SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment
|
|
|
- Fay Bruce
- 10 years ago
- Views:
Transcription
1 SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment Mark Webb, Adrian Lock (Met Office), Sandrine Bony (IPSL), Chris Bretherton (UW), Tsuyoshi Koshiro, Hideaki Kawai (MRI), Thorsten Mauritsen (MPI), Tomoo Ogura (NIES), Romain Roehrig (CNRM), Steve Sherwood (UNSW), Masahiro Watanabe (AORI), Jessica Vial (IPSL), Ming Zhao (GFDL) International Workshop on Risk Information on Climate Change,Yokohama, November, 2014
2 Background The radiative feedbacks of clouds on climate change differ widely between climate models Our understanding of the physical mechanisms underlying the different model responses is still very limited, which makes it difficult to assess their credibility The Cloud Feedback Model Intercomparison Project (CFMIP) has in recent years demonstrated that much of the spread in cloud feedback in coupled atmosphere-ocean climate models can be reproduced in idealised atmosphere-only experiments forced with specified SSTs This provides a new opportunity to investigate and understand the physical mechanisms responsible for different cloud feedbacks in relatively computationally inexpensive experiments
3 Selected Process On/Off Klima Intercomparison Experiment (SPOOKIE) Aims Establish the relative contributions of different areas of model physics to inter-model spread in cloud feedbacks Approach Repeat CFMIP-2 AMIP/AMIP Uniform +4K SST perturbation experiments, switching off or simplifying different model schemes in turn Pilot Experiments Start by switching off convective parametrization
4 Convection-off (ConvOff) experiments: what do we expect to see? Zhang et al. (2013) argue that positive subtropical feedback is caused by enhanced entrainment of dry air into the boundary layer from the free troposphere in models with active shallow convection. - If this is the sole cause of positive subtropical feedback, then convoff feedbacks will be neutral or negative. Sherwood et al. (2014) argue that positive shallow cloud feedback (and much of its spread) is related to the strength of lower tropospheric mixing by convection and large scale circulations. Zhao (2014) also highlights sensitivity of feedbacks to deep convection in the GFDL model - Hence some reduction in magnitude and spread of cloud feedback would be expected in the absence of convective parametrization
5 Global Mean Cloud Feedback (Wm -2 K -1 ) (Including cloud masking)
6 How does convection affect inter-model spread in cloud feedback? Ensemble variance of amip4k Net Cloud Feedback Standard models Convection off
7 Angular LTS/Precipitation Index (ALPI)
8 All rd Models amip4k Cloud Feedbacks over 30 O N/S Oceans SPOOKIE Standard models SPOOKIE ConvOff models Net Cloud Feedback* Black diamonds mark significant correlations with the net cloud feedbacks in same regime Shortwave Cloud Feedback* Grey squares mark significant correlations with the net cloud feedback area averaged over tropical oceans Longwave Cloud Feedback* *Includes cloud masking
9 All rd Models amip4k Cloud Responses over 30 O N/S Oceans SPOOKIE Standard models SPOOKIE ConvOff models Total Cloud Fraction Response (%/K) Liquid Water Path Response (mm/k) Ice Water Path Response (mm/k)
10 All rd Models AMIP Cloud Properties over 30 O N/S Oceans SPOOKIE Standard models SPOOKIE ConvOff models Total Cloud Fraction Liquid Water Path (mm) Ice Water Path (mm)
11 All rd Models AMIP Low/Mid/High Cloud Fractions 30 O N/S Oceans SPOOKIE Standard models SPOOKIE ConvOff models Maximum Low Level Cloud Fraction (below 680 hpa) Maximum Mid Level Cloud Fraction ( hpa) Maximum High Level Cloud Fraction (above 440 hpa)
12 Summary of Results ConvOff experiments reproduce positive subtropical cloud feedback. They show strong convergence in tropical deep convective cloud feedbacks and some convergence in stratocumulus regimes but increased spread in the trades. Hence the range in global cloud feedback is not reduced, and convective parametrization differences cannot explain the spread. Convoff experiments generally have more low level cloud and larger ice and liquid water paths. Models with less low level cloud in heavily precipitating regions of the tropics and more cirrus in stable regimes have stronger tropical cloud feedbacks and vice versa.
13 Convective precipitation efficiency and cloud feedback Sherwood et al. Nature 2014 and Zhao 2014 argue that convective precipitation efficiency plays an important role in cloud feedback. Models with strong convective precipitation efficiency rain out condensate efficiently with little evaporation of condensate or precipitation. Models with weak precipitation efficiency need to transport more water vapour from the boundary layer to the free troposphere to produce a given amount of surface precipitation. Sherwood et al. argued that models with weaker convective precipitation efficiency and shallower overturning circulations transport more water vapour vertically out of the boundary layer, and that this effect strengthens in the warming climate, drying the boundary layer and reducing low cloud.
14 Could large-scale precipitation efficiency control overall spread in cloud feedback? Might instead large scale precipitation efficiency be the dominant control of the vertical flux of water vapour in deep convective regions? Large scale precipitation efficiency will depend on various aspects of cloud parametrization/cloud microphysics. Models that can form clouds and condensate more easily at low levels in ascending regions of the tropics may find it easier to rain out to the surface, and hence have stronger large scale precipitation efficiencies. Models which condense over a greater depth at higher levels where water contents are smaller might precipitate less easily and evaporate more. There will be more opportunity for precipitation to evaporate before reaching the surface, resulting in weaker precipitation efficiencies. Such models will dry the boundary layer more and moisten the free troposphere more, and this effect will strengthen with the hydrological cycle as the climate warms.
15 Could large-scale precipitation efficiency control overall spread in cloud feedback? Sherwood et al argued that enhanced drying of the tropical boundary layer will dry low cloud regions resulting in stronger low cloud reductions. Alternatively it is possible that the additional moistening of the free troposphere propagates to the subtropics and encourages the breakup of low level clouds by inhibiting radiative cooling in the boundary layer. Studies with LES have demonstrated that an enhanced free-tropospheric greenhouse effect can reduce turbulent mixing and cloudiness in the subtropical boundary layer - e.g. Bretherton et al. JAMES 2013
16 Does this idea fit with our results? Higher sensitivity models have less low/mid level cloud in strongly precipitating regions of the tropics while lower sensitivity models have more. Models with more low/mid level clouds in deep convective areas might be be more efficient at raining out and so have larger precipitation efficiency. Conversely models with less low/mid-level cloud in precipitating regions may be doing more of their condensation at higher levels. This might reduce precipitation efficiency. Higher sensitivity models have more ice cloud in the subtropics this could be a consequence of doing more condensation at upper levels.
17 Ideas For Future Work We can test these and other ideas with further sensitivity tests. These might form the basis for the next phase of SPOOKIE. For example: Reducing ice fall speeds would be predicted to reduce precipitation efficiency and make cloud feedback more positive. Modifying cloud and precipitation schemes to condense/rain out more easily at low levels in deep convective regions would be predicted to increase precipitation efficiency and make cloud feedback less positive. Adding an artificial humidity source to the subtropical free troposphere would be predicted to reduce low level cloudiness. Alternatively the radiative coupling between free tropospheric humidity and low level cloud could be explored by manipulating humidity inputs to the radiation code.
The impact of parametrized convection on cloud feedback.
The impact of parametrized convection on cloud feedback. Mark Webb, Adrian Lock (Met Office) Thanks also to Chris Bretherton (UW), Sandrine Bony (IPSL),Jason Cole (CCCma), Abderrahmane Idelkadi (IPSL),
CMIP6 Recommendations from The Cloud Feedback Model Inter-comparison Project CFMIP. Building bridges between cloud communities
CMIP6 Recommendations from The Cloud Feedback Model Inter-comparison Project CFMIP Building bridges between cloud communities CFMIP Committee members Mark Webb, Chris Bretherton, Sandrine Bony, Steve Klein,
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Kate Thayer-Calder and Dave Randall Colorado State University October 24, 2012 NOAA's 37th Climate Diagnostics and Prediction Workshop Convective
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux Cloud-resolving modelling : perspectives Improvement of models, new ways of using them, renewed views And
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low
How To Model An Ac Cloud
Development of an Elevated Mixed Layer Model for Parameterizing Altocumulus Cloud Layers S. Liu and S. K. Krueger Department of Meteorology University of Utah, Salt Lake City, Utah Introduction Altocumulus
Clouds, Circulation, and Climate Sensitivity
Clouds, Circulation, and Climate Sensitivity Hui Su 1, Jonathan H. Jiang 1, Chengxing Zhai 1, Janice T. Shen 1 David J. Neelin 2, Graeme L. Stephens 1, Yuk L. Yung 3 1 Jet Propulsion Laboratory, California
Atmospheric Processes
Atmospheric Processes Steven Sherwood Climate Change Research Centre, UNSW Yann Arthus-Bertrand / Altitude Where do atmospheric processes come into AR5 WGI? 1. The main feedbacks that control equilibrium
Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches Joao Teixeira
Description of zero-buoyancy entraining plume model
Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium Supplementary information Martin S. Singh & Paul A. O Gorman S1 CRM simulations Here we give more
Cloud-Resolving Simulations of Convection during DYNAMO
Cloud-Resolving Simulations of Convection during DYNAMO Matthew A. Janiga and Chidong Zhang University of Miami, RSMAS 2013 Fall ASR Workshop Outline Overview of observations. Methodology. Simulation results.
Number of activated CCN as a key property in cloud-aerosol interactions. Or, More on simplicity in complex systems
Number of activated CCN as a key property in cloud-aerosol interactions Or, More on simplicity in complex systems 1 Daniel Rosenfeld and Eyal Freud The Hebrew University of Jerusalem, Israel Uncertainties
The formation of wider and deeper clouds through cold-pool dynamics
The formation of wider and deeper clouds through cold-pool dynamics Linda Schlemmer, Cathy Hohenegger e for Meteorology, Hamburg 2013-09-03 Bergen COST Meeting Linda Schlemmer 1 / 27 1 Motivation 2 Simulations
Ecosystem-land-surface-BL-cloud coupling as climate changes
Ecosystem-land-surface-BL-cloud coupling as climate changes Alan K. Betts Atmospheric Research, [email protected] CMMAP August 19, 2009 Outline of Talk Land-surface climate: - surface, BL & cloud coupling
A new positive cloud feedback?
A new positive cloud feedback? Bjorn Stevens Max-Planck-Institut für Meteorologie KlimaCampus, Hamburg (Based on joint work with Louise Nuijens and Malte Rieck) Slide 1/31 Prehistory [W]ater vapor, confessedly
Suvarchal Kumar Cheedela
Single Column Models and Low Cloud Feedbacks Suvarchal Kumar Cheedela Berichte zur Erdsystemforschung Reports on Earth System Science 148 2014 Berichte zur Erdsystemforschung 148 2014 Single Column Models
Earth s Cloud Feedback
Earth s Cloud Feedback Clouds are visible masses of liquid droplets and/or frozen crystals that remain suspended in the atmosphere. Molecule by molecule, water in a solid or liquid phase is 1000 times
Fundamentals of Climate Change (PCC 587): Water Vapor
Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor
Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography
Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models S. A. Klein National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics
Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model simulations of TWP ICE
Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 734 754, April 2012 A Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model
Sub-grid cloud parametrization issues in Met Office Unified Model
Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012 Table of
Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium
GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L08802, doi:10.1029/2007gl033029, 2008 Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium D. J. Posselt, 1 S. C. van
TOPIC: CLOUD CLASSIFICATION
INDIAN INSTITUTE OF TECHNOLOGY, DELHI DEPARTMENT OF ATMOSPHERIC SCIENCE ASL720: Satellite Meteorology and Remote Sensing TERM PAPER TOPIC: CLOUD CLASSIFICATION Group Members: Anil Kumar (2010ME10649) Mayank
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility
Long-term Observations of the Convective Boundary Layer (CBL) and Shallow cumulus Clouds using Cloud Radar at the SGP ARM Climate Research Facility Arunchandra S. Chandra Pavlos Kollias Department of Atmospheric
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
CHAPTER 2 Energy and Earth
CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect
Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2) CGILS-S11 results
Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2) CGILS-S11 results Stephan de Roode Delft University of Technology (TUD), Delft, Netherlands Mixed-layer model analysis: Melchior van Wessem (student,
Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon
Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency In Sik Kang Seoul National University Young Min Yang (UH) and Wei Kuo Tao (GSFC) Content 1. Conventional
Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition
Thirteenth ARM Science Team Meeting Proceedings, Broomfield, Colorado, March 31-April 4, 23 Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective
Convective Clouds. Convective clouds 1
Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at
Formation & Classification
CLOUDS Formation & Classification DR. K. K. CHANDRA Department of forestry, Wildlife & Environmental Sciences, GGV, Bilaspur What is Cloud It is mass of tiny water droplets or ice crystals or both of size
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary
Evaluation of precipitation simulated over mid-latitude land by CPTEC AGCM single-column model
Evaluation of precipitation simulated over mid-latitude land by CPTEC AGCM single-column model Enver Ramírez Gutiérrez 1, Silvio Nilo Figueroa 2, Paulo Kubota 2 1 CCST, 2 CPTEC INPE Cachoeira Paulista,
If wispy, no significant icing or turbulence. If dense or in bands turbulence is likely. Nil icing risk. Cirrocumulus (CC)
Cirrus (CI) Detached clouds in the form of delicate white filaments or white patches or narrow bands. These clouds have a fibrous or hair like appearance, or a silky sheen or both. with frontal lifting
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM Hugh Morrison and Wojciech Grabowski NCAR* (MMM Division, NESL) Marat Khairoutdinov Stony Brook University
1D shallow convective case studies and comparisons with LES
1D shallow convective case studies and comparisons with CNRM/GMME/Méso-NH 24 novembre 2005 1 / 17 Contents 1 5h-6h time average vertical profils 2 2 / 17 Case description 5h-6h time average vertical profils
THE CURIOUS CASE OF THE PLIOCENE CLIMATE. Chris Brierley, Alexey Fedorov and Zhonghui Lui
THE CURIOUS CASE OF THE PLIOCENE CLIMATE Chris Brierley, Alexey Fedorov and Zhonghui Lui Outline Introduce the warm early Pliocene Recent Discoveries in the Tropics Reconstructing the early Pliocene SSTs
Chapter 7 Stability and Cloud Development. Atmospheric Stability
Chapter 7 Stability and Cloud Development Atmospheric Stability 1 Cloud Development - stable environment Stable air (parcel) - vertical motion is inhibited if clouds form, they will be shallow, layered
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang
Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models Yefim L. Kogan Cooperative Institute
Chapter 6 - Cloud Development and Forms. Interesting Cloud
Chapter 6 - Cloud Development and Forms Understanding Weather and Climate Aguado and Burt Interesting Cloud 1 Mechanisms that Lift Air Orographic lifting Frontal Lifting Convergence Localized convective
Climate Models: Uncertainties due to Clouds. Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography
Climate Models: Uncertainties due to Clouds Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography Global mean radiative forcing of the climate system for
Indian Ocean and Monsoon
Indo-French Workshop on Atmospheric Sciences 3-5 October 2013, New Delhi (Organised by MoES and CEFIPRA) Indian Ocean and Monsoon Satheesh C. Shenoi Indian National Center for Ocean Information Services
WCRP Grand Challenge on. Clouds, Circulation and Climate Sensitivity
WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity http://www.wcrp-climate.org/index.php/gc-clouds Sandrine Bony (LMD/IPSL) & Bjorn Stevens (MPI) WCRP JSC-35, 30 June 2014, Heidelberg,
Mixed-phase layer clouds
Mixed-phase layer clouds Chris Westbrook and Andrew Barrett Thanks to Anthony Illingworth, Robin Hogan, Andrew Heymsfield and all at the Chilbolton Observatory What is a mixed-phase cloud? Cloud below
Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations. Final Report
Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations Final Report Principal Investigator: Xiaoqing Wu, Department of Geological and Atmospheric Sciences, Iowa State
Cloud Radiation and the Law of Attraction
Convec,on, cloud and radia,on Convection redistributes the thermal energy yielding (globally-averaged), a mean lapse rate of ~ -6.5 o C/km. Radiative processes tend to produce a more negative temperature
Stratosphere-Troposphere Exchange in the Tropics. Masatomo Fujiwara Hokkaido University, Japan (14 March 2006)
Stratosphere-Troposphere Exchange in the Tropics Masatomo Fujiwara Hokkaido University, Japan (14 March 2006) Contents 1. Structure of Tropical Atmosphere 2. Water Vapor in the Stratosphere 3. General
Goal: Understand the conditions and causes of tropical cyclogenesis and cyclolysis
Necessary conditions for tropical cyclone formation Leading theories of tropical cyclogenesis Sources of incipient disturbances Extratropical transition Goal: Understand the conditions and causes of tropical
Limitations of Equilibrium Or: What if τ LS τ adj?
Limitations of Equilibrium Or: What if τ LS τ adj? Bob Plant, Laura Davies Department of Meteorology, University of Reading, UK With thanks to: Steve Derbyshire, Alan Grant, Steve Woolnough and Jeff Chagnon
Titelmasterformat durch Klicken. bearbeiten
Evaluation of a Fully Coupled Atmospheric Hydrological Modeling System for the Sissili Watershed in the West African Sudanian Savannah Titelmasterformat durch Klicken June, 11, 2014 1 st European Fully
Improving Hydrological Predictions
Improving Hydrological Predictions Catherine Senior MOSAC, November 10th, 2011 How well do we simulate the water cycle? GPCP 10 years of Day 1 forecast Equatorial Variability on Synoptic scales (2-6 days)
RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE. Peter J. Lamb. Cooperative Institute for Mesoscale Meteorological Studies
RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE by Peter J. Lamb Cooperative Institute for Mesoscale Meteorological Studies and School of Meteorology The University of Oklahoma
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP X. Wu Department of Geological and Atmospheric Sciences Iowa State University Ames, Iowa X.-Z.
An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models
An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models Steven Krueger1 and Peter Bogenschutz2 1University of Utah, 2National
Joel R. Norris * Scripps Institution of Oceanography, University of California, San Diego. ) / (1 N h. = 8 and C L
10.4 DECADAL TROPICAL CLOUD AND RADIATION VARIABILITY IN OBSERVATIONS AND THE CCSM3 Joel R. Norris * Scripps Institution of Oceanography, University of California, San Diego 1. INTRODUCTION Clouds have
Chapter 6: Cloud Development and Forms
Chapter 6: Cloud Development and Forms (from The Blue Planet ) Why Clouds Form Static Stability Cloud Types Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling.
The Importance of Understanding Clouds
NASA Facts National Aeronautics and Space Administration www.nasa.gov The Importance of Understanding Clouds One of the most interesting features of Earth, as seen from space, is the ever-changing distribution
Clouds. A simple scientific explanation for the weather-curious. By Kira R. Erickson
Clouds A simple scientific explanation for the weather-curious By Kira R. Erickson Table of Contents 1 3 4 INTRO 2 Page 3 How Clouds Are Formed Types of Clouds Clouds and Weather More Information Page
Cloud Development and Forms. LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection. Orographic Cloud. The Orographic Cloud
Introduction to Climatology GEOGRAPHY 300 Cloud Development and Forms Tom Giambelluca University of Hawai i at Mānoa LIFTING MECHANISMS 1. Orographic 2. Frontal 3. Convergence 4. Convection Cloud Development
Supporting Online Material for
www.sciencemag.org/cgi/content/full/science.1182274/dc1 Supporting Online Material for Asian Monsoon Transport of Pollution to the Stratosphere William J. Randel,* Mijeong Park, Louisa Emmons, Doug Kinnison,
MSG-SEVIRI cloud physical properties for model evaluations
Rob Roebeling Weather Research Thanks to: Hartwig Deneke, Bastiaan Jonkheid, Wouter Greuell, Jan Fokke Meirink and Erwin Wolters (KNMI) MSG-SEVIRI cloud physical properties for model evaluations Cloud
Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction
Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.
Stability and Cloud Development. Stability in the atmosphere AT350. Why did this cloud form, whereas the sky was clear 4 hours ago?
Stability and Cloud Development AT350 Why did this cloud form, whereas the sky was clear 4 hours ago? Stability in the atmosphere An Initial Perturbation Stable Unstable Neutral If an air parcel is displaced
Not all clouds are easily classified! Cloud Classification schemes. Clouds by level 9/23/15
Cloud Classification schemes 1) classified by where they occur (for example: high, middle, low) 2) classified by amount of water content and vertical extent (thick, thin, shallow, deep) 3) classified by
Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework
Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework Kuan-Man Xu and Anning Cheng NASA Langley Research Center Hampton, Virginia Motivation and outline of this talk From Teixeira
How does snow melt? Principles of snow melt. Energy balance. GEO4430 snow hydrology 21.03.2006. Energy flux onto a unit surface:
Principles of snow melt How does snow melt? We need energy to melt snow/ ice. GEO443 snow hydrology 21.3.26 E = m L h we s K = ρ h = w w we f E ρ L L f f Thomas V. Schuler [email protected] E energy
Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth
Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)
ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 29 June 2015
ENSO: Recent Evolution, Current Status and Predictions Update prepared by: Climate Prediction Center / NCEP 29 June 2015 Outline Summary Recent Evolution and Current Conditions Oceanic Niño Index (ONI)
Physical properties of mesoscale high-level cloud systems in relation to their atmospheric environment deduced from Sounders
Physical properties of mesoscale high-level cloud systems in relation to their atmospheric environment deduced from Sounders Claudia Stubenrauch, Sofia Protopapadaki, Artem Feofilov, Theodore Nicolas &
ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 9 May 2011
ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 9 May 2011 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index (ONI)
8.5 Comparing Canadian Climates (Lab)
These 3 climate graphs and tables of data show average temperatures and precipitation for each month in Victoria, Winnipeg and Whitehorse: Figure 1.1 Month J F M A M J J A S O N D Year Precipitation 139
Relationship between the Subtropical Anticyclone and Diabatic Heating
682 JOURNAL OF CLIMATE Relationship between the Subtropical Anticyclone and Diabatic Heating YIMIN LIU, GUOXIONG WU, AND RONGCAI REN State Key Laboratory of Numerical Modeling for Atmospheric Sciences
