simulations of Cloud Properties and Radiative Effects of Cloud Distributions

Long-Term Cloud-Resolving Model Simulations of Cloud Properties and Radiative Effects of Cloud Distributions Long-Term Cloud-Resolving Model Simulations of Cloud Properties and Radiative Effects of Cloud Distributions Xiaoqing Wu and Sunwook Park Department of Geological and Atmospheric Sciences Iowa State University,

More information

Atmospheric Processes

Atmospheric Processes Atmospheric Processes Steven Sherwood Climate Change Research Centre, UNSW Yann Arthus-Bertrand / Altitude Where do atmospheric processes come into AR5 WGI? 1. The main feedbacks that control equilibrium

More information

Convective Systems over the South China Sea: Cloud-Resolving Model Simulations

Convective Systems over the South China Sea: Cloud-Resolving Model Simulations VOL. 60, NO. 24 JOURNAL OF THE ATMOSPHERIC SCIENCES 15 DECEMBER 2003 Convective Systems over the South China Sea: Cloud-Resolving Model Simulations W.-K. TAO Laboratory for Atmospheres, NASA Goddard Space

More information

Changing Clouds in a Changing Climate: Anthropogenic Influences

Changing Clouds in a Changing Climate: Anthropogenic Influences Changing Clouds in a Changing Climate: Anthropogenic Influences Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography Global mean radiative forcing of

More information

Earth s Cloud Feedback

Earth s Cloud Feedback Earth s Cloud Feedback Clouds are visible masses of liquid droplets and/or frozen crystals that remain suspended in the atmosphere. Molecule by molecule, water in a solid or liquid phase is 1000 times

More information

DETAILED STORM SIMULATIONS BY A NUMERICAL CLOUD MODEL WITH ELECTRIFICATION AND LIGHTNING PARAMETERIZATIONS

DETAILED STORM SIMULATIONS BY A NUMERICAL CLOUD MODEL WITH ELECTRIFICATION AND LIGHTNING PARAMETERIZATIONS DETAILED STORM SIMULATIONS BY A NUMERICAL CLOUD MODEL WITH ELECTRIFICATION AND LIGHTNING PARAMETERIZATIONS Don MacGorman 1, Ted Mansell 1,2, Conrad Ziegler 1, Jerry Straka 3, and Eric C. Bruning 1,3 1

More information

Evaluation of clouds in GCMs using ARM-data: A time-step approach

Evaluation of clouds in GCMs using ARM-data: A time-step approach Evaluation of clouds in GCMs using ARM-data: A time-step approach K. Van Weverberg 1, C. Morcrette 1, H.-Y. Ma 2, S. Klein 2, M. Ahlgrimm 3, R. Forbes 3 and J. Petch 1 MACCBET Symposium, Royal Meteorological

More information

Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models

Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models Yefim L. Kogan Cooperative Institute

More information

Evaluation of precipitation simulated over mid-latitude land by CPTEC AGCM single-column model

Evaluation of precipitation simulated over mid-latitude land by CPTEC AGCM single-column model Evaluation of precipitation simulated over mid-latitude land by CPTEC AGCM single-column model Enver Ramírez Gutiérrez 1, Silvio Nilo Figueroa 2, Paulo Kubota 2 1 CCST, 2 CPTEC INPE Cachoeira Paulista,

More information

Mixed-phase layer clouds

Mixed-phase layer clouds Mixed-phase layer clouds Chris Westbrook and Andrew Barrett Thanks to Anthony Illingworth, Robin Hogan, Andrew Heymsfield and all at the Chilbolton Observatory What is a mixed-phase cloud? Cloud below

More information

Science Goals for the ARM Recovery Act Radars

Science Goals for the ARM Recovery Act Radars DOE/SC-ARM-12-010 Science Goals for the ARM Recovery Act Radars JH Mather May 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States

More information

How To Calculate Turbulent Collision

How To Calculate Turbulent Collision Impact of turbulent collisions on cloud development Ryo Onishi and Keiko Takahashi Earth Simulator Center (ESC), Japan Agency of Marine-Earth Science and Technology (JAMSTEC) Turbulent collision kernel

More information

Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches

Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches Joao Teixeira

More information

1D shallow convective case studies and comparisons with LES

1D shallow convective case studies and comparisons with LES 1D shallow convective case studies and comparisons with CNRM/GMME/Méso-NH 24 novembre 2005 1 / 17 Contents 1 5h-6h time average vertical profils 2 2 / 17 Case description 5h-6h time average vertical profils

More information

Harvard wet deposition scheme for GMI

Harvard wet deposition scheme for GMI 1 Harvard wet deposition scheme for GMI by D.J. Jacob, H. Liu,.Mari, and R.M. Yantosca Harvard University Atmospheric hemistry Modeling Group Februrary 2000 revised: March 2000 (with many useful comments

More information

E- modeling Of The Arctic Cloud System

E- modeling Of The Arctic Cloud System GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L18801, doi:10.1029/2005gl023614, 2005 Possible roles of ice nucleation mode and ice nuclei depletion in the extended lifetime of Arctic mixed-phase clouds Hugh Morrison,

More information

The effects of organization on convective and large-scale interactions using cloud resolving simulations with parameterized large-scale dynamics

The effects of organization on convective and large-scale interactions using cloud resolving simulations with parameterized large-scale dynamics The effects of organization on convective and large-scale interactions using cloud resolving simulations with parameterized large-scale dynamics Emily M. Riley, Brian Mapes, Stefan Tulich, Zhiming Kuang

More information

Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition

Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition Thirteenth ARM Science Team Meeting Proceedings, Broomfield, Colorado, March 31-April 4, 23 Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective

More information

Cloud feedback. Chris Bretherton University of Washington. Rob Wood, Peter Blossey, Matt Wyant, Dennis Hartmann, Mark Zelinka

Cloud feedback. Chris Bretherton University of Washington. Rob Wood, Peter Blossey, Matt Wyant, Dennis Hartmann, Mark Zelinka Cloud feedback Chris Bretherton University of Washington with Rob Wood, Peter Blossey, Matt Wyant, Dennis Hartmann, Mark Zelinka What is cloud feedback? The effect on an externally-forced climate perturbation

More information

Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations. Final Report

Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations. Final Report Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations Final Report Principal Investigator: Xiaoqing Wu, Department of Geological and Atmospheric Sciences, Iowa State

More information

Theory of moist convection in statistical equilibrium

Theory of moist convection in statistical equilibrium Theory of moist convection in statistical equilibrium By analogy with Maxwell-Boltzmann statistics Bob Plant Department of Meteorology, University of Reading, UK With thanks to: George Craig, Brenda Cohen,

More information

National Center for Atmospheric Research,* Boulder, Colorado. (Manuscript received 2 December 1999, in final form 3 October 2000)

National Center for Atmospheric Research,* Boulder, Colorado. (Manuscript received 2 December 1999, in final form 3 October 2000) 1MAY 2001 WU AND MONCRIEFF 1155 Long-Term Behavior of Cloud Systems in TOGA COARE and Their Interactions with Radiative and Surface Processes. Part III: Effects on the Energy Budget and SST XIAOING WU

More information

Cloud Parameterizations in SUNYA Regional Climate Model for the East Asia Summer Monsoon Simulations

Cloud Parameterizations in SUNYA Regional Climate Model for the East Asia Summer Monsoon Simulations TAO, Vol. 16, No. 5, 959-987, December 2005 Cloud Parameterizations in SUNYA Regional Climate Model for the East Asia Summer Monsoon Simulations Chao-Tzuen Cheng 1, * and Wei-Chyung Wang 1 (Manuscript

More information

Comparing Properties of Cirrus Clouds in the Tropics and Mid-latitudes

Comparing Properties of Cirrus Clouds in the Tropics and Mid-latitudes Comparing Properties of Cirrus Clouds in the Tropics and Mid-latitudes Segayle C. Walford Academic Affiliation, fall 2001: Senior, The Pennsylvania State University SOARS summer 2001 Science Research Mentor:

More information

Performance Metrics for Climate Models: WDAC advancements towards routine modeling benchmarks

Performance Metrics for Climate Models: WDAC advancements towards routine modeling benchmarks Performance Metrics for Climate Models: WDAC advancements towards routine modeling benchmarks Peter Gleckler* Program for Climate Model Diagnosis and Intercomparison () LLNL, USA * Representing WDAC and

More information

Comparison of ice cloud properties simulated by the Community Atmosphere Model (CAM5) with in-situ observations

Comparison of ice cloud properties simulated by the Community Atmosphere Model (CAM5) with in-situ observations Atmos. Chem. Phys., 14, 113 1118, 214 doi:1.5194/acp-14-113-214 Author(s) 214. CC Attribution 3. License. Comparison of ice cloud properties simulated by the Community Atmosphere Model (CAM5) with in-situ

More information

A Mass-Flux Scheme View of a High-Resolution Simulation of a Transition from Shallow to Deep Cumulus Convection

A Mass-Flux Scheme View of a High-Resolution Simulation of a Transition from Shallow to Deep Cumulus Convection JULY 2006 K U A N G A N D BRETHERTON 1895 A Mass-Flux Scheme View of a High-Resolution Simulation of a Transition from Shallow to Deep Cumulus Convection ZHIMING KUANG* Division of Geological and Planetary

More information

Evolution of convective cloud top height: entrainment and humidifying processes. EUROCS Workshop, Madrid, 16-19/12/2002

Evolution of convective cloud top height: entrainment and humidifying processes. EUROCS Workshop, Madrid, 16-19/12/2002 Jean-Marcel Piriou Centre National de Recherches Météorologiques Groupe de Modélisation pour l Assimilation et la Prévision Evolution of convective cloud top height: entrainment and humidifying processes

More information

Cumulus Convection, Climate Sensitivity, and Heightened Imperatives for Physically Robust Cumulus Parameterizations in Climate Models

Cumulus Convection, Climate Sensitivity, and Heightened Imperatives for Physically Robust Cumulus Parameterizations in Climate Models Cumulus Convection, Climate Sensitivity, and Heightened Imperatives for Physically Robust Cumulus Parameterizations in Climate Models Leo Donner GFDL/NOAA, Princeton University NCAR, 11 February 2014 Key

More information

The ARM-GCSS Intercomparison Study of Single-Column Models and Cloud System Models

The ARM-GCSS Intercomparison Study of Single-Column Models and Cloud System Models The ARM-GCSS Intercomparison Study of Single-Column Models and Cloud System Models R. T. Cederwall and D. J. Rodriguez Atmospheric Science Division Lawrence Livermore National Laboratory Livermore, California

More information

Highly Scalable Dynamic Load Balancing in the Atmospheric Modeling System COSMO-SPECS+FD4

Highly Scalable Dynamic Load Balancing in the Atmospheric Modeling System COSMO-SPECS+FD4 Center for Information Services and High Performance Computing (ZIH) Highly Scalable Dynamic Load Balancing in the Atmospheric Modeling System COSMO-SPECS+FD4 PARA 2010, June 9, Reykjavík, Iceland Matthias

More information

Mass flux fluctuation in a cloud resolving simulation with diurnal forcing

Mass flux fluctuation in a cloud resolving simulation with diurnal forcing Mass flux fluctuation in a cloud resolving simulation with diurnal forcing Jahanshah Davoudi Norman McFarlane, Thomas Birner Physics department, University of Toronto Mass flux fluctuation in a cloud resolving

More information

Sensitivity studies of developing convection in a cloud-resolving model

Sensitivity studies of developing convection in a cloud-resolving model Q. J. R. Meteorol. Soc. (26), 32, pp. 345 358 doi:.256/qj.5.7 Sensitivity studies of developing convection in a cloud-resolving model By J. C. PETCH Atmospheric Processes and Parametrizations, Met Office,

More information

Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models. Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD

Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models. Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD Solar Radiation Reaching the Surface Incoming solar radiation can be reflected,

More information

A quick look at clouds: what is a cloud, what is its origin and what can we predict and model about its destiny?

A quick look at clouds: what is a cloud, what is its origin and what can we predict and model about its destiny? A quick look at clouds: what is a cloud, what is its origin and what can we predict and model about its destiny? Paul DeMott Colorado State University A look at clouds: what is a cloud, what is its origin

More information

Iden%fying CESM cloud and surface biases at Summit, Greenland

Iden%fying CESM cloud and surface biases at Summit, Greenland Iden%fying CESM cloud and surface biases at Summit, Greenland Nathaniel Miller (CU- ATOC, CIRES) MaEhew Shupe, Andrew GeEleman, Jennifer Kay, Line Bourdages CESM Ice Sheet Surface Biases Cross Working

More information

Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota

Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota Continental and Marine Low-level Cloud Processes and Properties (ARM SGP and AZORES) Xiquan Dong University of North Dakota Outline 1) Statistical results from SGP and AZORES 2) Challenge and Difficult

More information

CHARACTERISTICS OF CLOUDS AND THE NEAR CLOUD ENVIRONMENT IN A SIMULATION OF TROPICAL CONVECTION

CHARACTERISTICS OF CLOUDS AND THE NEAR CLOUD ENVIRONMENT IN A SIMULATION OF TROPICAL CONVECTION CHARACTERISTICS OF CLOUDS AND THE NEAR CLOUD ENVIRONMENT IN A SIMULATION OF TROPICAL CONVECTION by Ian Bruce Glenn A thesis submitted to the faculty of The University of Utah in partial fulfillment of

More information

Cloud-resolving simulation of TOGA-COARE using parameterized largescale

Cloud-resolving simulation of TOGA-COARE using parameterized largescale Cloud-resolving simulation of TOGA-COARE using parameterized largescale dynamics Shuguang Wang 1, Adam H. Sobel 2, and Zhiming Kuang 3 -------------- Shuguang Wang, Department of Applied Physics and Applied

More information

Various Implementations of a Statistical Cloud Scheme in COSMO model

Various Implementations of a Statistical Cloud Scheme in COSMO model 2 Working Group on Physical Aspects 61 Various Implementations of a Statistical Cloud Scheme in COSMO model Euripides Avgoustoglou Hellenic National Meteorological Service, El. Venizelou 14, Hellinikon,

More information