The Surface Energy Budget

Size: px
Start display at page:

Download "The Surface Energy Budget"

Transcription

1 The Surface Energy Budget

2 The radiation (R) budget Shortwave (solar) Radiation Longwave Radiation R SW R SW α α = surface albedo R LW εσt 4 ε = emissivity σ = Stefan-Boltzman constant T = temperature Subsurface Column (variously soil, rock, ice, water) R NET = R SW (1- α ) + R LW + εσt 4 Fluxes are positive when directed toward the surface

3 The non-radiative terms Sensible Heat (S) Latent Heat (L) Melt (M) Conduction (C) Subsurface Column (variously soil, rock, ice, water) R NET = S + L + M + C Non radiative terms positive when directed away from the surface

4 Components of the budget

5 Spectral irradiance for a black body at 5900K, Incoming solar radiation at sea level assuming no absorbtion, and observed solar radiation at the earth s surface. Note the various atmospheric absorbtion bands due primarily to ozone, diatomic oxygen, water vapor and carbon dioxide.

6 Mean monthly downwelling solar radiation at the surface (R SW, Wm -2 ) for March through October, based on ISCCP-D satellite data [courtesy of J. Key, NOAA, Madison, WI]. The surface flux depends on TOA solar flux, clear-sky absorbtion and scattering, and absorbtion and scattering by clouds.

7 These two MODIS composites serve to emphasize two points: (1) The Arctic is typically cloudy, meaning that much of the TOA solar flux is scattered back to space (clouds have a high albedo); 2) surface albedo, while typically quite high in the Arctic, is also highly variable both spatially and temporally MODIS mosiac, April 30,2010 MODIS mosiac, July 17, 2011

8 From Serreze and Barry, 2005

9 Albedo of snow Direct beam spectral reflectance for a semi-infinite snowpack as a function of wavelength for grain radii from 50 to 1000 µm and for a solar zenith angle of 60 [from Wiscombe and Warren, 1980, by permission of AMS]. The key points are that the spectral reflectance of a snowpack is higher for short wavelengths (visible band) and small grain sizes. Albedo is the integrated spectral reflectance over the solar spectrum.

10 Effect of solar zenith angle The albedo of snow tends to increase with an increasing solar zenith angle (the angle between zenith an the sun). This is understood from the forward-scattering nature of snow particles. For a large zenith angle (sun near the horizon) there is a high likelihood that a photon will be scattered upwards and out of the snowpack. For a small zenith angle (sun close to overhead) there will be more interactions between a photon and snow grains, and a greater likelihood of absorbtion. mate/temperateclimate.htm

11 Cloud cover tends to increase the albedo of snow relative to clear skies 1) Clouds preferentially absorb longer wavelengths, so that the incoming radiation at the surface is relatively enriched in the short wavelengths for which the snow albedo is highest. This is augmented by stronger multiple scattering between the surface and cloud base. 2) Clouds increase the ratio of diffuse (scattered) to direct-beam radiation. The effective solar zenith angle under overcast skies is 50. Hence: --- if the true solar zenith angle is >50 o, the effect of cloud is to decrease the effective solar zenith angle and reduce the albedo --- if the true solar zenith angle is <50 o, the effect of cloud is to increase the effective solar zenith angle and increase the albedo However, enrichment of the incident flux in she shorter wavelengths normally outweighs the effect of cloud cover on the effective solar zenith angle, such that cloud cover has an overall effect of increasing the albedo

12 Effect of sastrugi aligned snow drifts Albedo can be several percent lower when the solar zenith angle is normal to sastrugi in the snow cover (causing shadows) compared to when it is parallel to sastrugi.

13 Albedo of snow: summary High Albedo Shorter wavelengths High zenith angle Small grain size Fresh snow Uniform layer Cloudy skies Low Albedo Longer wavelengths Low zenith angle Large grain size Old snow (grain size and pollution particles) Drift patterns Clear skies

14 Sea ice albedo quite variable, both temporally (snow cover aging, meltpond formation, fresh snowfall events), and spatially (regional differences in temperature, snow depth, snow characteristics and sea ice concentration) Courtesy D. Perovich, USA CRREL

15 Seasonal cycle of surface albedo over the central Arctic Ocean based on SHEBA data for The coloring, from left to right, breaks to time series into, respectively, pre-melt, initial melt, rapid melt, summer, and autumn freezeup (courtesy D. Perovich, USA CRREL).

16 Mean monthly surface albedo across the Arctic for April through September, based on APP-x satellite data [courtesy of J. Key, NOAA/NESDIS, Madison, WI]. Spring values over snow covered sea ice can exceed Values over open water are less than The albedo of the cold, snow covered central Greenland ice sheet stays high year round

17 Mean monthly downwelling longwave radiation at the surface (R LW, Wm -2 ) for the four mid-season months based on ISCCP-D data [courtesy of J. Key, NOAA, Madison, WI]. The flux depends on temperature, water vapor content and cloud cover, the latter two which affect the atmospheric emissivity. Clouds radiate approximately as blackbodies.

18 Mean monthly net longwave radiation at the surface (Wm -2 ) for the four mid-season months based on ISCCP-D data [courtesy of J. Key, NOAA, Madison, WI]. Note that the fluxes are all negative (emitted longwave radiation exceeds to downward longwave flux). The net longwave flux depends strongly on cloud cover.

19 Mean monthly net allwave radiation at the surface (Wm-2) for the four mid-season months based on ISCCP-D data [courtesy of J. Key, NOAA, Madison, WI].

20 Cloud radiative forcing (CRF) The radiative impact of clouds at the surface or top of the atmosphere CRF = (SW average - SW clear ) + (LW average - LW clear ) Shortwave Forcing Longwave Forcing (-30 W/m 2 in Arctic) (+55 W/m 2 in Arctic) CRF > 0 : Clouds are a warming mechanism CRF < 0 : Clouds are a cooling mechanism

21 Modeled annual cycle of (a) the surface and (b) top of atmosphere cloud radiative forcing (net shortwave, net longwave and net allwave) at 80 N [from Curry and Ebert, 1992, by permission of AMS]. The competing effects of cloud shortwave forcing (clouds reduce the downward solar flux) and cloud longwave forcing (clouds increase the downward longwave flux) are most pronounced at the surface. Averaged over the year, surface net allwave (longwave plus shortwave) cloud radiative forcing is positive (cloud cover increases the net allwave flux, i.e., it warms the surface). Net allwave surface forcing is negative (clouds cool the surface) only for a short time during summer. The shortwave cloud forcing at the surface is very sensitive to surface albedo. The negative net allwave forcing at the top of the atmosphere in summer is primarily due to the high albedo of clouds.

22 Mean monthly total (allwave) cloud radiative forcing at the surface (Wm -2 ) for the four mid-season months based on ISCCP-D data [courtesy of J. Key, NOAA, Madison, WI]. Only the July field shows negative values.

23 Observed surface cloud radiative forcing: Barrow, AK x axis = month, y axis = cloud fraction (f) Courtesy J. Walsh, Univ. IL Urbana Champaign

24 Monthly radiation balance components (W m -2 ) for the central Arctic Ocean from the SHEBA (Surface Heat Budget of the Arctic Ocean) experiment. Shown are (a) net radiation (heavy lines) and albedo (thin lines); (b) incoming shortwave radiation; (c) incoming longwave radiation. In each panel, results from the SHEBA experiment are shown along with those from other studies [adapted from Persson et al., 2002, by permission of AGU].

25 Monthly non-radiative energy balance components (W m -2 ) for the Central Arctic Ocean from the SHEBA effort. Shown are (a) sensible heat flux; (b) latent heat flux; (c) conductive heat flux. In each panel, results from the SHEBA experiment are shown along with those from other studies [adapted from Persson et al., 2002, by permission of AGU]. Note the smallness of these terms compared to the radiative fluxes (previous slide).

26 Arctic temperature inversions

27 Mean temperature profiles for February 1987 from 6 stations located around the periphery of the Arctic Ocean: 1) Krenkel (81 N, 58 E), 2) Chelyuskin (78 N,104 E), 3) Kotelny (76 N, 138 E), 4) Barrow (71 N, 86 W), 5) Mould Bay (76 N, 119 W) and Eureka (80 N, 86 W) [from Overland et al., 1997, by permission of AMS]. The surface-based temperature inversion at each site, to a first order, can be viewed in terms of longwave radiative equilibrium.

28 Longwave radiative equilibrium The atmosphere has a lower emissivity than the surface. If the system is in longwave equilibrium, the atmopshere must be radiating at a higher physical temperature than the surface. Atmosphere (ε a < 1) ε s σt s 4 = ε a σt a 4 but ε s σt s 4 ε a σt a 4 ε s > ε a hence T a > T s Surface (ε s = 1) Key assumptions: 1) System is determined only by longwave radiation exchanges 2) System is completely closed (which violates the second law of thermodynamics)

29 A more complete view (albeit still oversimplified) Net longwave loss to space Atmosphere (ε a < 1) ε s σt 4 s > ε a σt 4 a ε s > ε a and T a > T s ε s σt 4 s + ε a σt 4 a + F A = 0 ε s σt s 4 ε a σt a 4 F A Surface (ε s = 1) Surface turbulent fluxes and the shortwave radiation flux are small. Leakage of longwave radiation to space is balanced by horizontal heat flux convergence.

30 Monthly median inversion top (top of bars), base (bottom of bars) and temperature difference (solid lines) from a) drifting station data from the central Arctic Ocean; b) station Zhigansk over the Siberian tundra [from Serreze et al., 1992b, by permission of AMS]. Inversions are still common in summer but tend be elevated above the surface. Shallow surface-based melting inversions are also common in summer over sea ice..

31 Climate feedbacks involving the surface energy budget

32 Schematic of the ice- albedo feedback mechanism using the framework of Kellogg [1973]. The direction of the arrow indicates the direction of the interaction. A + indicates a positive interaction (an increase in the first quantity leads to an increase in the second). A - indicates a negative interaction (an increase in the first quantity leads to a decrease in the second quantity). A +/- indicates that the sign of the interaction is uncertain or that the sign changes over the annual cycle [from Curry et al., 1996, by permission of AMS].

33 The cloud-radiation feedback mechanism [from Curry et al., 1996, by permission of AMS].

Ocean Heat Flux. Spectral Distribution of Blackbody Radiation Given by Planck s Law

Ocean Heat Flux. Spectral Distribution of Blackbody Radiation Given by Planck s Law Spectral Distribution of Blackbody Radiation Given by Planck s Law Ocean Heat Flux Most solar energy comes to the earth as short wavelength electromagnetic radiation (visible light) and is is re-radiated

More information

Energy Pathways in Earth s Atmosphere

Energy Pathways in Earth s Atmosphere BRSP - 10 Page 1 Solar radiation reaching Earth s atmosphere includes a wide spectrum of wavelengths. In addition to visible light there is radiation of higher energy and shorter wavelength called ultraviolet

More information

Chapter 4 Atmosphere and Surface Energy Balances Pearson Education, Inc.

Chapter 4 Atmosphere and Surface Energy Balances Pearson Education, Inc. Chapter 4 Atmosphere and Surface Energy Balances Learning Objectives Identify alternative pathways for solar energy on its way through the troposphere to Earth s surface transmission, scattering, refraction,

More information

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)

More information

Chapter 3: Energy Balance and Temperature

Chapter 3: Energy Balance and Temperature Chapter 3: Energy Balance and Temperature Planet Energy Balance Greenhouse Effect Selective Absorption of Atmosphere Absorption, Reflection, Transmission Temperature Distribution Planetary Energy Balance

More information

The Greenhouse Effect

The Greenhouse Effect The Greenhouse Effect The Greenhouse Effect Solar and terrestrial radiation occupy different ranges of the electromagnetic spectrum, that we have been referring to as shortwave and longwave. The Greenhouse

More information

4. SOLAR & TERRESTRIAL RADIATION

4. SOLAR & TERRESTRIAL RADIATION G109: 4. Solar and Terrestrial Radiation 1 4. SOLAR & TERRESTRIAL RADIATION PART I: RADIATION Reading Assignment: A&B: Ch. 2 (p. 43-53) LM: Lab. 5 1. Introduction Radiation = Mode of Energy transfer by

More information

Global View of the Energy Balance. Planetary Energy Balance. Solar Flux and Flux Density. Lecture 2: Global Energy Balance

Global View of the Energy Balance. Planetary Energy Balance. Solar Flux and Flux Density. Lecture 2: Global Energy Balance Lecture 2: Global Energy Balance Planetary energy balance Energy absorbed by Earth = Energy emitted by Earth Role of the atmosphere Greenhouse effect Role of oceans Polarward energy transport Role of land

More information

Electromagnetic Radiation Spectrum

Electromagnetic Radiation Spectrum Electromagnetic Radiation scillating electric and magnetic fields propagate through space Virtually all energy exchange between the Earth and the rest of the Universe is by electromagnetic radiation Most

More information

Solar Radiation Measurements

Solar Radiation Measurements Atmospheric Measurements and Observations EAS 535 Solar Radiation Measurements Dr. J. Haase http://web.ics.purdue.edu/~jhaase/teaching/eas535/index.html Globally averaged energy balance Earth and Atmospheric

More information

Global climate and the hydrologic cycle

Global climate and the hydrologic cycle Global climate and the hydrologic cycle Key points The climate system in ultimately driven by the sun; through latent heat exchanges, the global hydrologic cycle is an important component of the climate

More information

Reading Assignment: A&B: Ch. 3 (p ) CD: tutorial: energy balance concepts interact. ex.: shortwave & longwave rad. LM: Lab.

Reading Assignment: A&B: Ch. 3 (p ) CD: tutorial: energy balance concepts interact. ex.: shortwave & longwave rad. LM: Lab. Radiation Balance 1 Radiation Balance Reading Assignment: A&B: Ch. 3 (p. 60-73) CD: tutorial: energy balance concepts interact. ex.: shortwave & longwave rad. LM: Lab. 5 Radiation = Mode of Energy transfer

More information

The Fundamentals of Solar and Terrestrial Radiation. The energy of radiation. Ways to label radiation

The Fundamentals of Solar and Terrestrial Radiation. The energy of radiation. Ways to label radiation The Fundamentals of Solar and Terrestrial Radiation The Energy Source that drives the earth s atmosphere, oceans and our weather Last time: pressure, temperature, density, basic thermodynamics Today: The

More information

Radiation, Sensible Heat Flux and Evapotranspiration

Radiation, Sensible Heat Flux and Evapotranspiration Radiation, Sensible Heat Flux and Evapotranspiration Climatological and hydrological field work Figure 1: Estimate of the Earth s annual and global mean energy balance. Over the long term, the incoming

More information

The Greenhouse Effect Solar Radiation, Earth's Atmosphere, and the Greenhouse Effect.

The Greenhouse Effect Solar Radiation, Earth's Atmosphere, and the Greenhouse Effect. The Greenhouse Effect Solar Radiation, Earth's Atmosphere, and the Greenhouse Effect. Nili Harnik DEES, Lamont-Doherty Earth Observatory nili@ldeo.columbia.edu Temperature All matter is made up of atoms,

More information

Lecture 2: Radiation/Heat in the atmosphere

Lecture 2: Radiation/Heat in the atmosphere Lecture 2: Radiation/Heat in the atmosphere TEMPERATURE is a measure of the internal heat energy of a substance. The molecules that make up all matter are in constant motion. By internal heat energy, we

More information

NATS 101 Section 13: Lecture 6. The Greenhouse Effect and Earth-Atmosphere Energy Balance

NATS 101 Section 13: Lecture 6. The Greenhouse Effect and Earth-Atmosphere Energy Balance NATS 101 Section 13: Lecture 6 The Greenhouse Effect and Earth-Atmosphere Energy Balance FOUR POSSIBLE FATES OF RADIATION: 1.Transmitted 2. Reflected 3. Scattered 4. Absorbed The atmosphere does ALL of

More information

CHAPTER 4 Lectures The Global Energy System

CHAPTER 4 Lectures The Global Energy System CHAPTER 4 Lectures 05-09 The Global Energy System I. Electromagnetic Radiation: This form of energy is emitted by all objects. Light and radiant heat are two familiar examples. Light is radiation that

More information

Lecture 5: Surface Energy Balance

Lecture 5: Surface Energy Balance Lecture 5: Surface Energy Balance Professor Noah Molotch September 7, 2010 Energy Budget by Latitude Figure 4.13 1 Energy Pathways INCIDENT ENERGY FROM SUN Atmosphere Reflectance If scatter back to space

More information

Plenary 2. All you need to know about Greenhouse Gases. Outline

Plenary 2. All you need to know about Greenhouse Gases. Outline Plenary 2. All you need to know about Greenhouse Gases Outline What drives the Climate? What are Greenhouse Gases and the Greenhouse Effect? How the changes in GHG concentrations produce global warming/climate

More information

Greenhouse Effect Mechanism and Radiative Forcing

Greenhouse Effect Mechanism and Radiative Forcing Greenhouse Effect Mechanism and Radiative Forcing How does radiative energy balance help determine Earth s climate? How does the greenhouse effect work? What is radiative forcing? References AR4 Ch. 2

More information

ATM S 111, Global Warming: Understanding the Forecast

ATM S 111, Global Warming: Understanding the Forecast ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept

More information

CHAPTER 4 THE RADIATION BUDGET

CHAPTER 4 THE RADIATION BUDGET CHAPTER 4 THE RADIATION BUDGET 4.1 The Mean Global Energy Balance Figure 4.1 summarizes the annual mean global energy balance for the earth-atmosphere system and indicates some of the atmospheric processes

More information

Greenhouse Effect and the Global Energy Balance

Greenhouse Effect and the Global Energy Balance Greenhouse Effect and the Global Energy Balance Energy transmission ( a a refresher) There are three modes of energy transmission to consider. Conduction: the transfer of energy in a substance by means

More information

Clouds and the Energy Cycle

Clouds and the Energy Cycle August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and

More information

Lecture 3: Greenhouse gasses:

Lecture 3: Greenhouse gasses: The Atmosphere Lecture 3: Greenhouse gasses: Absorption and emission of radiation by greenhouse gasses The atmospheric energy balance and the greenhouse effect The vertical structure of the atmosphere

More information

AOSC 621 Lesson 15 Radiative Heating/Cooling

AOSC 621 Lesson 15 Radiative Heating/Cooling AOSC 621 Lesson 15 Radiative Heating/Cooling Effect of radiation on clouds: fog 2 Clear-sky cooling/heating rate: longwave CO2 O3 H2O 3 Clear-sky heating rate: shortwave Standard atmosphere Heating due

More information

Energy Budget. Revolution of Earth around sun. Solar Radiation At the Top of the Atmosphere. Earth Orbit: Animations

Energy Budget. Revolution of Earth around sun. Solar Radiation At the Top of the Atmosphere. Earth Orbit: Animations Energy Budget Revolution of Earth around sun Solar energy drives the dynamics and thermodynamics of the atmosphere Energy received from sun balanced by energy emitted by earth system Otherwise, earth would

More information

Radiation Quantities in the ECMWF model and MARS

Radiation Quantities in the ECMWF model and MARS Radiation Quantities in the ECMWF model and MARS Contact: Robin Hogan (r.j.hogan@ecmwf.int) This document is correct up to and including cycle 41R1 Abstract Radiation quantities are frequently required

More information

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun

More information

Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography

Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu

More information

Convection. Conduction. Chapter 2: Solar Radiation and Seasons. How to Change Air Temperature?

Convection. Conduction. Chapter 2: Solar Radiation and Seasons. How to Change Air Temperature? Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add

More information

What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper

What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low

More information

What is Kelvin? A Sample Problem. Flux on an angled surface. Solution. Planetary Energy Balance 0

What is Kelvin? A Sample Problem. Flux on an angled surface. Solution. Planetary Energy Balance 0 What is Kelvin? Kelvin = Absolute temperature scale T(Kelvin) = T(Celsius) + 73 What is the meaning of absolute zero? Can there be negative T on the Kelvin scale? What is temperature anyway? A Sample Problem

More information

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes.

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. J.D. McAlpine ATMS 611 HMWK #8 a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. These sides of the slopes will tend to have less average solar

More information

1. Theoretical background

1. Theoretical background 1. Theoretical background We consider the energy budget at the soil surface (equation 1). Energy flux components absorbed or emitted by the soil surface are: net radiation, latent heat flux, sensible heat

More information

ESCI 241 Meteorology Lesson 3 Radiation

ESCI 241 Meteorology Lesson 3 Radiation WAVE BASICS Definitions ESCI 1 Meteorology Lesson 3 Radiation Wave speed (c) speed of an individual trough or crest Wavelength (λ) distance between two adjacent troughs or crests Frequency (ν) number of

More information

1. GLACIER METEOROLOGY ENERGY BALANCE

1. GLACIER METEOROLOGY ENERGY BALANCE Summer school in Glaciology Fairbanks/McCarthy 7-17 June 2010 Regine Hock Geophysical Institute, University of Alaska, Fairbanks 1. GLACIER METEOROLOGY ENERGY BALANCE Ice and snow melt at 0 C, but this

More information

Solar and Terrestrial Radiation

Solar and Terrestrial Radiation Solar and Terrestrial Radiation I Heat and Temperature A. 1. A form of. 2. The total of all the atoms and molecules of a substance 3. Heat always moves from a temperature body to a temperature body. B.

More information

1 Physics of Radiant Energy 1

1 Physics of Radiant Energy 1 Contents 1 Physics of Radiant Energy 1 2 Physics of Evaporation and Turbulent Energy Exchange 5 2a Eddy Correlation Approach..................... 5 2b Latent Heat Exchange........................ 7 2c

More information

Fundamentals of Climate Change (PCC 587): Radiation

Fundamentals of Climate Change (PCC 587): Radiation Fundamentals of Climate Change (PCC 587): Radiation DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: 9/25/13 Readings Archer Chap 2: Blackbody Radiation Archer

More information

Snow II: Snowmelt and energy balance

Snow II: Snowmelt and energy balance Snow II: Snowmelt and energy balance The are three basic snowmelt phases 1) Warming phase: Absorbed energy raises the average snowpack temperature to a point at which the snowpack is isothermal (no vertical

More information

Exercises: Glacier meteorology / Energy balance. Including answers

Exercises: Glacier meteorology / Energy balance. Including answers Summer School in Glaciology, Fairbanks/McCarthy, 2010 Regine Hock Exercises: Glacier meteorology / Energy balance Including answers 1.) ENERGY BALANCE MELT CALCULATION A glacier is polythermal with a cold

More information

Today s Lecture: Radiation Hartmann, Global Physical Climatology (1994), Ch. 2, 3, 6 Peixoto and Oort, Ch. 4, 6, 7

Today s Lecture: Radiation Hartmann, Global Physical Climatology (1994), Ch. 2, 3, 6 Peixoto and Oort, Ch. 4, 6, 7 Today s Lecture: Radiation Hartmann, Global Physical Climatology (1994), Ch. 2, 3, 6 Peixoto and Oort, Ch. 4, 6, 7 5 The climate system 1. Introduction 2. Atmosphere 3. Ocean 4. Land, biosphere, cryosphere

More information

Energy Balance and Temperature

Energy Balance and Temperature Chapter 3 Lecture Understanding Weather and Climate Seventh Edition Energy Balance and Temperature Frode Stordal, University of Oslo Redina L. Herman Western Illinois University Quiz om stråling Hva er

More information

Convec,on, cloud and radia,on

Convec,on, cloud and radia,on Convec,on, cloud and radia,on Convection redistributes the thermal energy yielding (globally-averaged), a mean lapse rate of ~ -6.5 o C/km. Radiative processes tend to produce a more negative temperature

More information

Iden%fying CESM cloud and surface biases at Summit, Greenland

Iden%fying CESM cloud and surface biases at Summit, Greenland Iden%fying CESM cloud and surface biases at Summit, Greenland Nathaniel Miller (CU- ATOC, CIRES) MaEhew Shupe, Andrew GeEleman, Jennifer Kay, Line Bourdages CESM Ice Sheet Surface Biases Cross Working

More information

The Global Energy System. Earth s Atmosphere. Earth s Atmosphere. Chapter 3. Earth s Primordial Atmosphere. Earth s Primordial Atmosphere

The Global Energy System. Earth s Atmosphere. Earth s Atmosphere. Chapter 3. Earth s Primordial Atmosphere. Earth s Primordial Atmosphere The Global Energy System Chapter 3 Earth s Atmosphere Earth s Primordial Atmosphere Initially, the atmosphere probably consisted of helium (He) and hydrogen (H), with traces of ammonia (NH 3 ) and methane

More information

Arctic Surface, Cloud, and Radiation Properties Based on the AVHRR Polar Pathfinder Dataset. Part I: Spatial and Temporal Characteristics

Arctic Surface, Cloud, and Radiation Properties Based on the AVHRR Polar Pathfinder Dataset. Part I: Spatial and Temporal Characteristics 2558 J O U R N A L O F C L I M A T E VOLUME 18 Arctic Surface, Cloud, and Radiation Properties Based on the AVHRR Polar Pathfinder Dataset. Part I: Spatial and Temporal Characteristics XUANJI WANG Cooperative

More information

Simple Mathematical Models of the Greenhouse Effect, and Global Warming

Simple Mathematical Models of the Greenhouse Effect, and Global Warming Simple Mathematical Models of the Greenhouse Effect, and Global Warming Mathematical Models Scientists often use mathematical and computer models to understand complex systems (like Earth s climate) A

More information

THE GREENHOUSE EFFECT

THE GREENHOUSE EFFECT ASTRONOMY READER THE GREENHOUSE EFFECT 35.1 THE GREENHOUSE EFFECT Overview Planets are heated by light from the Sun. Planets cool off by giving off an invisible kind of light, longwave infrared light.

More information

Blackbody Radiation. A substance that absorbs all incident wavelengths completely is called a blackbody.

Blackbody Radiation. A substance that absorbs all incident wavelengths completely is called a blackbody. Blackbody Radiation A substance that absorbs all incident wavelengths completely is called a blackbody. What's the absorption spectrum of a blackbody? Absorption (%) 100 50 0 UV Visible IR Wavelength And

More information

Energy: Warming the earth and Atmosphere. Chapter 2

Energy: Warming the earth and Atmosphere. Chapter 2 Energy: Warming the earth and Atmosphere Chapter 2 Energy, Temperature, & Heat Energy is the ability to do work (push, pull, lift) on some form of matter. Potential energy is the potential for work (mass

More information

Sensitivity of Surface Cloud Radiative Forcing to Arctic Cloud Properties

Sensitivity of Surface Cloud Radiative Forcing to Arctic Cloud Properties Sensitivity of Surface Cloud Radiative Forcing to Arctic Cloud Properties J. M. Intrieri National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado M. D. Shupe

More information

Heat Budgets. Class Web Site. Course Outline. Weather vs Climate what s the difference? If you don t like the weather: If you don t like the climate:

Heat Budgets. Class Web Site. Course Outline. Weather vs Climate what s the difference? If you don t like the weather: If you don t like the climate: Course Outline Climate 101 9/20 Introduction: The Earth System Class Web Site http:// climate101.atmos.colostate.edu 9/27 Energy, Radiation, and Temperature 10/4 Winds, Currents, and Water 10/11 Climates

More information

Chapter 2: Solar Radiation and Seasons

Chapter 2: Solar Radiation and Seasons Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add

More information

Radiative effects of clouds, ice sheet and sea ice in the Antarctic

Radiative effects of clouds, ice sheet and sea ice in the Antarctic Snow and fee Covers: Interactions with the Atmosphere and Ecosystems (Proceedings of Yokohama Symposia J2 and J5, July 1993). IAHS Publ. no. 223, 1994. 29 Radiative effects of clouds, ice sheet and sea

More information

Radiation. Introduction: Radiation is

Radiation. Introduction: Radiation is Radiation Readings: A&B: Ch.2 (p. 34-42) CD Tutorial: Radiation Lab 5 Topics: Part I: Radiation 1. Introduction 2. Electromagnetic Radiation 3. Radiation Spectrum 4. Radiation Laws a. General Principles

More information

Lecture notes, September 5. The Sun emits energy in the form of electromagnetic radiation [Fig. 1]. The energy travels outward from the Sun in

Lecture notes, September 5. The Sun emits energy in the form of electromagnetic radiation [Fig. 1]. The energy travels outward from the Sun in Lecture notes, September 5. The Sun emits energy in the form of electromagnetic radiation [Fig. 1]. The energy travels outward from the Sun in straight lines. As solar radiation travels through space,

More information

Radiation Transfer in Environmental Science

Radiation Transfer in Environmental Science Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy media Autumn 2008 Prof. Emmanuel Boss, Dr. Eyal Rotenberg Introduction Radiation in Environmental sciences Most

More information

Dr. Muhammad Asif Hanif, Department of Chemistry, University of Agriculture, Faisalabad, Pakistan

Dr. Muhammad Asif Hanif, Department of Chemistry, University of Agriculture, Faisalabad, Pakistan Incoming solar energy is largely in the visible region of the spectrum. The shorter wavelength blue solar light is scattered relatively more strongly by molecules and particles in the upper atmosphere,

More information

Radiative Convective Equilibrium and the Greenhouse Effect

Radiative Convective Equilibrium and the Greenhouse Effect Radiative Convective Equilibrium and the Greenhouse Effect Weston Anderson September 19, 2016 Contents 1 Introduction 1 2 Basics of radiation 1 3 Emission temperature of earth 2 3.1 Radiative equilibrium........................

More information

UCCS PES 3670: Wind Energy Summer 2012 Test MC 2 name: Heating Earth's Surface and Atmosphere

UCCS PES 3670: Wind Energy Summer 2012 Test MC 2 name: Heating Earth's Surface and Atmosphere UCCS PES 3670: Wind Energy Summer 2012 Test MC 2 name: Heating Earth's Surface and Atmosphere 1) Earth is closest to the Sun during: a. Northern hemisphere autumn. b. Southern hemisphere autumn. c. Southern

More information

2) What atmospheric layer is the home of weather, has the greatest density of gas molecules, and has a decrease in temperature with height?

2) What atmospheric layer is the home of weather, has the greatest density of gas molecules, and has a decrease in temperature with height? 1) The most common gas in the atmosphere is: a) oxygen (O2) b) carbon dioxide (CO2) c) nitrogen (N2) d) methane (CH4) 2) What atmospheric layer is the home of weather, has the greatest density of gas molecules,

More information

GEO 1 Exam 1 Fall 2012

GEO 1 Exam 1 Fall 2012 Name 1. The scientific method is described by which of the following? a) the application of common sense b) a series of procedures developed by Sir Isaac Newton c) the development of hypotheses for testing

More information

A Simple Energy Balance Model of Climate

A Simple Energy Balance Model of Climate A Simple Energy Balance Model of Climate 1. The Basic zero-dimensional Energy Balance Model (EBM) for global average temperature Energy Input (sun) Energy Output (planetary radiation) Equilibrium: the

More information

Greenhouse gases. A snow-covered surface refl ects massive amounts of sunlight and therefore has a cooling effect on the climate.

Greenhouse gases. A snow-covered surface refl ects massive amounts of sunlight and therefore has a cooling effect on the climate. 13 Greenhouse gases - and their impact on the climate The greenhouse effect is the best understood and well mapped of the mechanisms that can lead to climate change. By Eigil Kaas and Peter L. Langen Our

More information

Blackbody Radiation. A blackbody is a surface that completely absorbs all incident radiation

Blackbody Radiation. A blackbody is a surface that completely absorbs all incident radiation Blackbody Radiation Blackbody Radiation A blackbody is a surface that completely absorbs all incident radiation Blackbody Radiation A blackbody is a surface that completely absorbs all incident radiation

More information

Earth System Science 5: THE ATMOSPHERE / Mid-Term Exam (4/29/2008) MULTIPLE CHOICE. (2 Point Each)

Earth System Science 5: THE ATMOSPHERE / Mid-Term Exam (4/29/2008) MULTIPLE CHOICE. (2 Point Each) Earth System Science 5: THE ATMOSPHERE / Mid-Term Exam (4/29/2008) MULTIPLE CHOICE. (2 Point Each) 1) On average, the atmosphere absorbs roughly this percentage of the solar radiation that reaches the

More information

Earth System Science 5: THE ATMOSPHERE / Mid-Term Exam (4/29/2008) MULTIPLE CHOICE. (2 Point Each)

Earth System Science 5: THE ATMOSPHERE / Mid-Term Exam (4/29/2008) MULTIPLE CHOICE. (2 Point Each) Earth System Science 5: THE ATMOSPHERE / Mid-Term Exam (4/29/2008) MULTIPLE CHOICE. (2 Point Each) 1) A geostrophic wind: A) flows perpendicular to the pressure gradient force. B) is usually not affected

More information

Calculating equation coefficients

Calculating equation coefficients Solar Energy 1 Calculating equation coefficients Construction Conservation Equation Surface Conservation Equation Fluid Conservation Equation needs flow estimation needs radiation and convection estimation

More information

Global Energy Balance

Global Energy Balance Global Energy Balance What determines global surface temperature? Blackbody radiation Energy emitted by an object depends on temperature. Energy Flux (W/m2) = Energy/(Time x Area) =!T4 where! = constant

More information

Earth s Energy Balance & the Greenhouse Effect

Earth s Energy Balance & the Greenhouse Effect Earth s Energy Balance & the Greenhouse Effect Outline: The Earth s Energy Balance: Electromagnetic Spectrum: Ultraviolet (UV) Visible Infrared (IR) Blackbody Radiation Albedo (reflectivity) Greenhouse

More information

1. Radiative Transfer. 2. Spectrum of Radiation. 3. Definitions

1. Radiative Transfer. 2. Spectrum of Radiation. 3. Definitions 1. Radiative Transfer Virtually all the exchanges of energy between the earth-atmosphere system and the rest of the universe take place by radiative transfer. The earth and its atmosphere are constantly

More information

Corso di Fisica Te T cnica Ambientale Solar Radiation

Corso di Fisica Te T cnica Ambientale Solar Radiation Solar Radiation Solar radiation i The Sun The Sun is the primary natural energy source for our planet. It has a diameter D = 1.39x10 6 km and a mass M = 1.989x10 30 kg and it is constituted by 1/3 of He

More information

EARTH S ATMOSPHERE AND ITS SEASONS

EARTH S ATMOSPHERE AND ITS SEASONS EARTH S ATMOSPHERE AND ITS SEASONS Provided by Tasa Graphic Arts, Inc. for Earthʼs Atmosphere and Its Seasons CD-ROM http://www.tasagraphicarts.com/progeas.html 1.The Importance of Weather (wx) The U.S.

More information

THERMAL RADIATION. Thermal radiation is continuously emitted by all matter whose temperature is above absolute zero.

THERMAL RADIATION. Thermal radiation is continuously emitted by all matter whose temperature is above absolute zero. THERMAL RADIATION The type of electromagnetic radiation that is pertinent to heat transfer is the thermal radiation emitted as a result of energy transitions of molecules, atoms, and electrons of a substance.

More information

(So/4) W m -2 is the average incoming solar radiative energy per unit area for planet Earth. (So W m -2 is the Solar constant)

(So/4) W m -2 is the average incoming solar radiative energy per unit area for planet Earth. (So W m -2 is the Solar constant) Atmospheric "greenhouse effect" - How the presence of an atmosphere makes Earth's surface warmer Some relevant parameters and facts (see previous slide sets) (So/) W m -2 is the average incoming solar

More information

Limitations of column physics for radiation computations in atmospheric models

Limitations of column physics for radiation computations in atmospheric models Limitations of column physics for radiation computations in atmospheric models Bent H Sass Danish Meteorological Institute 1 May 2009 As the horizontal grid size in atmospheric models is reduced the assumptions

More information

Cloud/Radiation parameterization issues in high resolution NWP

Cloud/Radiation parameterization issues in high resolution NWP Cloud/Radiation parameterization issues in high resolution NWP Bent H Sass Danish Meteorological Institute 10 June 2009 As the horizontal grid size in atmospheric models is reduced the assumptions made

More information

We know the shape of the solar spectrum. Let s consider that the earth atmosphere is 8000 km thick.

We know the shape of the solar spectrum. Let s consider that the earth atmosphere is 8000 km thick. We know the shape of the solar spectrum. How is this spectral shape and irradiance of the solar light affected by the earth s atmosphere? Let s consider that the earth atmosphere is 8000 km thick. The

More information

Chapter 2. The global energy balance. 2.1 Planetary emission temperature

Chapter 2. The global energy balance. 2.1 Planetary emission temperature Chapter 2 The global energy balance We consider now the general problem of the radiative equilibrium temperature of the Earth. The Earth is bathed in solar radiation and absorbs much of that incident upon

More information

Orbital-Scale Climate Change

Orbital-Scale Climate Change Orbital-Scale Climate Change Climate Needed for Ice Age Warm winter and non-frozen oceans so lots of evaporation and snowfall Cool summer so that ice does not melt Ice Age Model When ice growing ocean

More information

SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) is a FORTRAN computer code designed for the analysis of a wide variety of radiative

SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) is a FORTRAN computer code designed for the analysis of a wide variety of radiative SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) is a FORTRAN computer code designed for the analysis of a wide variety of radiative transfer problems encountered in satellite remote sensing

More information

CHAPTER 2 Energy and Earth

CHAPTER 2 Energy and Earth CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect

More information

Solar Radiation and the Seasons

Solar Radiation and the Seasons Chapter 2 Lecture Understanding Weather and Climate Seventh Edition Solar Radiation and the Seasons Frode Stordal, University of Oslo Redina L. Herman Western Illinois University Energy Energy is traditionally

More information

Chapter 04: Atmosphere and Surface Energy Balance. Energy Essentials Energy Balance in the Troposphere Energy Balance at Earth s Surface

Chapter 04: Atmosphere and Surface Energy Balance. Energy Essentials Energy Balance in the Troposphere Energy Balance at Earth s Surface Chapter 04: Atmosphere and Surface Energy Balance Energy Essentials Energy Balance in the Troposphere Energy Balance at Earth s Surface Energy Essentials Energy Pathways and Principles Energy Pathways

More information

How We Know Global Warming is Real The science behind human-induced climate change Tapio Schneider

How We Know Global Warming is Real The science behind human-induced climate change Tapio Schneider How We Know Global Warming is Real The science behind human-induced climate change Tapio Schneider Atmospheric carbon dioxide concentrations are higher today than at any time in at least the past 650,000

More information

lecture 3: The greenhouse effect

lecture 3: The greenhouse effect lecture 3: The greenhouse effect Concepts from Lecture 2 Temperature Scales Forms of Heat Transfer Electromagnetic Spectrum Planck Law Stefan-Boltzmann Law Inverse Square Law Reflectivity or Albedo Solar

More information

Use of ARM/NSA Data to Validate and Improve the Remote Sensing Retrieval of Cloud and Surface Properties in the Arctic from AVHRR Data

Use of ARM/NSA Data to Validate and Improve the Remote Sensing Retrieval of Cloud and Surface Properties in the Arctic from AVHRR Data Use of ARM/NSA Data to Validate and Improve the Remote Sensing Retrieval of Cloud and Surface Properties in the Arctic from AVHRR Data X. Xiong QSS Group, Inc. National Oceanic and Atmospheric Administration

More information

ATS 351, Spring 2010 Lab #2 Energy & Radiation 60 points Please show your work for calculations

ATS 351, Spring 2010 Lab #2 Energy & Radiation 60 points Please show your work for calculations ATS 351, Spring 2010 Lab #2 Energy & Radiation 60 points Please show your work for calculations Question #1: Energy (11 points) Heat is a measure of the transfer of energy from a body with a higher temperature

More information

ENERGY BALANCE AND GREENHOUSE EFFECT. D. Stahle, Global Change (ENDY/GEOG 5113)

ENERGY BALANCE AND GREENHOUSE EFFECT. D. Stahle, Global Change (ENDY/GEOG 5113) ENERGY BALANCE AND GREENHOUSE EFFECT D. Stahle, Global Change (ENDY/GEOG 5113) Gedzelman, S.D., 1980. The Science and Wonders of the Atmosphere. Wiley, NY. Huschke, R.E., 1989. Glossary of Meteorology.

More information

Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle

Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle 616 JOURNAL OF CLIMATE Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle MATTHEW D. SHUPE Science and Technology Corporation, NOAA/Environmental

More information

Lecture 2: Effective temperature of the Earth

Lecture 2: Effective temperature of the Earth Lecture 2: Effective temperature of the Earth September 30, 2003 Let us start by considering the Earth bathed in light from the Sun see Fig.1 and ask the question: What is the gross temperature of Earth?

More information

RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE. Peter J. Lamb. Cooperative Institute for Mesoscale Meteorological Studies

RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE. Peter J. Lamb. Cooperative Institute for Mesoscale Meteorological Studies RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE by Peter J. Lamb Cooperative Institute for Mesoscale Meteorological Studies and School of Meteorology The University of Oklahoma

More information

Geology 1347 Meteorology

Geology 1347 Meteorology Geology 1347 Meteorology Exam 1 Review 1. Carbon dioxide enters the atmosphere: a. mainly through the decay of vegetation b. volcanic eruptions c. exhalations of animal life d. burning of fossil fuels

More information

Chapter 3. The Earth Climate System

Chapter 3. The Earth Climate System NASA (1968) The Earth Climate System The climate system is the sum of all exchanges of energy and mass between the atmosphere, hydrosphere, cryosphere, biosphere, and lithosphere. USGS, 2013 1 Sun averages

More information

Emission Temperature of Planets

Emission Temperature of Planets Emission Temperature of Planets The emission temperature of a planet, T e, is the temperature with which it needs to emit in order to achieve energy balance (assuming the average temperature is not decreasing

More information

Intended Learning Outcomes

Intended Learning Outcomes An Introduction to Thermal Radiation This problem provides an introduction to thermal and atmospheric physics. Intended Learning Outcomes By the end of this activity students should be able to: Use basic

More information

Understanding Global Warming. Paul Kushner Department of Physics, University of Toronto. Oraynu Centre February 21, 2008

Understanding Global Warming. Paul Kushner Department of Physics, University of Toronto. Oraynu Centre February 21, 2008 Understanding Global Warming Paul Kushner Department of Physics, University of Toronto Oraynu Centre February 21, 2008 Outline Starting Points What Sets the Earth s Thermostat? Global Warming and Climate

More information